1f2j Citations

Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases.

J Mol Biol 300 697-707 (2000)
Cited: 44 times
EuropePMC logo PMID: 10891264

Abstract

Trypanosomatids, unicellular organisms responsible for several global diseases, contain unique organelles called glycosomes in which the first seven glycolytic enzymes are sequestered. We report the crystal structures of glycosomal fructose-1,6-bisphosphate aldolase from two major tropical pathogens, Trypanosoma brucei and Leishmania mexicana, the causative agents of African sleeping sickness and one form of leishmaniasis, respectively. Unlike mammalian aldolases, the T. brucei and L. mexicana aldolases contain nonameric N-terminal type 2 peroxisomal targeting signals (PTS2s) to direct their import into the glycosome. In both tetrameric trypanosomatid aldolases, the PTS2s from two different subunits form two closely intertwined structures. These "PTS2 dimers", which have very similar conformations in the two aldolase structures, are the first reported conformations of a glycosomal or peroxisomal PTS2, and provide opportunities for the design of trypanocidal compounds.

Reviews - 1f2j mentioned but not cited (1)

  1. Supramolecular enzyme-mimicking catalysts self-assembled from peptides. Liu Q, Kuzuya A, Wang ZG. iScience 26 105831 (2023)

Articles - 1f2j mentioned but not cited (7)

  1. Landscapes of Protein Posttranslational Modifications of African Trypanosoma Parasites. Zhang N, Jiang N, Zhang K, Zheng L, Zhang D, Sang X, Feng Y, Chen R, Yang N, Wang X, Cheng Z, Suo X, Lun Z, Chen Q. iScience 23 101074 (2020)
  2. Empirical power laws for the radii of gyration of protein oligomers. Tanner JJ. Acta Crystallogr D Struct Biol 72 1119-1129 (2016)
  3. Structural basis for the high specificity of a Trypanosoma congolense immunoassay targeting glycosomal aldolase. Pinto J, Odongo S, Lee F, Gaspariunaite V, Muyldermans S, Magez S, Sterckx YG. PLoS Negl Trop Dis 11 e0005932 (2017)
  4. Protein Lactylation Critically Regulates Energy Metabolism in the Protozoan Parasite Trypanosoma brucei. Zhang N, Jiang N, Yu L, Guan T, Sang X, Feng Y, Chen R, Chen Q. Front Cell Dev Biol 9 719720 (2021)
  5. Coevolving residues inform protein dynamics profiles and disease susceptibility of nSNVs. Butler BM, Kazan IC, Kumar A, Ozkan SB. PLoS Comput Biol 14 e1006626 (2018)
  6. Mannitol Bis-phosphate Based Inhibitors of Fructose 1,6-Bisphosphate Aldolases. Mabiala-Bassiloua CG, Arthus-Cartier G, Hannaert V, Thérisod H, Sygusch J, Thérisod M. ACS Med Chem Lett 2 804-808 (2011)
  7. Structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi. Gardberg A, Sankaran B, Davies D, Bhandari J, Staker B, Stewart L. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1055-1059 (2011)


Reviews citing this publication (12)

  1. Peroxisome biogenesis. Purdue PE, Lazarow PB. Annu Rev Cell Dev Biol 17 701-752 (2001)
  2. Glycolysis as a target for the design of new anti-trypanosome drugs. Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA. Drug Resist Updat 4 50-65 (2001)
  3. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJ, Chennamaneni NK, Pendem N, Buckner FS, Gelb MH, Molteni V. Chem Rev 114 11305-11347 (2014)
  4. The import receptor Pex7p and the PTS2 targeting sequence. Lazarow PB. Biochim Biophys Acta 1763 1599-1604 (2006)
  5. State of the art in African trypanosome drug discovery. Jacobs RT, Nare B, Phillips MA. Curr Top Med Chem 11 1255-1274 (2011)
  6. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. Moyersoen J, Choe J, Fan E, Hol WG, Michels PA. FEMS Microbiol Rev 28 603-643 (2004)
  7. Biogenesis and function of peroxisomes and glycosomes. Parsons M, Furuya T, Pal S, Kessler P. Mol Biochem Parasitol 115 19-28 (2001)
  8. Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Lanyon-Hogg T, Warriner SL, Baker A. Biol Cell 102 245-263 (2010)
  9. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Galland N, Michels PA. Eur J Cell Biol 89 621-637 (2010)
  10. Ryanodine receptor assembly: a novel systems biology approach to 3D mapping. Song DW, Lee JG, Youn HS, Eom SH, Kim DH. Prog Biophys Mol Biol 105 145-161 (2011)
  11. Cellular trafficking in trypanosomatids: a new target for therapies? Costa-Pinto D, Trindade LS, McMahon-Pratt D, Traub-Cseko YM. Int J Parasitol 31 536-543 (2001)
  12. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Ogungbe IV, Setzer WN. Molecules 21 E1389 (2016)

Articles citing this publication (24)

  1. In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Opperdoes FR, Szikora JP. Mol Biochem Parasitol 147 193-206 (2006)
  2. Evolution of energy metabolism and its compartmentation in Kinetoplastida. Hannaert V, Bringaud F, Opperdoes FR, Michels PA. Kinetoplastid Biol Dis 2 11 (2003)
  3. Drug targets in Leishmania. Chawla B, Madhubala R. J Parasit Dis 34 1-13 (2010)
  4. Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Schäfer A, Kerssen D, Veenhuis M, Kunau WH, Schliebs W. Mol Cell Biol 24 8895-8906 (2004)
  5. Characterization of glycolytic enzymes--rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. Gupta R, Kumar V, Kushawaha PK, Tripathi CP, Joshi S, Sahasrabuddhe AA, Mitra K, Sundar S, Siddiqi MI, Dube A. PLoS One 9 e86073 (2014)
  6. Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. Suresh S, Bressi JC, Kennedy KJ, Verlinde CL, Gelb MH, Hol WG. J Mol Biol 309 423-435 (2001)
  7. Inhibitors of PEX14 disrupt protein import into glycosomes and kill Trypanosoma parasites. Dawidowski M, Emmanouilidis L, Kalel VC, Tripsianes K, Schorpp K, Hadian K, Kaiser M, Mäser P, Kolonko M, Tanghe S, Rodriguez A, Schliebs W, Erdmann R, Sattler M, Popowicz GM. Science 355 1416-1420 (2017)
  8. An Anti-proteome Nanobody Library Approach Yields a Specific Immunoassay for Trypanosoma congolense Diagnosis Targeting Glycosomal Aldolase. Odongo S, Sterckx YG, Stijlemans B, Pillay D, Baltz T, Muyldermans S, Magez S. PLoS Negl Trop Dis 10 e0004420 (2016)
  9. Farnesyl diphosphate synthase is a cytosolic enzyme in Leishmania major promastigotes and its overexpression confers resistance to risedronate. Ortiz-Gómez A, Jiménez C, Estévez AM, Carrero-Lérida J, Ruiz-Pérez LM, González-Pacanowska D. Eukaryot Cell 5 1057-1064 (2006)
  10. Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development. Coley AF, Dodson HC, Morris MT, Morris JC. Mol Biol Int 2011 123702 (2011)
  11. Organelle and translocatable forms of glyoxysomal malate dehydrogenase. The effect of the N-terminal presequence. Cox B, Chit MM, Weaver T, Gietl C, Bailey J, Bell E, Banaszak L. FEBS J 272 643-654 (2005)
  12. Structure of a class I tagatose-1,6-bisphosphate aldolase: investigation into an apparent loss of stereospecificity. LowKam C, Liotard B, Sygusch J. J Biol Chem 285 21143-21152 (2010)
  13. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity. Loureiro I, Faria J, Clayton C, Macedo-Ribeiro S, Santarém N, Roy N, Cordeiro-da-Siva A, Tavares J. PLoS Negl Trop Dis 9 e3430 (2015)
  14. Anomalous differences of light elements in determining precise binding modes of ligands to glycerol-3-phosphate dehydrogenase. Choe J, Suresh S, Wisedchaisri G, Kennedy KJ, Gelb MH, Hol WG. Chem Biol 9 1189-1197 (2002)
  15. Glycerol 3-phosphate alters Trypanosoma brucei hexokinase activity in response to environmental change. Dodson HC, Morris MT, Morris JC. J Biol Chem 286 33150-33157 (2011)
  16. Molecular characterization of the hexokinase gene from Leishmania major. Umasankar PK, Jayakumar PC, Shouche YS, Patole MS. J Parasitol 91 1504-1509 (2005)
  17. The 6-phosphogluconate dehydrogenase from Trypanosoma cruzi: the absence of two inter-subunit salt bridges as a reason for enzyme instability. Esteve MI, Cazzulo JJ. Mol Biochem Parasitol 133 197-207 (2004)
  18. The krebs cycle enzyme α-ketoglutarate decarboxylase is an essential glycosomal protein in bloodstream African trypanosomes. Sykes S, Szempruch A, Hajduk S. Eukaryot Cell 14 206-215 (2015)
  19. The structure of the deacetylase domain of Escherichia coli PgaB, an enzyme required for biofilm formation: a circularly permuted member of the carbohydrate esterase 4 family. Nishiyama T, Noguchi H, Yoshida H, Park SY, Tame JR. Acta Crystallogr D Biol Crystallogr 69 44-51 (2013)
  20. Crystal structure of phosphoglucose isomerase from Trypanosoma brucei complexed with glucose-6-phosphate at 1.6 A resolution. Arsenieva D, Appavu BL, Mazock GH, Jeffery CJ. Proteins 74 72-80 (2009)
  21. Modeling the interaction between aldolase and the thrombospondin-related anonymous protein, a key connection of the malaria parasite invasion machinery. Buscaglia CA, Hol WG, Nussenzweig V, Cardozo T. Proteins 66 528-537 (2007)
  22. Homology modeling and molecular dynamics study of NAD-dependent glycerol-3-phosphate dehydrogenase from Trypanosoma brucei rhodesiense, a potential target enzyme for anti-sleeping sickness drug development. Zubrzycki IZ. Biophys J 82 2906-2915 (2002)
  23. Analysis of the Leishmania peroxin 7 interactions with peroxin 5, peroxin 14 and PTS2 ligands. Pilar AV, Strasser R, McLean J, Quinn E, Cyr N, Hojjat H, Kottarampatel AH, Jardim A. Biochem J 460 273-282 (2014)
  24. A Small Molecule Inhibitor of Pex3-Pex19 Interaction Disrupts Glycosome Biogenesis and Causes Lethality in Trypanosoma brucei. Banerjee H, LaPointe P, Eitzen G, Rachubinski RA. Front Cell Dev Biol 9 703603 (2021)