1eug Citations

Crystal structure of Escherichia coli uracil DNA glycosylase and its complexes with uracil and glycerol: structure and glycosylase mechanism revisited.


The DNA repair enzyme uracil DNA glycosylase (UDG) catalyzes the hydrolysis of premutagenic uracil residues from single-stranded or duplex DNA, producing free uracil and abasic DNA. Here we report the high-resolution crystal structures of free UDG from Escherichia coli strain B (1.60 A), its complex with uracil (1.50 A), and a second active-site complex with glycerol (1.43 A). These represent the first high-resolution structures of a prokaryotic UDG to be reported. The overall structure of the E. coli enzyme is more similar to the human UDG than the herpes virus enzyme. Significant differences between the bacterial and viral structures are seen in the side-chain positions of the putative general-acid (His187) and base (Asp64), similar to differences previously observed between the viral and human enzymes. In general, the active-site loop that contains His187 appears preorganized in comparison with the viral and human enzymes, requiring smaller substrate-induced conformational changes to bring active-site groups into catalytic position. These structural differences may be related to the large differences in the mechanism of uracil recognition used by the E. coli and viral enzymes. The pH dependence of k(cat) for wild-type UDG and the D64N and H187Q mutant enzymes is consistent with general-base catalysis by Asp64, but provides no evidence for a general-acid catalyst. The catalytic mechanism of UDG is critically discussed with respect to these results.

Articles - 1eug mentioned but not cited (3)

Reviews citing this publication (10)

  1. Inhibitors of DNA Glycosylases as Prospective Drugs. Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Int J Mol Sci 21 (2020)
  2. Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Schormann N, Ricciardi R, Chattopadhyay D. Protein Sci. 23 1667-1685 (2014)
  3. Recent advances in the structural mechanisms of DNA glycosylases. Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Biochim. Biophys. Acta 1834 247-271 (2013)
  4. Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition. Zharkov DO, Mechetin GV, Nevinsky GA. Mutat. Res. 685 11-20 (2010)
  5. DNA base repair--recognition and initiation of catalysis. Dalhus B, Laerdahl JK, Backe PH, Bjørås M. FEMS Microbiol. Rev. 33 1044-1078 (2009)
  6. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. Yonekura S, Nakamura N, Yonei S, Zhang-Akiyama QM. J. Radiat. Res. 50 19-26 (2009)
  7. DNA base damage recognition and removal: new twists and grooves. Huffman JL, Sundheim O, Tainer JA. Mutat. Res. 577 55-76 (2005)
  8. Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases. Zharkov DO, Grollman AP. Free Radic. Biol. Med. 32 1254-1263 (2002)
  9. Uracil in DNA--occurrence, consequences and repair. Krokan HE, Drabløs F, Slupphaug G. Oncogene 21 8935-8948 (2002)
  10. Uracil DNA glycosylase: insights from a master catalyst. Stivers JT, Drohat AC. Arch. Biochem. Biophys. 396 1-9 (2001)

Articles citing this publication (30)

  1. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Parker JB, Bianchet MA, Krosky DJ, Friedman JI, Amzel LM, Stivers JT. Nature 449 433-437 (2007)
  2. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Porecha RH, Stivers JT. Proc. Natl. Acad. Sci. U.S.A. 105 10791-10796 (2008)
  3. Timing facilitated site transfer of an enzyme on DNA. Schonhoft JD, Stivers JT. Nat. Chem. Biol. 8 205-210 (2012)
  4. Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Chung S, Parker JB, Bianchet M, Amzel LM, Stivers JT. Nat. Chem. Biol. 5 407-413 (2009)
  5. Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. Schormann N, Grigorian A, Samal A, Krishnan R, DeLucas L, Chattopadhyay D. BMC Struct. Biol. 7 45 (2007)
  6. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8. Hoseki J, Okamoto A, Masui R, Shibata T, Inoue Y, Yokoyama S, Kuramitsu S. J. Mol. Biol. 333 515-526 (2003)
  7. Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA. Liu M, Imamura K, Averill AM, Wallace SS, Doublié S. Structure 21 247-256 (2013)
  8. The role of leucine 191 of Escherichia coli uracil DNA glycosylase in the formation of a highly stable complex with the substrate mimic, ugi, and in uracil excision from the synthetic substrates. Handa P, Roy S, Varshney U. J. Biol. Chem. 276 17324-17331 (2001)
  9. A rapid reaction analysis of uracil DNA glycosylase indicates an active mechanism of base flipping. Bellamy SR, Krusong K, Baldwin GS. Nucleic Acids Res. 35 1478-1487 (2007)
  10. Rational engineering of a DNA glycosylase specific for an unnatural cytosine:pyrene base pair. Kwon K, Jiang YL, Stivers JT. Chem. Biol. 10 351-359 (2003)
  11. Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. Lu CC, Huang HT, Wang JT, Slupphaug G, Li TK, Wu MC, Chen YC, Lee CP, Chen MR. J. Virol. 81 1195-1208 (2007)
  12. Probing the limits of electrostatic catalysis by uracil DNA glycosylase using transition state mimicry and mutagenesis. Jiang YL, Drohat AC, Ichikawa Y, Stivers JT. J. Biol. Chem. 277 15385-15392 (2002)
  13. Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. Kosaka H, Hoseki J, Nakagawa N, Kuramitsu S, Masui R. J. Mol. Biol. 373 839-850 (2007)
  14. Escherichia coli DNA glycosylase Mug: a growth-regulated enzyme required for mutation avoidance in stationary-phase cells. Mokkapati SK, Fernández de Henestrosa AR, Bhagwat AS. Mol. Microbiol. 41 1101-1111 (2001)
  15. Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria. Purnapatre K, Handa P, Venkatesh J, Varshney U. Nucleic Acids Res. 27 3487-3492 (1999)
  16. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases. Cravens SL, Schonhoft JD, Rowland MM, Rodriguez AA, Anderson BG, Stivers JT. Nucleic Acids Res. 43 4087-4097 (2015)
  17. Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage Φ29 DNA mimic protein p56. Baños-Sanz JI, Mojardín L, Sanz-Aparicio J, Lázaro JM, Villar L, Serrano-Heras G, González B, Salas M. Nucleic Acids Res. 41 6761-6773 (2013)
  18. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA. Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F. J. Biol. Chem. 290 17923-17934 (2015)
  19. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils. Schonhoft JD, Stivers JT. Biochemistry 52 2536-2544 (2013)
  20. Cloning, expression, and characterization of uracil-DNA glycosylase of Chlamydia pneumoniae in Escherichia coli. Liu X, Liu J. Protein Expr. Purif. 35 46-53 (2004)
  21. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56. Pérez-Lago L, Serrano-Heras G, Baños B, Lázaro JM, Alcorlo M, Villar L, Salas M. Mol. Microbiol. 80 1657-1666 (2011)
  22. Contribution of a conserved phenylalanine residue to the activity of Escherichia coli uracil DNA glycosylase. Shaw RW, Feller JA, Bloom LB. DNA Repair (Amst.) 3 1273-1283 (2004)
  23. Genome-wide mapping reveals that deoxyuridine is enriched in the human centromeric DNA. Shu X, Liu M, Lu Z, Zhu C, Meng H, Huang S, Zhang X, Yi C. Nat. Chem. Biol. 14 680-687 (2018)
  24. DNA-N-glycosylases process novel O-glycosidic sites in DNA. Admiraal SJ, O'Brien PJ. Biochemistry 52 4066-4074 (2013)
  25. Prolylproline unit in model peptides and in fragments from databases. Hudáky I, Perczel A. Proteins 70 1389-1407 (2008)
  26. Structural plasticity in Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) and its functional implications. Arif SM, Geethanandan K, Mishra P, Surolia A, Varshney U, Vijayan M. Acta Crystallogr. D Biol. Crystallogr. 71 1514-1527 (2015)
  27. A non-canonical multisubunit RNA polymerase encoded by the AR9 phage recognizes the template strand of its uracil-containing promoters. Sokolova M, Borukhov S, Lavysh D, Artamonova T, Khodorkovskii M, Severinov K. Nucleic Acids Res. 45 5958-5967 (2017)
  28. Crystal structure of mimivirus uracil-DNA glycosylase. Kwon E, Pathak D, Chang HW, Kim DY. PLoS ONE 12 e0182382 (2017)
  29. Macromolecular Crystallography and Structural Biology Databases at NIST. Gilliland GL. J Res Natl Inst Stand Technol 106 1155-1173 (2001)
  30. Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands. Kaushal PS, Talawar RK, Varshney U, Vijayan M. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 887-892 (2010)