1fa8 Citations

Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation.

Biochemistry 39 8719-27 (2000)
Related entries: 1f9z, 1fa5, 1fa6, 1fa7

Cited: 67 times
EuropePMC logo PMID: 10913283

Abstract

The metalloenzyme glyoxalase I (GlxI) converts the nonenzymatically produced hemimercaptal of cytotoxic methylglyoxal and glutathione to nontoxic S-D-lactoylglutathione. Human GlxI, for which the structure is known, is active in the presence of Zn(2+). Unexpectedly, the Escherichia coli enzyme is inactive in the presence of Zn(2+) and is maximally active with Ni(2+). To understand this difference in metal activation and also to obtain a representative of the bacterial enzymes, the structure of E. coli Ni(2+)-GlxI has been determined. Structures have also been determined for the apo enzyme as well as complexes with Co(2+), Cd(2+), and Zn(2+). It is found that each of the protein-metal complexes that is catalytically active has octahedral geometry. This includes the complexes of the E. coli enzyme with Ni(2+), Co(2+), and Cd(2+), as well as the structures reported for the human Zn(2+) enzyme. Conversely, the complex of the E. coli enzyme with Zn(2+) has trigonal bipyramidal coordination and is inactive. This mode of coordination includes four protein ligands plus a single water molecule. In contrast, the coordination in the active forms of the enzyme includes two water molecules bound to the metal ion, suggesting that this may be a key feature of the catalytic mechanism. A comparison of the human and E. coli enzymes suggests that there are differences between the active sites that might be exploited for therapeutic use.

Reviews - 1fa8 mentioned but not cited (1)

  1. Nonredox nickel enzymes. Maroney MJ, Ciurli S. Chem Rev 114 4206-4228 (2014)

Articles - 1fa8 mentioned but not cited (3)

  1. Selective prediction of interaction sites in protein structures with THEMATICS. Wei Y, Ko J, Murga LF, Ondrechen MJ. BMC Bioinformatics 8 119 (2007)
  2. Structure and heme binding properties of Escherichia coli O157:H7 ChuX. Suits MD, Lang J, Pal GP, Couture M, Jia Z. Protein Sci 18 825-838 (2009)
  3. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyoxalase I from Leishmania infantum. Barata L, Sousa Silva M, Schuldt L, da Costa G, Tomás AM, Ferreira AE, Weiss MS, Ponces Freire A, Cordeiro C. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 571-574 (2010)


Reviews citing this publication (16)

  1. 3D domain swapping: as domains continue to swap. Liu Y, Eisenberg D. Protein Sci 11 1285-1299 (2002)
  2. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Deponte M. Biochim Biophys Acta 1830 3217-3266 (2013)
  3. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Gerlt JA, Babbitt PC. Annu Rev Biochem 70 209-246 (2001)
  4. Nickel uptake and utilization by microorganisms. Mulrooney SB, Hausinger RP. FEMS Microbiol Rev 27 239-261 (2003)
  5. The glyoxalase pathway: the first hundred years... and beyond. Sousa Silva M, Gomes RA, Ferreira AE, Ponces Freire A, Cordeiro C. Biochem J 453 1-15 (2013)
  6. Nickel-dependent metalloenzymes. Boer JL, Mulrooney SB, Hausinger RP. Arch Biochem Biophys 544 142-152 (2014)
  7. Nickel-based Enzyme Systems. Ragsdale SW. J Biol Chem 284 18571-18575 (2009)
  8. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Maret W. Metallomics 2 117-125 (2010)
  9. An overview on the role of methylglyoxal and glyoxalases in plants. Yadav SK, Singla-Pareek SL, Sopory SK. Drug Metabol Drug Interact 23 51-68 (2008)
  10. Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. Nigro C, Leone A, Raciti GA, Longo M, Mirra P, Formisano P, Beguinot F, Miele C. Int J Mol Sci 18 E188 (2017)
  11. Structure, function, and biosynthesis of nickel-dependent enzymes. Alfano M, Cavazza C. Protein Sci 29 1071-1089 (2020)
  12. Bacterial glyoxalase enzymes. Suttisansanee U, Honek JF. Semin Cell Dev Biol 22 285-292 (2011)
  13. Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations. Creighton DJ, Hamilton DS. Arch Biochem Biophys 387 1-10 (2001)
  14. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. Kaur C, Sharma S, Hasan MR, Pareek A, Singla-Pareek SL, Sopory SK. Int J Mol Sci 18 E250 (2017)
  15. Use of XAS for the elucidation of metal structure and function: applications to nickel biochemistry, molecular toxicology, and carcinogenesis. Carrington PE, Al-Mjeni F, Zoroddu MA, Costa M, Maroney MJ. Environ Health Perspect 110 Suppl 5 705-708 (2002)
  16. Structural biological study of self-resistance determinants in antibiotic-producing actinomycetes. Sugiyama M. J Antibiot (Tokyo) 68 543-550 (2015)

Articles citing this publication (47)

  1. (PS)2: protein structure prediction server. Chen CC, Hwang JK, Yang JM. Nucleic Acids Res 34 W152-7 (2006)
  2. Force field independent metal parameters using a nonbonded dummy model. Duarte F, Bauer P, Barrozo A, Amrein BA, Purg M, Aqvist J, Kamerlin SC. J Phys Chem B 118 4351-4362 (2014)
  3. A unique Ni2+ -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL. Plant J 78 951-963 (2014)
  4. Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli. Rowe JL, Starnes GL, Chivers PT. J Bacteriol 187 6317-6323 (2005)
  5. A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major. Vickers TJ, Greig N, Fairlamb AH. Proc Natl Acad Sci U S A 101 13186-13191 (2004)
  6. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. Ghosh A, Islam T. BMC Plant Biol 16 87 (2016)
  7. Crystal structure of methylmalonyl-coenzyme A epimerase from P. shermanii: a novel enzymatic function on an ancient metal binding scaffold. McCarthy AA, Baker HM, Shewry SC, Patchett ML, Baker EN. Structure 9 637-646 (2001)
  8. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Ariza A, Vickers TJ, Greig N, Armour KA, Dixon MJ, Eggleston IM, Fairlamb AH, Bond CS. Mol Microbiol 59 1239-1248 (2006)
  9. Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes. Sukdeo N, Clugston SL, Daub E, Honek JF. Biochem J 384 111-117 (2004)
  10. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies. Clugston SL, Yajima R, Honek JF. Biochem J 377 309-316 (2004)
  11. Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I. Deponte M, Sturm N, Mittler S, Harner M, Mack H, Becker K. J Biol Chem 282 28419-28430 (2007)
  12. Iron-containing urease in a pathogenic bacterium. Carter EL, Tronrud DE, Taber SR, Karplus PA, Hausinger RP. Proc Natl Acad Sci U S A 108 13095-13099 (2011)
  13. To what extent do structural changes in catalytic metal sites affect enzyme function? Valasatava Y, Rosato A, Furnham N, Thornton JM, Andreini C. J Inorg Biochem 179 40-53 (2018)
  14. Glyoxalase I from Leishmania donovani: a potential target for anti-parasite drug. Padmanabhan PK, Mukherjee A, Singh S, Chattopadhyaya S, Gowri VS, Myler PJ, Srinivasan N, Madhubala R. Biochem Biophys Res Commun 337 1237-1248 (2005)
  15. Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum. Suttisansanee U, Lau K, Lagishetty S, Rao KN, Swaminathan S, Sauder JM, Burley SK, Honek JF. J Biol Chem 286 38367-38374 (2011)
  16. Stereospecific mechanism of DJ-1 glyoxalases inferred from their hemithioacetal-containing crystal structures. Choi D, Kim J, Ha S, Kwon K, Kim EH, Lee HY, Ryu KS, Park C. FEBS J 281 5447-5462 (2014)
  17. Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme. O'Young J, Sukdeo N, Honek JF. Arch Biochem Biophys 459 20-26 (2007)
  18. Nickel superoxide dismutase: structural and functional roles of Cys2 and Cys6. Ryan KC, Johnson OE, Cabelli DE, Brunold TC, Maroney MJ. J Biol Inorg Chem 15 795-807 (2010)
  19. Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification. Chauhan SC, Madhubala R. PLoS One 4 e6805 (2009)
  20. Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic Bacterium Actinomyces sp. Lu 9419. Wu X, Flatt PM, Xu H, Mahmud T. Chembiochem 10 304-314 (2009)
  21. Design and evaluation of azaindole-substituted N-hydroxypyridones as glyoxalase I inhibitors. Chiba T, Ohwada J, Sakamoto H, Kobayashi T, Fukami TA, Irie M, Miura T, Ohara K, Koyano H. Bioorg Med Chem Lett 22 7486-7489 (2012)
  22. Molecular basis of mitomycin C resistance in streptomyces: structure and function of the MRD protein. Martin TW, Dauter Z, Devedjiev Y, Sheffield P, Jelen F, He M, Sherman DH, Otlewski J, Derewenda ZS, Derewenda U. Structure 10 933-942 (2002)
  23. Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis alpha-isopropylmalate synthase. de Carvalho LP, Blanchard JS. Arch Biochem Biophys 451 141-148 (2006)
  24. Nickel quercetinase, a "promiscuous" metalloenzyme: metal incorporation and metal ligand substitution studies. Nianios D, Thierbach S, Steimer L, Lulchev P, Klostermeier D, Fetzner S. BMC Biochem 16 10 (2015)
  25. Determination of the active site of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone dioxygenase (PcpA). Machonkin TE, Holland PL, Smith KN, Liberman JS, Dinescu A, Cundari TR, Rocks SS. J Biol Inorg Chem 15 291-301 (2010)
  26. Dissecting the Physiological Function of Plant Glyoxalase I and Glyoxalase I-Like Proteins. Schmitz J, Rossoni AW, Maurino VG. Front Plant Sci 9 1618 (2018)
  27. Reaction mechanism of the binuclear zinc enzyme glyoxalase II - A theoretical study. Chen SL, Fang WH, Himo F. J Inorg Biochem 103 274-281 (2009)
  28. The mitomycin C (MMC)-binding protein from MMC-producing microorganisms protects from the lethal effect of bleomycin: crystallographic analysis to elucidate the binding mode of the antibiotic to the protein. Danshiitsoodol N, de Pinho CA, Matoba Y, Kumagai T, Sugiyama M. J Mol Biol 360 398-408 (2006)
  29. Toxoflavin lyase requires a novel 1-His-2-carboxylate facial triad. Fenwick MK, Philmus B, Begley TP, Ealick SE. Biochemistry 50 1091-1100 (2011)
  30. Arginine glycosylation enhances methylglyoxal detoxification. El Qaidi S, Scott NE, Hardwidge PR. Sci Rep 11 3834 (2021)
  31. Structure of the novel monomeric glyoxalase I from Zea mays. Turra GL, Agostini RB, Fauguel CM, Presello DA, Andreo CS, González JM, Campos-Bermudez VA. Acta Crystallogr D Biol Crystallogr 71 2009-2020 (2015)
  32. Modulating glyoxalase I metal selectivity by deletional mutagenesis: underlying structural factors contributing to nickel activation profiles. Suttisansanee U, Ran Y, Mullings KY, Sukdeo N, Honek JF. Metallomics 7 605-612 (2015)
  33. A widespread group of large plasmids in methanotrophic Methanoperedens archaea. Schoelmerich MC, Ouboter HT, Sachdeva R, Penev PI, Amano Y, West-Roberts J, Welte CU, Banfield JF. Nat Commun 13 7085 (2022)
  34. Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase. Wang WJ, Wei WJ, Liao RZ. Phys Chem Chem Phys 20 15784-15794 (2018)
  35. Explaining the inhibition of glyoxalase II by 9-fluorenylmethoxycarbonyl-protected glutathione derivatives. Yang KW, Sobieski DN, Carenbauer AL, Crawford PA, Makaroff CA, Crowder MW. Arch Biochem Biophys 414 271-278 (2003)
  36. Bacterial glyoxalase I enzymes: structural and biochemical investigations. Honek JF. Biochem Soc Trans 42 479-484 (2014)
  37. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor. Harty ML, Sharma AN, Bearne SL. Metallomics 11 707-723 (2019)
  38. Crystal structure of a putative methylmalonyl-coenzyme A epimerase from Thermoanaerobacter tengcongensis at 2.0 A resolution. Shi L, Gao P, Yan XX, Liang DC. Proteins 77 994-999 (2009)
  39. Development of a multisite model for Ni(II) ion in solution from thermodynamic and kinetic data. Masetti M, Musiani F, Bernetti M, Falchi F, Cavalli A, Ciurli S, Recanatini M. J Comput Chem 38 1834-1843 (2017)
  40. Crystal Structures of L-DOPA Dioxygenase from Streptomyces sclerotialus. Wang Y, Shin I, Fu Y, Colabroy KL, Liu A. Biochemistry 58 5339-5350 (2019)
  41. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family. Chirgadze YN, Boshkova EA, Battaile KP, Mendes VG, Lam R, Chan TSY, Romanov V, Pai EF, Chirgadze NY. J Biomol Struct Dyn 36 376-386 (2018)
  42. Novel approach for structural identification of protein family: glyoxalase I. Kargatov AM, Boshkova EA, Chirgadze YN. J Biomol Struct Dyn 36 2699-2712 (2018)
  43. The crystal structure of a homodimeric Pseudomonas glyoxalase I enzyme reveals asymmetric metallation commensurate with half-of-sites activity. Bythell-Douglas R, Suttisansanee U, Flematti GR, Challenor M, Lee M, Panjikar S, Honek JF, Bond CS. Chemistry 21 541-544 (2015)
  44. Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat (Triticum durum Desf.). Soccio M, Marangi M, Laus MN. Front Plant Sci 13 934523 (2022)
  45. Viridiplantae-specific GLXI and GLXII isoforms co-evolved and detoxify glucosone in planta. Balparda M, Schmitz J, Duemmel M, Wuthenow IC, Schmidt M, Alseekh S, Fernie AR, Lercher MJ, Maurino VG. Plant Physiol 191 1214-1233 (2023)
  46. Genome-wide analysis and expression profiling of glyoxalase gene families in oat (Avena sativa) indicate their responses to abiotic stress during seed germination. Sun M, Sun S, Jia Z, Zhang H, Ou C, Ma W, Wang J, Li M, Mao P. Front Plant Sci 14 1215084 (2023)
  47. Genomic discovery and structural dissection of a novel type of polymorphic toxin system in gram-positive bacteria. Li H, Tan Y, Zhang D. Comput Struct Biotechnol J 20 4517-4531 (2022)