1f5z Citations

Active site modulation in the N-acetylneuraminate lyase sub-family as revealed by the structure of the inhibitor-complexed Haemophilus influenzae enzyme.

J Mol Biol 303 405-21 (2000)
Related entries: 1f6k, 1f6p, 1f73, 1f74, 1f7b

Cited: 41 times
EuropePMC logo PMID: 11031117

Abstract

The N-acetylneuraminate lyase (NAL) sub-family of (beta/alpha)(8) enzymes share a common catalytic step but catalyse reactions in different biological pathways. Known examples include NAL, dihydrodipicolinate synthetase (DHDPS), d-5-keto-4-deoxyglucarate dehydratase, 2-keto-3-deoxygluconate aldolase, trans-o-hydroxybenzylidenepyruvate hydrolase-aldolase and trans-2'-carboxybenzalpyruvate hydratase-aldolase. Little is known about the way in which the three-dimensional structure of the respective active sites are modulated across the sub-family to achieve cognate substrate recognition. We present here the structure of Haemophilus influenzae NAL determined by X-ray crystallography to a maximum resolution of 1.60 A, in native form and in complex with three substrate analogues (sialic acid alditol, 4-deoxy-sialic acid and 4-oxo-sialic acid). These structures reveal for the first time the mode of binding of the complete substrate in the NAL active site. On the basis of the above structures, that of substrate-complexed DHDPS and sequence comparison across the sub-family we are able to propose a unified model for active site modulation. The model is one of economy, allowing wherever appropriate the retention or relocation of residues associated with binding common substrate substituent groups. Our structures also suggest a role for the strictly conserved tyrosine residue found in all active sites of the sub-family, namely that it mediates proton abstraction by the alpha-keto acid carboxylate in a substrate-assisted catalytic reaction pathway.

Articles - 1f5z mentioned but not cited (9)

  1. Molecular characterization of a novel N-acetylneuraminate lyase from Lactobacillus plantarum WCFS1. Sánchez-Carrón G, García-García MI, López-Rodríguez AB, Jiménez-García S, Sola-Carvajal A, García-Carmona F, Sánchez-Ferrer A. Appl Environ Microbiol 77 2471-2478 (2011)
  2. Structural insights into the recovery of aldolase activity in N-acetylneuraminic acid lyase by replacement of the catalytically active lysine with γ-thialysine by using a chemical mutagenesis strategy. Timms N, Windle CL, Polyakova A, Ault JR, Trinh CH, Pearson AR, Nelson A, Berry A. Chembiochem 14 474-481 (2013)
  3. Comprehensive analysis of two potential novel SARS-CoV-2 entries, TMPRSS2 and IFITM3, in healthy individuals and cancer patients. Dai YJ, Zhang WN, Wang WD, He SY, Liang CC, Wang DW. Int J Biol Sci 16 3028-3036 (2020)
  4. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida. Huynh N, Aye A, Li Y, Yu H, Cao H, Tiwari VK, Shin DW, Chen X, Fisher AJ. Biochemistry 52 8570-8579 (2013)
  5. Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis. Ji W, Sun W, Feng J, Song T, Zhang D, Ouyang P, Gu Z, Xie J. Sci Rep 5 9341 (2015)
  6. First functional and mutational analysis of group 3 N-acetylneuraminate lyases from Lactobacillus antri and Lactobacillus sakei 23K. García-García MI, Gil-Ortiz F, García-Carmona F, Sánchez-Ferrer A. PLoS One 9 e96976 (2014)
  7. Crystal structures and kinetics of N-acetylneuraminate lyase from Fusobacterium nucleatum. Kumar JP, Rao H, Nayak V, Ramaswamy S. Acta Crystallogr F Struct Biol Commun 74 725-732 (2018)
  8. Features and structure of a cold active N-acetylneuraminate lyase. Gurung MK, Altermark B, Helland R, Smalås AO, Ræder ILU. PLoS One 14 e0217713 (2019)
  9. Prediction of the tetramer protein complex interaction based on CNN and SVM. Lyu Y, He R, Hu J, Wang C, Gong X. Front Genet 14 1076904 (2023)


Reviews citing this publication (4)

  1. Biocatalytic synthesis of hydroxylated natural products using aldolases and related enzymes. Fessner WD, Helaine V. Curr Opin Biotechnol 12 574-586 (2001)
  2. Directed evolution of aldolases for exploitation in synthetic organic chemistry. Bolt A, Berry A, Nelson A. Arch Biochem Biophys 474 318-330 (2008)
  3. Computational tools for rational protein engineering of aldolases. Widmann M, Pleiss J, Samland AK. Comput Struct Biotechnol J 2 e201209016 (2012)
  4. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Biophys Rev 10 153-162 (2018)

Articles citing this publication (28)

  1. Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Li Y, Yu H, Cao H, Lau K, Muthana S, Tiwari VK, Son B, Chen X. Appl Microbiol Biotechnol 79 963-970 (2008)
  2. Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Bell A, Brunt J, Crost E, Vaux L, Nepravishta R, Owen CD, Latousakis D, Xiao A, Li W, Chen X, Walsh MA, Claesen J, Angulo J, Thomas GH, Juge N. Nat Microbiol 4 2393-2404 (2019)
  3. Patterns of evolutionary conservation of essential genes correlate with their compensability. Bergmiller T, Ackermann M, Silander OK. PLoS Genet 8 e1002803 (2012)
  4. Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Joerger AC, Mayer S, Fersht AR. Proc Natl Acad Sci U S A 100 5694-5699 (2003)
  5. Directed evolution of N-acetylneuraminic acid aldolase to catalyze enantiomeric aldol reactions. Wada M, Hsu CC, Franke D, Mitchell M, Heine A, Wilson I, Wong CH. Bioorg Med Chem 11 2091-2098 (2003)
  6. Reaction mechanism of N-acetylneuraminic acid lyase revealed by a combination of crystallography, QM/MM simulation, and mutagenesis. Daniels AD, Campeotto I, van der Kamp MW, Bolt AH, Trinh CH, Phillips SE, Pearson AR, Nelson A, Mulholland AJ, Berry A. ACS Chem Biol 9 1025-1032 (2014)
  7. Characterization and mutagenesis of the recombinant N-acetylneuraminate lyase from Clostridium perfringens: insights into the reaction mechanism. Krüger D, Schauer R, Traving C. Eur J Biochem 268 3831-3839 (2001)
  8. Structural insights into substrate specificity in variants of N-acetylneuraminic Acid lyase produced by directed evolution. Campeotto I, Bolt AH, Harman TA, Dennis C, Trinh CH, Phillips SE, Nelson A, Pearson AR, Berry A. J Mol Biol 404 56-69 (2010)
  9. Structure-guided saturation mutagenesis of N-acetylneuraminic acid lyase for the synthesis of sialic acid mimetics. Williams GJ, Woodhall T, Nelson A, Berry A. Protein Eng Des Sel 18 239-246 (2005)
  10. Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Wolterink-van Loo S, van Eerde A, Siemerink MA, Akerboom J, Dijkstra BW, van der Oost J. Biochem J 403 421-430 (2007)
  11. Conserved main-chain peptide distortions: a proposed role for Ile203 in catalysis by dihydrodipicolinate synthase. Dobson RC, Griffin MD, Devenish SR, Pearce FG, Hutton CA, Gerrard JA, Jameson GB, Perugini MA. Protein Sci 17 2080-2090 (2008)
  12. Creation of a tailored aldolase for the parallel synthesis of sialic acid mimetics. Woodhall T, Williams G, Berry A, Nelson A. Angew Chem Int Ed Engl 44 2109-2112 (2005)
  13. Letter Structure and inhibition of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. North RA, Watson AJ, Pearce FG, Muscroft-Taylor AC, Friemann R, Fairbanks AJ, Dobson RC. FEBS Lett 590 4414-4428 (2016)
  14. Disaccharides as sialic acid aldolase substrates: synthesis of disaccharides containing a sialic acid at the reducing end. Huang S, Yu H, Chen X. Angew Chem Int Ed Engl 46 2249-2253 (2007)
  15. L-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti. Chen S, White CE, diCenzo GC, Zhang Y, Stogios PJ, Savchenko A, Finan TM. J Bacteriol 198 1171-1181 (2016)
  16. Identification of the bona fide DHDPS from a common plant pathogen. Atkinson SC, Hor L, Dogovski C, Dobson RC, Perugini MA. Proteins 82 1869-1883 (2014)
  17. Identification of biochemical and putative biological role of a xenolog from Escherichia coli using structural analysis. Bhaskar V, Kumar M, Manicka S, Tripathi S, Venkatraman A, Krishnaswamy S. Proteins 79 1132-1142 (2011)
  18. Modulation of substrate specificities of D-sialic acid aldolase through single mutations of Val-251. Chou CY, Ko TP, Wu KJ, Huang KF, Lin CH, Wong CH, Wang AH. J Biol Chem 286 14057-14064 (2011)
  19. Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma. Wang SL, Li YL, Han Z, Chen X, Chen QJ, Wang Y, He LS. Mar Drugs 16 E80 (2018)
  20. MosA, a protein implicated in rhizopine biosynthesis in Sinorhizobium meliloti L5-30, is a dihydrodipicolinate synthase. Tam PH, Phenix CP, Palmer DR. J Mol Biol 335 393-397 (2004)
  21. Crystal structure of YagE, a putative DHDPS-like protein from Escherichia coli K12. Manicka S, Peleg Y, Unger T, Albeck S, Dym O, Greenblatt HM, Bourenkov G, Lamzin V, Krishnaswamy S, Sussman JL. Proteins 71 2102-2108 (2008)
  22. Structural Characterization of the Hydratase-Aldolases, NahE and PhdJ: Implications for the Specificity, Catalysis, and N-Acetylneuraminate Lyase Subgroup of the Aldolase Superfamily. LeVieux JA, Medellin B, Johnson WH, Erwin K, Li W, Johnson IA, Zhang YJ, Whitman CP. Biochemistry 57 3524-3536 (2018)
  23. The metalloprotein YhcH is an anomerase providing N-acetylneuraminate aldolase with the open form of its substrate. Kentache T, Thabault L, Deumer G, Haufroid V, Frédérick R, Linster CL, Peracchi A, Veiga-da-Cunha M, Bommer GT, Van Schaftingen E. J Biol Chem 296 100699 (2021)
  24. The role of a conserved histidine residue in a pyruvate-specific Class II aldolase. Wang W, Seah SY. FEBS Lett 582 3385-3388 (2008)
  25. A mutagenic analysis of NahE, a hydratase-aldolase in the naphthalene degradative pathway. Lancaster EB, Johnson WH, LeVieux JA, Hardtke HA, Zhang YJ, Whitman CP. Arch Biochem Biophys 733 109471 (2023)
  26. The sialate-pyruvate lyase from pig kidney. Elucidation of the primary structure and expression of recombinant enzyme activity. Traving C, Bruse P, Wächter A, Schauer R. Eur J Biochem 268 6473-6486 (2001)
  27. Identification of aldolase and ferredoxin reductase within the dbt operon of Burkholderia fungorum DBT1. Piccoli S, Andreolli M, Giorgetti A, Zordan F, Lampis S, Vallini G. J Basic Microbiol 54 464-469 (2014)
  28. Preliminary crystallographic analysis of L-2-keto-3-deoxyarabonate dehydratase, an enzyme involved in an alternative bacterial pathway of L-arabinose metabolism. Shimada N, Mikami B, Watanabe S, Makino K. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 393-395 (2007)