1etg Citations

Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex.

Abstract

The solution structure of a human immunodeficiency virus type-1 (HIV-1) Rev peptide bound to stem-loop IIB of the Rev response element (RRE) RNA was solved by nuclear magnetic resonance spectroscopy. The Rev peptide has an alpha-helical conformation and binds in the major groove of the RNA near a purine-rich internal loop. Several arginine side chains make base-specific contacts, and an asparagine residue contacts a G.A base pair. The phosphate backbone adjacent to a G.G base pair adopts an unusual structure that allows the peptide to access a widened major groove. The structure formed by the two purine-purine base pairs of the RRE creates a distinctive binding pocket that the peptide can use for specific recognition.

Reviews - 1etg mentioned but not cited (1)

  1. Deep structural insights into RNA-binding disordered protein regions. Zeke A, Schád É, Horváth T, Abukhairan R, Szabó B, Tantos A. Wiley Interdiscip Rev RNA 13 e1714 (2022)

Articles - 1etg mentioned but not cited (4)

  1. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Manfredonia I, Nithin C, Ponce-Salvatierra A, Ghosh P, Wirecki TK, Marinus T, Ogando NS, Snijder EJ, van Hemert MJ, Bujnicki JM, Incarnato D. Nucleic Acids Res 48 12436-12452 (2020)
  2. Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Harrison RS, Shepherd NE, Hoang HN, Ruiz-Gómez G, Hill TA, Driver RW, Desai VS, Young PR, Abbenante G, Fairlie DP. Proc Natl Acad Sci U S A 107 11686-11691 (2010)
  3. Stereospecificity of short Rev-derived peptide interactions with RRE IIB RNA. Litovchick A, Rando RR. RNA 9 937-948 (2003)
  4. Nucleic acid recognition and antiviral activity of 1,4-substituted terphenyl compounds mimicking all faces of the HIV-1 Rev protein positively-charged α-helix. Medina-Trillo C, Sedgwick DM, Herrera L, Beltrán M, Moreno Á, Barrio P, Bedoya LM, Alcamí J, Fustero S, Gallego J. Sci Rep 10 7190 (2020)


Reviews citing this publication (67)

  1. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Wright PE, Dyson HJ. J Mol Biol 293 321-331 (1999)
  2. The HIV-1 Rev protein. Pollard VW, Malim MH. Annu Rev Microbiol 52 491-532 (1998)
  3. HIV-1: fifteen proteins and an RNA. Frankel AD, Young JA. Annu Rev Biochem 67 1-25 (1998)
  4. The role of structural disorder in the function of RNA and protein chaperones. Tompa P, Csermely P. FASEB J 18 1169-1175 (2004)
  5. Themes in RNA-protein recognition. Draper DE. J Mol Biol 293 255-270 (1999)
  6. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Karn J, Stoltzfus CM. Cold Spring Harb Perspect Med 2 a006916 (2012)
  7. Strategies for RNA folding and assembly. Schroeder R, Barta A, Semrad K. Nat Rev Mol Cell Biol 5 908-919 (2004)
  8. Structural biology of HIV. Turner BG, Summers MF. J Mol Biol 285 1-32 (1999)
  9. RNA-binding proteins as regulators of gene expression. Siomi H, Dreyfuss G. Curr Opin Genet Dev 7 345-353 (1997)
  10. Structure, recognition and adaptive binding in RNA aptamer complexes. Patel DJ, Suri AK, Jiang F, Jiang L, Fan P, Kumar RA, Nonin S. J Mol Biol 272 645-664 (1997)
  11. Targeting RNA with small molecules. Tor Y. Chembiochem 4 998-1007 (2003)
  12. The rules of disorder or why disorder rules. Gsponer J, Babu MM. Prog Biophys Mol Biol 99 94-103 (2009)
  13. Protein families and RNA recognition. Chen Y, Varani G. FEBS J 272 2088-2097 (2005)
  14. Stitching together RNA tertiary architectures. Hermann T, Patel DJ. J Mol Biol 294 829-849 (1999)
  15. The new (dis)order in RNA regulation. Järvelin AI, Noerenberg M, Davis I, Castello A. Cell Commun Signal 14 9 (2016)
  16. Protein-facilitated RNA folding. Weeks KM. Curr Opin Struct Biol 7 336-342 (1997)
  17. RNA as a drug target: chemical, modelling, and evolutionary tools. Hermann T, Westhof E. Curr Opin Biotechnol 9 66-73 (1998)
  18. RNA bulges as architectural and recognition motifs. Hermann T, Patel DJ. Structure 8 R47-54 (2000)
  19. RNA recognition by arginine-rich peptide motifs. Weiss MA, Narayana N. Biopolymers 48 167-180 (1998)
  20. Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. Kuzembayeva M, Dilley K, Sardo L, Hu WS. Virology 454-455 362-370 (2014)
  21. RNA binding strategies of ribosomal proteins. Draper DE, Reynaldo LP. Nucleic Acids Res 27 381-388 (1999)
  22. The design, structures and therapeutic potential of protein epitope mimetics. Robinson JA, Demarco S, Gombert F, Moehle K, Obrecht D. Drug Discov Today 13 944-951 (2008)
  23. Adaptive recognition in RNA complexes with peptides and protein modules. Patel DJ. Curr Opin Struct Biol 9 74-87 (1999)
  24. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Xue B, Mizianty MJ, Kurgan L, Uversky VN. Cell Mol Life Sci 69 1211-1259 (2012)
  25. The driving force for molecular evolution of translation. Noller HF. RNA 10 1833-1837 (2004)
  26. Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. Tycko R. Annu Rev Phys Chem 52 575-606 (2001)
  27. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FH. Prog Nucl Magn Reson Spectrosc 58 1-61 (2011)
  28. Lentiviral vectors for gene delivery into cells. Quinonez R, Sutton RE. DNA Cell Biol 21 937-951 (2002)
  29. Fluorescence-based methods for evaluating the RNA affinity and specificity of HIV-1 Rev-RRE inhibitors. Luedtke NW, Tor Y. Biopolymers 70 103-119 (2003)
  30. RNA triplexes: from structural principles to biological and biotech applications. Devi G, Zhou Y, Zhong Z, Toh DF, Chen G. Wiley Interdiscip Rev RNA 6 111-128 (2015)
  31. Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins. Thapar R, Denmon AP, Nikonowicz EP. Wiley Interdiscip Rev RNA 5 49-67 (2014)
  32. RNA structure comes of age. Uhlenbeck OC, Pardi A, Feigon J. Cell 90 833-840 (1997)
  33. Viral RNA export. Hope TJ. Chem Biol 4 335-344 (1997)
  34. New insights into signal recognition and elongation arrest activities of the signal recognition particle. Bui N, Strub K. Biol Chem 380 135-145 (1999)
  35. RNA structure and dynamics: a base pairing perspective. Halder S, Bhattacharyya D. Prog Biophys Mol Biol 113 264-283 (2013)
  36. HIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective. Rausch JW, Le Grice SF. Viruses 7 3053-3075 (2015)
  37. Saccharide-RNA recognition. Hermann T, Westhof E. Biopolymers 48 155-165 (1998)
  38. Recent solution structures of RNA and its complexes with drugs, peptides and proteins. Ramos A, Gubser CC, Varani G. Curr Opin Struct Biol 7 317-323 (1997)
  39. The energetics of small internal loops in RNA. Schroeder SJ, Burkard ME, Turner DH. Biopolymers 52 157-167 (1999)
  40. RNA and RNP as new molecular parts in synthetic biology. Saito H, Inoue T. J Biotechnol 132 1-7 (2007)
  41. RNA structures and folding: from conventional to new issues in structure predictions. Schuster P, Stadler PF, Renner A. Curr Opin Struct Biol 7 229-235 (1997)
  42. Role REVersal: understanding how RRE RNA binds its peptide ligand. Grate D, Wilson C. Structure 5 7-11 (1997)
  43. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures. Fang X, Stagno JR, Bhandari YR, Zuo X, Wang YX. Curr Opin Struct Biol 30 147-160 (2015)
  44. Structure and mechanism in transcriptional antitermination by the bacteriophage lambda N protein. Greenblatt J, Mah TF, Legault P, Mogridge J, Li J, Kay LE. Cold Spring Harb Symp Quant Biol 63 327-336 (1998)
  45. Sequence and structure space of RNA-binding peptides. Das C, Frankel AD. Biopolymers 70 80-85 (2003)
  46. Catalytic Metallodrugs: Substrate-Selective Metal Catalysts as Therapeutics. Yu Z, Cowan JA. Chemistry 23 14113-14127 (2017)
  47. Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine. Maiti BK, Govil N, Kundu T, Moura JJG. iScience 23 101792 (2020)
  48. RNA as a target for developing antivirals. McKnight KL, Heinz BA. Antivir Chem Chemother 14 61-73 (2003)
  49. Nucleic acids. From self-assembly to induced-fit recognition. Westhof E, Patel DJ. Curr Opin Struct Biol 7 305-309 (1997)
  50. A structurally plastic ribonucleoprotein complex mediates post-transcriptional gene regulation in HIV-1. Fernandes JD, Booth DS, Frankel AD. Wiley Interdiscip Rev RNA 7 470-486 (2016)
  51. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Wicks SL, Hargrove AE. Methods 167 3-14 (2019)
  52. Progress and outlook in structural biology of large viral RNAs. Cantara WA, Olson ED, Forsyth KM. Virus Res 193 24-38 (2014)
  53. Rev response elements (RRE) in lentiviruses: an RNAMotif algorithm-based strategy for RRE prediction. Lesnik EA, Sampath R, Ecker DJ. Med Res Rev 22 617-636 (2002)
  54. Target-directed catalytic metallodrugs. Joyner JC, Cowan JA. Braz J Med Biol Res 46 465-485 (2013)
  55. The design of RNA binders: targeting the HIV replication cycle as a case study. Blond A, Ennifar E, Tisné C, Micouin L. ChemMedChem 9 1982-1996 (2014)
  56. Emerging Roles of N6-Methyladenosine on HIV-1 RNA Metabolism and Viral Replication. Riquelme-Barrios S, Pereira-Montecinos C, Valiente-Echeverría F, Soto-Rifo R. Front Microbiol 9 576 (2018)
  57. Oligomeric viral proteins: small in size, large in presence. Jayaraman B, Smith AM, Fernandes JD, Frankel AD. Crit Rev Biochem Mol Biol 51 379-394 (2016)
  58. SRPrises in RNA-protein recognition. Rupert PB, Ferré-D'amaré AR. Structure 8 R99-104 (2000)
  59. Combining Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy for Integrative Structural Biology of Protein-RNA Complexes. Leitner A, Dorn G, Allain FH. Cold Spring Harb Perspect Biol 11 (2019)
  60. Modern methods for probing RNA structure. Kjems J, Egebjerg J. Curr Opin Biotechnol 9 59-65 (1998)
  61. HIV Rev-isited. Truman CT, Järvelin A, Davis I, Castello A. Open Biol 10 200320 (2020)
  62. NMR Studies of Retroviral Genome Packaging. Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O'Hern CT, Singh K, Swanson C, Summers MF, Yasin S. Viruses 12 (2020)
  63. A structural view of PA2G4 isoforms with opposing functions in cancer. Stevenson BW, Gorman MA, Koach J, Cheung BB, Marshall GM, Parker MW, Holien JK. J Biol Chem 295 16100-16112 (2020)
  64. Ribonucleopeptides: functional RNA-peptide complexes. Hagihara M, Hasegawa T, Sato S, Yoshikawa S, Ohkubo K, Morii T. Biopolymers 76 66-68 (2004)
  65. Peptide-based nanomaterials: Self-assembly, properties and applications. Li T, Lu XM, Zhang MR, Hu K, Li Z. Bioact Mater 11 268-282 (2022)
  66. Structural and computational studies of HIV-1 RNA. Levintov L, Vashisth H. RNA Biol 21 1-32 (2024)
  67. Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Hajjo R, Sabbah DA, Abusara OH, Kharmah R, Bardaweel S. Viruses 15 568 (2023)

Articles citing this publication (294)

  1. Structure of importin-beta bound to the IBB domain of importin-alpha. Cingolani G, Petosa C, Weis K, Müller CW. Nature 399 221-229 (1999)
  2. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. Klein DJ, Moore PB, Steitz TA. J Mol Biol 340 141-177 (2004)
  3. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Correll CC, Freeborn B, Moore PB, Steitz TA. Cell 91 705-712 (1997)
  4. Automated de novo prediction of native-like RNA tertiary structures. Das R, Baker D. Proc Natl Acad Sci U S A 104 14664-14669 (2007)
  5. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Handa N, Nureki O, Kurimoto K, Kim I, Sakamoto H, Shimura Y, Muto Y, Yokoyama S. Nature 398 579-585 (1999)
  6. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Vidovic I, Nottrott S, Hartmuth K, Lührmann R, Ficner R. Mol Cell 6 1331-1342 (2000)
  7. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V, Wang Y, Mason CE, Rana TM. Nat Microbiol 1 16011 (2016)
  8. RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. Wang W, Riedel K, Lynch P, Chien CY, Montelione GT, Krug RM. RNA 5 195-205 (1999)
  9. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Legault P, Li J, Mogridge J, Kay LE, Greenblatt J. Cell 93 289-299 (1998)
  10. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Keenan RJ, Freymann DM, Walter P, Stroud RM. Cell 94 181-191 (1998)
  11. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. Fourmy D, Yoshizawa S, Puglisi JD. J Mol Biol 277 333-345 (1998)
  12. Structure-based analysis of protein-RNA interactions using the program ENTANGLE. Allers J, Shamoo Y. J Mol Biol 311 75-86 (2001)
  13. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Correll CC, Munishkin A, Chan YL, Ren Z, Wool IG, Steitz TA. Proc Natl Acad Sci U S A 95 13436-13441 (1998)
  14. Structural basis for cooperative RNA binding and export complex assembly by HIV Rev. Daugherty MD, Liu B, Frankel AD. Nat Struct Mol Biol 17 1337-1342 (2010)
  15. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Lanz RB, Razani B, Goldberg AD, O'Malley BW. Proc Natl Acad Sci U S A 99 16081-16086 (2002)
  16. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. Vilardell J, Warner JR. Mol Cell Biol 17 1959-1965 (1997)
  17. Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Ye X, Gorin A, Ellington AD, Patel DJ. Nat Struct Biol 3 1026-1033 (1996)
  18. A 1.3-A resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Ippolito JA, Steitz TA. Proc Natl Acad Sci U S A 95 9819-9824 (1998)
  19. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. Ahn HJ, Kim HW, Yoon HJ, Lee BI, Suh SW, Yang JK. EMBO J 22 2593-2603 (2003)
  20. Letter Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein. Liu J, Lynch PA, Chien CY, Montelione GT, Krug RM, Berman HM. Nat Struct Biol 4 896-899 (1997)
  21. Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element. DiMattia MA, Watts NR, Stahl SJ, Rader C, Wingfield PT, Stuart DI, Steven AC, Grimes JM. Proc Natl Acad Sci U S A 107 5810-5814 (2010)
  22. Letter A novel RNA-binding motif in influenza A virus non-structural protein 1. Chien CY, Tejero R, Huang Y, Zimmerman DE, Ríos CB, Krug RM, Montelione GT. Nat Struct Biol 4 891-895 (1997)
  23. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic "hot spots". Davis B, Afshar M, Varani G, Murchie AI, Karn J, Lentzen G, Drysdale M, Bower J, Potter AJ, Starkey ID, Swarbrick T, Aboul-ela F. J Mol Biol 336 343-356 (2004)
  24. Solution structure of a GAAA tetraloop receptor RNA. Butcher SE, Dieckmann T, Feigon J. EMBO J 16 7490-7499 (1997)
  25. The structure of an RNA "kissing" hairpin complex of the HIV TAR hairpin loop and its complement. Chang KY, Tinoco I. J Mol Biol 269 52-66 (1997)
  26. Solution structure of the HIV-2 TAR-argininamide complex. Brodsky AS, Williamson JR. J Mol Biol 267 624-639 (1997)
  27. A solution to limited genomic capacity: using adaptable binding surfaces to assemble the functional HIV Rev oligomer on RNA. Daugherty MD, D'Orso I, Frankel AD. Mol Cell 31 824-834 (2008)
  28. An unusual topological structure of the HIV-1 Rev response element. Fang X, Wang J, O'Carroll IP, Mitchell M, Zuo X, Wang Y, Yu P, Liu Y, Rausch JW, Dyba MA, Kjems J, Schwieters CD, Seifert S, Winans RE, Watts NR, Stahl SJ, Wingfield PT, Byrd RA, Le Grice SF, Rein A, Wang YX. Cell 155 594-605 (2013)
  29. Arginine-rich motifs present multiple interfaces for specific binding by RNA. Bayer TS, Booth LN, Knudsen SM, Ellington AD. RNA 11 1848-1857 (2005)
  30. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. Boudvillain M, Pyle AM. EMBO J 17 7091-7104 (1998)
  31. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. Nat Commun 12 1936 (2021)
  32. A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. Klinck R, Westhof E, Walker S, Afshar M, Collier A, Aboul-Ela F. RNA 6 1423-1431 (2000)
  33. Structural model for the cooperative assembly of HIV-1 Rev multimers on the RRE as deduced from analysis of assembly-defective mutants. Jain C, Belasco JG. Mol Cell 7 603-614 (2001)
  34. Solution structure of P22 transcriptional antitermination N peptide-boxB RNA complex. Cai Z, Gorin A, Frederick R, Ye X, Hu W, Majumdar A, Kettani A, Patel DJ. Nat Struct Biol 5 203-212 (1998)
  35. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. Cheng AC, Chen WW, Fuhrmann CN, Frankel AD. J Mol Biol 327 781-796 (2003)
  36. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Singh M, Wang Z, Koo BK, Patel A, Cascio D, Collins K, Feigon J. Mol Cell 47 16-26 (2012)
  37. The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. Spitzfaden C, Nicholson N, Jones JJ, Guth S, Lehr R, Prescott CD, Hegg LA, Eggleston DS. J Mol Biol 295 105-115 (2000)
  38. An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation. Walczak R, Carbon P, Krol A. RNA 4 74-84 (1998)
  39. RNA-guided assembly of Rev-RRE nuclear export complexes. Bai Y, Tambe A, Zhou K, Doudna JA. Elife 3 e03656 (2014)
  40. Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. Rüdisser S, Tinoco I. J Mol Biol 295 1211-1223 (2000)
  41. Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Wöhnert J, Dingley AJ, Stoldt M, Görlach M, Grzesiek S, Brown LR. Nucleic Acids Res 27 3104-3110 (1999)
  42. HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes. Daugherty MD, Booth DS, Jayaraman B, Cheng Y, Frankel AD. Proc Natl Acad Sci U S A 107 12481-12486 (2010)
  43. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Sabeti PC, Unrau PJ, Bartel DP. Chem Biol 4 767-774 (1997)
  44. Specific packaging of nodaviral RNA2 requires the N-terminus of the capsid protein. Marshall D, Schneemann A. Virology 285 165-175 (2001)
  45. Antitermination in bacteriophage lambda. The structure of the N36 peptide-boxB RNA complex. Schärpf M, Sticht H, Schweimer K, Boehm M, Hoffmann S, Rösch P. Eur J Biochem 267 2397-2408 (2000)
  46. Ribozyme catalysis from the major groove of group II intron domain 5. Konforti BB, Abramovitz DL, Duarte CM, Karpeisky A, Beigelman L, Pyle AM. Mol Cell 1 433-441 (1998)
  47. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate. Hudson WH, Pickard MR, de Vera IM, Kuiper EG, Mourtada-Maarabouni M, Conn GL, Kojetin DJ, Williams GT, Ortlund EA. Nat Commun 5 5395 (2014)
  48. The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases. Stoldt M, Wöhnert J, Görlach M, Brown LR. EMBO J 17 6377-6384 (1998)
  49. Evolution of protein synthesis from an RNA world. Noller HF. Cold Spring Harb Perspect Biol 4 a003681 (2012)
  50. The HIV-1 Rev response element (RRE) adopts alternative conformations that promote different rates of virus replication. Sherpa C, Rausch JW, Le Grice SF, Hammarskjold ML, Rekosh D. Nucleic Acids Res 43 4676-4686 (2015)
  51. Direct participation of Sam68, the 68-kilodalton Src-associated protein in mitosis, in the CRM1-mediated Rev nuclear export pathway. Li J, Liu Y, Kim BO, He JJ. J Virol 76 8374-8382 (2002)
  52. Fitting peptides into the RNA world. Frankel AD. Curr Opin Struct Biol 10 332-340 (2000)
  53. PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA. Invernizzi CF, Xie B, Richard S, Wainberg MA. Retrovirology 3 93 (2006)
  54. RNA architecture dictates the conformations of a bound peptide. Ye X, Gorin A, Frederick R, Hu W, Majumdar A, Xu W, McLendon G, Ellington A, Patel DJ. Chem Biol 6 657-669 (1999)
  55. Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal. Greatorex J, Gallego J, Varani G, Lever A. J Mol Biol 322 543-557 (2002)
  56. Resistance to RevM10 inhibition reflects a conformational switch in the HIV-1 Rev response element. Legiewicz M, Badorrek CS, Turner KB, Fabris D, Hamm TE, Rekosh D, Hammarskjöld ML, Le Grice SF. Proc Natl Acad Sci U S A 105 14365-14370 (2008)
  57. The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. Fernandes J, Jayaraman B, Frankel A. RNA Biol 9 6-11 (2012)
  58. DDX1 is an RNA-dependent ATPase involved in HIV-1 Rev function and virus replication. Edgcomb SP, Carmel AB, Naji S, Ambrus-Aikelin G, Reyes JR, Saphire AC, Gerace L, Williamson JR. J Mol Biol 415 61-74 (2012)
  59. Expression of exogenous Sam68, the 68-kilodalton SRC-associated protein in mitosis, is able to alleviate impaired Rev function in astrocytes. Li J, Liu Y, Park IW, He JJ. J Virol 76 4526-4535 (2002)
  60. How accurately and precisely can RNA structure be determined by NMR? Allain FH, Varani G. J Mol Biol 267 338-351 (1997)
  61. A novel glutamine-RNA interaction identified by screening libraries in mammalian cells. Tan R, Frankel AD. Proc Natl Acad Sci U S A 95 4247-4252 (1998)
  62. AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices. Elgavish T, Cannone JJ, Lee JC, Harvey SC, Gutell RR. J Mol Biol 310 735-753 (2001)
  63. HIV-1 A-rich RNA loop mimics the tRNA anticodon structure. Puglisi EV, Puglisi JD. Nat Struct Biol 5 1033-1036 (1998)
  64. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Klosterman PS, Hendrix DK, Tamura M, Holbrook SR, Brenner SE. Nucleic Acids Res 32 2342-2352 (2004)
  65. Binding of dimeric aminoglycosides to the HIV-1 rev responsive element (RRE) RNA construct. Tok JB, Dunn LJ, Des Jean RC. Bioorg Med Chem Lett 11 1127-1131 (2001)
  66. Molding a peptide into an RNA site by in vivo peptide evolution. Harada K, Martin SS, Tan R, Frankel AD. Proc Natl Acad Sci U S A 94 11887-11892 (1997)
  67. RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev-Rev response element complex. Jayaraman B, Crosby DC, Homer C, Ribeiro I, Mavor D, Frankel AD. Elife 3 e04120 (2014)
  68. Letter The RNA binding domain of ribosomal protein L11 is structurally similar to homeodomains. Xing Y, Guha Thakurta D, Draper DE. Nat Struct Biol 4 24-27 (1997)
  69. Phosphorylated serine residues and an arginine-rich domain of the moloney murine leukemia virus p12 protein are required for early events of viral infection. Yueh A, Goff SP. J Virol 77 1820-1829 (2003)
  70. An alpha-helical peptidomimetic inhibitor of the HIV-1 Rev-RRE interaction. Mills NL, Daugherty MD, Frankel AD, Guy RK. J Am Chem Soc 128 3496-3497 (2006)
  71. pH-induced folding of an apoptotic coiled coil. Dutta K, Alexandrov A, Huang H, Pascal SM. Protein Sci 10 2531-2540 (2001)
  72. A high-throughput screening utilizing intramolecular fluorescence resonance energy transfer for the discovery of the molecules that bind HIV-1 TAR RNA specifically. Matsumoto C, Hamasaki K, Mihara H, Ueno A. Bioorg Med Chem Lett 10 1857-1861 (2000)
  73. A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex. Schneider C, Sühnel J. Biopolymers 50 287-302 (1999)
  74. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. Burkard ME, Kierzek R, Turner DH. J Mol Biol 290 967-982 (1999)
  75. Solution structure of the A loop of 23S ribosomal RNA. Blanchard SC, Puglisi JD. Proc Natl Acad Sci U S A 98 3720-3725 (2001)
  76. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA. Booth DS, Cheng Y, Frankel AD. Elife 3 e04121 (2014)
  77. The structure of the HIV-1 RRE high affinity rev binding site at 1.6 A resolution. Ippolito JA, Steitz TA. J Mol Biol 295 711-717 (2000)
  78. Analysis of a binding difference between the two dsRNA-binding domains in TRBP reveals the modular function of a KR-helix motif. Daviet L, Erard M, Dorin D, Duarte M, Vaquero C, Gatignol A. Eur J Biochem 267 2419-2431 (2000)
  79. The RNA binding domain of ribosomal protein L11: three-dimensional structure of the RNA-bound form of the protein and its interaction with 23 S rRNA. Hinck AP, Markus MA, Huang S, Grzesiek S, Kustonovich I, Draper DE, Torchia DA. J Mol Biol 274 101-113 (1997)
  80. Development of a series of cross-linking agents that effectively stabilize alpha-helical structures in various short peptides. Fujimoto K, Kajino M, Inouye M. Chemistry 14 857-863 (2008)
  81. Homeodomain position 54 specifies transcriptional versus translational control by Bicoid. Niessing D, Driever W, Sprenger F, Taubert H, Jäckle H, Rivera-Pomar R. Mol Cell 5 395-401 (2000)
  82. A dynamic in vivo view of the HIV-I Rev-RRE interaction. Charpentier B, Stutz F, Rosbash M. J Mol Biol 266 950-962 (1997)
  83. NQ-Flipper: recognition and correction of erroneous asparagine and glutamine side-chain rotamers in protein structures. Weichenberger CX, Sippl MJ. Nucleic Acids Res 35 W403-6 (2007)
  84. Crystal structure of ribosomal protein L4 shows RNA-binding sites for ribosome incorporation and feedback control of the S10 operon. Worbs M, Huber R, Wahl MC. EMBO J 19 807-818 (2000)
  85. The DNA and RNA specificity of eilatin Ru(II) complexes as compared to eilatin and ethidium bromide. Luedtke NW, Hwang JS, Nava E, Gut D, Kol M, Tor Y. Nucleic Acids Res 31 5732-5740 (2003)
  86. Acid wash in determining cellular uptake of Fab/cell-permeating peptide conjugates. Kameyama S, Horie M, Kikuchi T, Omura T, Tadokoro A, Takeuchi T, Nakase I, Sugiura Y, Futaki S. Biopolymers 88 98-107 (2007)
  87. Functionality of mutations at conserved nucleotides in eukaryotic SECIS elements is determined by the identity of a single nonconserved nucleotide. Martin GW, Harney JW, Berry MJ. RNA 4 65-73 (1998)
  88. Selection of RNA-binding peptides using mRNA-peptide fusions. Barrick JE, Takahashi TT, Balakin A, Roberts RW. Methods 23 287-293 (2001)
  89. Solid-state NMR data support a helix-loop-helix structural model for the N-terminal half of HIV-1 Rev in fibrillar form. Blanco FJ, Hess S, Pannell LK, Rizzo NW, Tycko R. J Mol Biol 313 845-859 (2001)
  90. Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches. Pan B, Mitra SN, Sundaralingam M. J Mol Biol 283 977-984 (1998)
  91. Design of beta-hairpin peptidomimetics that inhibit binding of alpha-helical HIV-1 Rev protein to the rev response element RNA. Moehle K, Athanassiou Z, Patora K, Davidson A, Varani G, Robinson JA. Angew Chem Int Ed Engl 46 9101-9104 (2007)
  92. Rev binds specifically to a purine loop in the SL1 region of the HIV-1 leader RNA. Gallego J, Greatorex J, Zhang H, Yang B, Arunachalam S, Fang J, Seamons J, Lea S, Pomerantz RJ, Lever AM. J Biol Chem 278 40385-40391 (2003)
  93. Structure-based design of an RNA-binding zinc finger. McColl DJ, Honchell CD, Frankel AD. Proc Natl Acad Sci U S A 96 9521-9526 (1999)
  94. The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding. Casu F, Duggan BM, Hennig M. Biophys J 105 1004-1017 (2013)
  95. A novel 5 displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA. Macosko JC, Pio MS, Tinoco I, Shin YK. RNA 5 1158-1166 (1999)
  96. Aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for the RNA-protein interactions derived from HIV-1 activators. Hamasaki K, Ueno A. Bioorg Med Chem Lett 11 591-594 (2001)
  97. Fluorescent ribonucleoside as a FRET acceptor for tryptophan in native proteins. Xie Y, Maxson T, Tor Y. J Am Chem Soc 132 11896-11897 (2010)
  98. HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements. Lebars I, Martinez-Zapien D, Durand A, Coutant J, Kieffer B, Dock-Bregeon AC. Nucleic Acids Res 38 7749-7763 (2010)
  99. Specific RNA binding proteins constructed from zinc fingers. Friesen WJ, Darby MK. Nat Struct Biol 5 543-546 (1998)
  100. Targeted cleavage of HIV RRE RNA by Rev-coupled transition metal chelates. Joyner JC, Cowan JA. J Am Chem Soc 133 9912-9922 (2011)
  101. The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability. Hung LW, Holbrook EL, Holbrook SR. Proc Natl Acad Sci U S A 97 5107-5112 (2000)
  102. Three-dimensional structure of HIV-1 Rev protein filaments. Watts NR, Misra M, Wingfield PT, Stahl SJ, Cheng N, Trus BL, Steven AC, Williams RW. J Struct Biol 121 41-52 (1998)
  103. An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. Su L, Radek JT, Labeots LA, Hallenga K, Hermanto P, Chen H, Nakagawa S, Zhao M, Kates S, Weiss MA. Genes Dev 11 2214-2226 (1997)
  104. Crystal structure of the coiled-coil dimerization motif of geminin: structural and functional insights on DNA replication regulation. Thépaut M, Maiorano D, Guichou JF, Augé MT, Dumas C, Méchali M, Padilla A. J Mol Biol 342 275-287 (2004)
  105. In vitro analysis of an RNA binding site within the N-terminal 30 amino acids of the southern cowpea mosaic virus coat protein. Lee SK, Hacker DL. Virology 286 317-327 (2001)
  106. Small molecule modulators of HIV Rev/Rev response element interaction identified by random screening. Chapman RL, Stanley TB, Hazen R, Garvey EP. Antiviral Res 54 149-162 (2002)
  107. The mRNA-binding site of annexin A2 resides in helices C-D of its domain IV. Aukrust I, Hollås H, Strand E, Evensen L, Travé G, Flatmark T, Vedeler A. J Mol Biol 368 1367-1378 (2007)
  108. Anchoring an extended HTLV-1 Rex peptide within an RNA major groove containing junctional base triples. Jiang F, Gorin A, Hu W, Majumdar A, Baskerville S, Xu W, Ellington A, Patel DJ. Structure 7 1461-1472 (1999)
  109. Dual roles for an arginine-rich motif in specific genome recognition and localization of viral coat protein to RNA replication sites in flock house virus-infected cells. Venter PA, Marshall D, Schneemann A. J Virol 83 2872-2882 (2009)
  110. Elucidation of structure-function relationships in the protein subunit of bacterial RNase P using a genetic complementation approach. Jovanovic M, Sanchez R, Altman S, Gopalan V. Nucleic Acids Res 30 5065-5073 (2002)
  111. Persistence of attenuated HIV-1 rev alleles in an epidemiologically linked cohort of long-term survivors infected with nef-deleted virus. Churchill MJ, Chiavaroli L, Wesselingh SL, Gorry PR. Retrovirology 4 43 (2007)
  112. Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides. Zhou Y, Kierzek E, Loo ZP, Antonio M, Yau YH, Chuah YW, Geifman-Shochat S, Kierzek R, Chen G. Nucleic Acids Res 41 6664-6673 (2013)
  113. Metallotherapeutics: novel strategies in drug design. Hocharoen L, Cowan JA. Chemistry 15 8670-8676 (2009)
  114. SRP RNA remodeling by SRP68 explains its role in protein translocation. Grotwinkel JT, Wild K, Segnitz B, Sinning I. Science 344 101-104 (2014)
  115. In vitro selection of ribozymes dependent on peptides for activity. Robertson MP, Knudsen SM, Ellington AD. RNA 10 114-127 (2004)
  116. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA. RNA 13 521-535 (2007)
  117. Stabilization of an alpha helix by beta-sheet-mediated self-assembly of a macrocyclic peptide. Lim YB, Moon KS, Lee M. Angew Chem Int Ed Engl 48 1601-1605 (2009)
  118. The HIV-2 Rev-response element: determining secondary structure and defining folding intermediates. Lusvarghi S, Sztuba-Solinska J, Purzycka KJ, Pauly GT, Rausch JW, Grice SF. Nucleic Acids Res 41 6637-6649 (2013)
  119. Design and development of a catalytic ribonucleoprotein. Atsumi S, Ikawa Y, Shiraishi H, Inoue T. EMBO J 20 5453-5460 (2001)
  120. HIV-1 rev depolymerizes microtubules to form stable bilayered rings. Watts NR, Sackett DL, Ward RD, Miller MW, Wingfield PT, Stahl SS, Steven AC. J Cell Biol 150 349-360 (2000)
  121. The antiterminator RNA of phage HK022. Banik-Maiti S, King RA, Weisberg RA. J Mol Biol 272 677-687 (1997)
  122. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets. Lee SJ, Hyun S, Kieft JS, Yu J. J Am Chem Soc 131 2224-2230 (2009)
  123. Determination of the NMR structure of the complex between U1A protein and its RNA polyadenylation inhibition element. Howe PW, Allain FH, Varani G, Neuhaus D. J Biomol NMR 11 59-84 (1998)
  124. Strategies for recognition of stem-loop RNA structures by synthetic ligands: application to the HIV-1 frameshift stimulatory sequence. Palde PB, Ofori LO, Gareiss PC, Lerea J, Miller BL. J Med Chem 53 6018-6027 (2010)
  125. Structure of the HIV-1 Rev response element alone and in complex with regulator of virion (Rev) studied by atomic force microscopy. Pallesen J, Dong M, Besenbacher F, Kjems J. FEBS J 276 4223-4232 (2009)
  126. Subtle atomic group discrimination in the RNA minor groove. Frugier M, Schimmel P. Proc Natl Acad Sci U S A 94 11291-11294 (1997)
  127. Arginine side-chain dynamics in the HIV-1 rev-RRE complex. Wilkinson TA, Botuyan MV, Kaplan BE, Rossi JJ, Chen Y. J Mol Biol 303 515-529 (2000)
  128. Cellular activity of Rev response element RNA targeting metallopeptides. Jin Y, Cowan JA. J Biol Inorg Chem 12 637-644 (2007)
  129. In vitro and in vivo analysis of the interaction between RNA helicase A and HIV-1 RNA. Xing L, Niu M, Kleiman L. J Virol 86 13272-13280 (2012)
  130. Structural characterization of the complex of the Rev response element RNA with a selected peptide. Zhang Q, Harada K, Cho HS, Frankel AD, Wemmer DE. Chem Biol 8 511-520 (2001)
  131. Contributions of basic residues to ribosomal protein L11 recognition of RNA. GuhaThakurta D, Draper DE. J Mol Biol 295 569-580 (2000)
  132. Design and analysis of molecular motifs for specific recognition of RNA. Li K, Fernandez-Saiz M, Rigl CT, Kumar A, Ragunathan KG, McConnaughie AW, Boykin DW, Schneider HJ, Wilson WD. Bioorg Med Chem 5 1157-1172 (1997)
  133. Evolvability of the mode of peptide binding by an RNA. Iwazaki T, Li X, Harada K. RNA 11 1364-1373 (2005)
  134. Role of Nucleocytoplasmic RNA Transport during the Life Cycle of Retroviruses. Shida H. Front Microbiol 3 179 (2012)
  135. Self-consistent assignment of asparagine and glutamine amide rotamers in protein crystal structures. Weichenberger CX, Sippl MJ. Structure 14 967-972 (2006)
  136. Simple, recurring RNA binding sites for L-arginine. Janas T, Widmann JJ, Knight R, Yarus M. RNA 16 805-816 (2010)
  137. A cell-penetrating antibody fragment against HIV-1 Rev has high antiviral activity: characterization of the paratope. Zhuang X, Stahl SJ, Watts NR, DiMattia MA, Steven AC, Wingfield PT. J Biol Chem 289 20222-20233 (2014)
  138. DNA nuclease activity of Rev-coupled transition metal chelates. Joyner JC, Keuper KD, Cowan JA. Dalton Trans 41 6567-6578 (2012)
  139. Solution structure and RNA-binding activity of the N-terminal leucine-repeat region of hepatitis delta antigen. Lin IJ, Lou YC, Pai MT, Wu HN, Cheng JW. Proteins 37 121-129 (1999)
  140. Structural changes associated with switching activities of human iron regulatory protein 1. Brazzolotto X, Timmins P, Dupont Y, Moulis JM. J Biol Chem 277 11995-12000 (2002)
  141. Dynamic ensemble of HIV-1 RRE stem IIB reveals non-native conformations that disrupt the Rev-binding site. Chu CC, Plangger R, Kreutz C, Al-Hashimi HM. Nucleic Acids Res 47 7105-7117 (2019)
  142. Kinetics and Mechanisms of Oxidative Cleavage of HIV RRE RNA by Rev-Coupled Transition Metal Chelates. Joyner JC, Keuper KD, Cowan JA. Chem Sci 4 1707-1718 (2013)
  143. Probing the structure of HIV-1 Rev by protein footprinting of multiple monoclonal antibody-binding sites. Jensen TH, Jensen A, Szilvay AM, Kjems J. FEBS Lett 414 50-54 (1997)
  144. RNA base-amino acid interaction strengths derived from structures and sequences. Lustig B, Arora S, Jernigan RL. Nucleic Acids Res 25 2562-2565 (1997)
  145. The Signature of the Five-Stranded vRRM Fold Defined by Functional, Structural and Computational Analysis of the hnRNP L Protein. Blatter M, Dunin-Horkawicz S, Grishina I, Maris C, Thore S, Maier T, Bindereif A, Bujnicki JM, Allain FH. J Mol Biol 427 3001-3022 (2015)
  146. The crystal structure of an RNA oligomer incorporating tandem adenosine-inosine mismatches. Carter RJ, Baeyens KJ, SantaLucia J, Turner DH, Holbrook SR. Nucleic Acids Res 25 4117-4122 (1997)
  147. Analysis of RNA cleavage by MALDI-TOF mass spectrometry. Joyner JC, Keuper KD, Cowan JA. Nucleic Acids Res 41 e2 (2013)
  148. Evaluation of methylphosphonates as analogs for detecting phosphate contacts in RNA-protein complexes. Dertinger D, Uhlenbeck OC. RNA 7 622-631 (2001)
  149. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs. Huang F, Zhang J, Zhang Y, Geng G, Liang J, Li Y, Chen J, Liu C, Zhang H. Virology 486 15-26 (2015)
  150. RNA-selective modification by a platinum(II) complex conjugated to amino- and guanidinoglycosides. Boer J, Blount KF, Luedtke NW, Elson-Schwab L, Tor Y. Angew Chem Int Ed Engl 44 927-932 (2005)
  151. Single-nucleotide changes in the HIV Rev-response element mediate resistance to compounds that inhibit Rev function. Shuck-Lee D, Chang H, Sloan EA, Hammarskjold ML, Rekosh D. J Virol 85 3940-3949 (2011)
  152. Structural features of a 3' splice site in influenza a. Chen JL, Kennedy SD, Turner DH. Biochemistry 54 3269-3285 (2015)
  153. The Structure of HIV-1 Rev Filaments Suggests a Bilateral Model for Rev-RRE Assembly. DiMattia MA, Watts NR, Cheng N, Huang R, Heymann JB, Grimes JM, Wingfield PT, Stuart DI, Steven AC. Structure 24 1068-1080 (2016)
  154. The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase. Lapointe CP, Wickens M. J Biol Chem 288 20723-20733 (2013)
  155. Construction of peptides with nucleobase amino acids: design and synthesis of the nucleobase-conjugated peptides derived from HIV-1 Rev and their binding properties to HIV-1 RRE RNA. Takahashi T, Hamasaki K, Ueno A, Mihara H. Bioorg Med Chem 9 991-1000 (2001)
  156. Distinct RNA structural domains cooperate to maintain a specific cleavage site in the 3'-UTR of IGF-II mRNAs. van Dijk EL, Sussenbach JS, Holthuizen PE. J Mol Biol 300 449-467 (2000)
  157. Heterogeneity of HIV-1 Rev response element. Phuphuakrat A, Auewarakul P. AIDS Res Hum Retroviruses 19 569-574 (2003)
  158. MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Wild K, Aleksić M, Lapouge K, Juaire KD, Flemming D, Pfeffer S, Sinning I. Nat Commun 11 776 (2020)
  159. Structure and function of the N-terminal nucleolin binding domain of nuclear valosin-containing protein-like 2 (NVL2) harboring a nucleolar localization signal. Fujiwara Y, Fujiwara K, Goda N, Iwaya N, Tenno T, Shirakawa M, Hiroaki H. J Biol Chem 286 21732-21741 (2011)
  160. Structure-based design of a dimeric RNA-peptide complex. Campisi DM, Calabro V, Frankel AD. EMBO J 20 178-186 (2001)
  161. The structure of the SOLE element of oskar mRNA. Simon B, Masiewicz P, Ephrussi A, Carlomagno T. RNA 21 1444-1453 (2015)
  162. Use of EPR spectroscopy to study macromolecular structure and function. Biswas R, Kühne H, Brudvig GW, Gopalan V. Sci Prog 84 45-67 (2001)
  163. Branched peptide boronic acids (BPBAs): a novel mode of binding towards RNA. Zhang W, Bryson DI, Crumpton JB, Wynn J, Santos WL. Chem Commun (Camb) 49 2436-2438 (2013)
  164. Exchange of the basic domain of human immunodeficiency virus type 1 Rev for a polyarginine stretch expands the RNA binding specificity, and a minimal arginine cluster is required for optimal RRE RNA binding affinity, nuclear accumulation, and trans-activation. Nam YS, Petrovic A, Jeong KS, Venkatesan S. J Virol 75 2957-2971 (2001)
  165. Phylogenetic analysis of tmRNA genes within a bacterial subgroup reveals a specific structural signature. Felden B, Massire C, Westhof E, Atkins JF, Gesteland RF. Nucleic Acids Res 29 1602-1607 (2001)
  166. Selection of RRE RNA binding peptides using a kanamycin antitermination assay. Peled-Zehavi H, Horiya S, Das C, Harada K, Frankel AD. RNA 9 252-261 (2003)
  167. Singlet Oxygen-Induced Furan Oxidation for Site-Specific and Chemoselective Peptide Ligation. Antonatou E, Hoogewijs K, Kalaitzakis D, Baudot A, Vassilikogiannakis G, Madder A. Chemistry 22 8457-8461 (2016)
  168. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein. Huenges M, Rölz C, Gschwind R, Peteranderl R, Berglechner F, Richter G, Bacher A, Kessler H, Gemmecker G. EMBO J 17 4092-4100 (1998)
  169. Amino acid requirement for the high affinity binding of a selected arginine-rich peptide with the HIV Rev-response element RNA. Sugaya M, Nishino N, Katoh A, Harada K. J Pept Sci 14 924-935 (2008)
  170. Deoxyribozymes that recode sequence information. Tabor JJ, Levy M, Ellington AD. Nucleic Acids Res 34 2166-2172 (2006)
  171. Electrostatically Driven Guanidinium Interaction Domains that Control Hydrogel-Mediated Protein Delivery In Vivo. Miller SE, Yamada Y, Patel N, Suárez E, Andrews C, Tau S, Luke BT, Cachau RE, Schneider JP. ACS Cent Sci 5 1750-1759 (2019)
  172. Evaluations of HIV type 1 rev gene diversity and functional domains following perinatal transmission. Ramakrishnan R, Hussain M, Holzer A, Mehta R, Sundaravaradan V, Ahmad N. AIDS Res Hum Retroviruses 21 1035-1045 (2005)
  173. Integrated analysis of residue coevolution and protein structures capture key protein sectors in HIV-1 proteins. Zhao Y, Wang Y, Gao Y, Li G, Huang J. PLoS One 10 e0117506 (2015)
  174. News New RNA recognition features revealed in ancient ribosomal proteins. Yonath A, Franceschi F. Nat Struct Biol 4 3-5 (1997)
  175. Non-Watson Crick base pairs might stabilize RNA structural motifs in ribozymes -- a comparative study of group-I intron structures. Chandrasekhar K, Malathhi R. J Biosci 28 547-555 (2003)
  176. Specific recognition of napthyridine-based ligands toward guanine-containing bulges in RNA duplexes and RNA-DNA heteroduplexes. Tok JB, Bi L, Saenz M. Bioorg Med Chem Lett 15 827-831 (2005)
  177. Structure-based design of an RNA-binding p-terphenylene scaffold that inhibits HIV-1 Rev protein function. González-Bulnes L, Ibáñez I, Bedoya LM, Beltrán M, Catalán S, Alcamí J, Fustero S, Gallego J. Angew Chem Int Ed Engl 52 13405-13409 (2013)
  178. Thermodynamics of Rev-RNA interactions in HIV-1 Rev-RRE assembly. Jayaraman B, Mavor D, Gross JD, Frankel AD. Biochemistry 54 6545-6554 (2015)
  179. A role of disordered domains in regulating protein oligomerization and stability. Faust O, Bigman L, Friedler A. Chem Commun (Camb) 50 10797-10800 (2014)
  180. Primitive templated catalysis of a peptide ligation by self-folding RNAs. Kashiwagi N, Furuta H, Ikawa Y. Nucleic Acids Res 37 2574-2583 (2009)
  181. Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP. Ikawa Y, Tsuda K, Matsumura S, Atsumi S, Inoue T. Nucleic Acids Res 31 1488-1496 (2003)
  182. Comment RNA aptamers. Heus HA. Nat Struct Biol 4 597-600 (1997)
  183. Structure of the 3'-hairpin of the TYMV pseudoknot: preformation in RNA folding. Kolk MH, van der Graaf M, Fransen CT, Wijmenga SS, Pleij CW, Heus HA, Hilbers CW. EMBO J 17 7498-7504 (1998)
  184. The recognition of a noncanonical RNA base pair by a zinc finger protein. Blancafort P, Steinberg SV, Paquin B, Klinck R, Scott JK, Cedergren R. Chem Biol 6 585-597 (1999)
  185. Thermodynamic profiling of HIV RREIIB RNA-zinc finger interactions. Mishra SH, Spring AM, Germann MW. J Mol Biol 393 369-382 (2009)
  186. A long-awaited structure is rev-ealed. Hammarskjold MH, Rekosh D. Viruses 3 484-492 (2011)
  187. A simple motif for protein recognition in DNA secondary structures. Landt SG, Ramirez A, Daugherty MD, Frankel AD. J Mol Biol 351 982-994 (2005)
  188. Atomic force microscope-based single-molecule force spectroscopy of RNA unfolding. Heus HA, Puchner EM, van Vugt-Jonker AJ, Zimmermann JL, Gaub HE. Anal Biochem 414 1-6 (2011)
  189. Discovery of a Branched Peptide That Recognizes the Rev Response Element (RRE) RNA and Blocks HIV-1 Replication. Dai Y, Wynn JE, Peralta AN, Sherpa C, Jayaraman B, Li H, Verma A, Frankel AD, Le Grice SF, Santos WL. J Med Chem 61 9611-9620 (2018)
  190. Effects of asymmetric arginine dimethylation on RNA-binding peptides. Hyun S, Jeong S, Yu J. Chembiochem 9 2790-2792 (2008)
  191. Identification of an RNA aptamer binding hTERT-derived peptide and inhibiting telomerase activity in MCF7 cells. Varshney A, Bala J, Santosh B, Bhaskar A, Kumar S, Yadava PK. Mol Cell Biochem 427 157-167 (2017)
  192. Intrinsically disordered protein-specific force field CHARMM36IDPSFF. Liu H, Song D, Lu H, Luo R, Chen HF. Chem Biol Drug Des 92 1722-1735 (2018)
  193. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Schneeberger EM, Halper M, Palasser M, Heel SV, Vušurović J, Plangger R, Juen M, Kreutz C, Breuker K. Nat Commun 11 5750 (2020)
  194. Potent inhibition of HIV-1 replication by backbone cyclic peptides bearing the Rev arginine rich motif. Chaloin L, Smagulova F, Hariton-Gazal E, Briant L, Loyter A, Devaux C. J Biomed Sci 14 565-584 (2007)
  195. RNA detection using peptide-inserted Renilla luciferase. Andou T, Endoh T, Mie M, Kobatake E. Anal Bioanal Chem 393 661-668 (2009)
  196. RNA grooves can accommodate disulfide-bridged bundles of alpha-helical peptides. Hyun S, Na J, Lee SJ, Park S, Yu J. Chembiochem 11 767-770 (2010)
  197. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin. Kumar S, Bose D, Suryawanshi H, Sabharwal H, Mapa K, Maiti S. PLoS One 6 e23300 (2011)
  198. Structure-activity studies on the fluorescent indicator in a displacement assay for the screening of small molecules binding to RNA. Umemoto S, Im S, Zhang J, Hagihara M, Murata A, Harada Y, Fukuzumi T, Wazaki T, Sasaoka S, Nakatani K. Chemistry 18 9999-10008 (2012)
  199. The structures and relative stabilities of d(G x G) reverse Hoogsteen, d(G x T) reverse wobble, and d(G x C) reverse Watson-Crick base-pairs in DNA crystals. Mooers BH, Eichman BF, Ho PS. J Mol Biol 269 796-810 (1997)
  200. Water, shape recognition, salt bridges, and cation-pi interactions differentiate peptide recognition of the HIV rev-responsive element. Michael LA, Chenault JA, Miller BR, Knolhoff AM, Nagan MC. J Mol Biol 392 774-786 (2009)
  201. dStruct: identifying differentially reactive regions from RNA structurome profiling data. Choudhary K, Lai YH, Tran EJ, Aviran S. Genome Biol 20 40 (2019)
  202. A DEAD-Box Helicase Mediates an RNA Structural Transition in the HIV-1 Rev Response Element. Hammond JA, Lamichhane R, Millar DP, Williamson JR. J Mol Biol 429 697-714 (2017)
  203. A docking and modelling strategy for peptide-RNA complexes: applications to BIV Tat-TAR and HIV Rev-RBE. Srinivasan J, Leclerc F, Xu W, Ellington AD, Cedergren R. Fold Des 1 463-472 (1996)
  204. Alanine scanning of MS2 coat protein reveals protein-phosphate contacts involved in thermodynamic hot spots. Hobson D, Uhlenbeck OC. J Mol Biol 356 613-624 (2006)
  205. Analysis of the EIAV Rev-responsive element (RRE) reveals a conserved RNA motif required for high affinity Rev binding in both HIV-1 and EIAV. Lee JH, Culver G, Carpenter S, Dobbs D. PLoS One 3 e2272 (2008)
  206. Characterization of the caprine arthritis encephalitis virus (CAEV) rev N-terminal elements required for efficient interaction with the RRE. Abelson ML, Schoborg RV. Virus Res 92 23-35 (2003)
  207. Contributions of Individual Domains to Function of the HIV-1 Rev Response Element. O'Carroll IP, Thappeta Y, Fan L, Ramirez-Valdez EA, Smith S, Wang YX, Rein A. J Virol 91 (2017)
  208. Elucidating molecular motion through structural and dynamic filters of energy-minimized conformer ensembles. Emani PS, Bardaro MF, Huang W, Aragon S, Varani G, Drobny GP. J Phys Chem B 118 1726-1742 (2014)
  209. Guanine-aspartic acid interactions probed with IR-UV resonance spectroscopy. Crews BO, Abo-Riziq A, Pluhácková K, Thompson P, Hill G, Hobza P, de Vries MS. Phys Chem Chem Phys 12 3597-3605 (2010)
  210. Human immunodeficiency virus-1 Rev protein activates hepatitis C virus gene expression by directly targeting the HCV 5'-untranslated region. Qu J, Yang Z, Zhang Q, Liu W, Li Y, Ding Q, Liu F, Liu Y, Pan Z, He B, Zhu Y, Wu J. FEBS Lett 585 4002-4009 (2011)
  211. NMR-based identification of peptides that specifically recognize the d-arm of tRNA. Tisné C, Guillière F, Dardel F. Biochimie 87 885-888 (2005)
  212. SCAN--a high-throughput assay for detecting small molecule binding to RNA targets. Baugh C, Wang S, Li B, Appleman JR, Thompson PA. J Biomol Screen 14 219-229 (2009)
  213. The glucocorticoid receptor DNA-binding domain recognizes RNA hairpin structures with high affinity. Parsonnet NV, Lammer NC, Holmes ZE, Batey RT, Wuttke DS. Nucleic Acids Res 47 8180-8192 (2019)
  214. m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB. Chu CC, Liu B, Plangger R, Kreutz C, Al-Hashimi HM. PLoS One 14 e0224850 (2019)
  215. A new HIV-1 Rev structure optimizes interaction with target RNA (RRE) for nuclear export. Watts NR, Eren E, Zhuang X, Wang YX, Steven AC, Wingfield PT. J Struct Biol 203 102-108 (2018)
  216. Binding of a cyclic BIV beta-Tat peptide with its TAR RNA construct. Tok JB, Des Jean RC, Fenker J. Bioorg Med Chem Lett 11 43-46 (2001)
  217. Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors. Chavali SS, Mali SM, Jenkins JL, Fasan R, Wedekind JE. J Biol Chem 295 16470-16486 (2020)
  218. Computational Studies of Intrinsically Disordered Proteins. Duong VT, Chen Z, Thapa MT, Luo R. J Phys Chem B 122 10455-10469 (2018)
  219. Evolution of the HIV-1 Rev Response Element during Natural Infection Reveals Nucleotide Changes That Correlate with Altered Structure and Increased Activity over Time. Sherpa C, Jackson PEH, Gray LR, Anastos K, Le Grice SFJ, Hammarskjold ML, Rekosh D. J Virol 93 (2019)
  220. Identification of a domain in human immunodeficiency virus type 1 rev that is required for functional activity and modulates association with subnuclear compartments containing splicing factor SC35. D'Agostino DM, Ferro T, Zotti L, Meggio F, Pinna LA, Chieco-Bianchi L, Ciminale V. J Virol 74 11899-11910 (2000)
  221. Identifying interaction sites in "recalcitrant" proteins: predicted protein and RNA binding sites in rev proteins of HIV-1 and EIAV agree with experimental data. Terribilini M, Lee JH, Yan C, Jernigan RL, Carpenter S, Honavar V, Dobbs D. Pac Symp Biocomput 415-426 (2006)
  222. RNA gymnastics in mammalian signal recognition particle assembly. Wild K, Sinning I. RNA Biol 11 1330-1334 (2014)
  223. Comment RNA-binding proteins tamed. Laird-Offringa IA, Belasco JG. Nat Struct Biol 5 665-668 (1998)
  224. News RNA-mediated signaling in transcription. Weiss MA. Nat Struct Biol 5 329-333 (1998)
  225. Randomized codon mutagenesis reveals that the HIV Rev arginine-rich motif is robust to substitutions and that double substitution of two critical residues alters specificity. Possik EJ, Bou Sleiman MS, Ghattas IR, Smith CA. J Mol Recognit 26 286-296 (2013)
  226. Structure of an RNA Aptamer that Can Inhibit HIV-1 by Blocking Rev-Cognate RNA (RRE) Binding and Rev-Rev Association. Dearborn AD, Eren E, Watts NR, Palmer IW, Kaufman JD, Steven AC, Wingfield PT. Structure 26 1187-1195.e4 (2018)
  227. A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Lamichhane R, Hammond JA, Pauszek RF, Anderson RM, Pedron I, van der Schans E, Williamson JR, Millar DP. Nucleic Acids Res 45 4632-4641 (2017)
  228. Arginine mimetics using α-guanidino acids: introduction of functional groups and stereochemistry adjacent to recognition guanidiniums in peptides. Balakrishnan S, Scheuermann MJ, Zondlo NJ. Chembiochem 13 259-270 (2012)
  229. Characterization and in vitro activity of a branched peptide boronic acid that interacts with HIV-1 RRE RNA. Wynn JE, Zhang W, Tebit DM, Gray LR, Hammarskjold ML, Rekosh D, Santos WL. Bioorg Med Chem 24 3947-3952 (2016)
  230. Derivation of primary sequences and secondary structures of rev responsive element from HIV-1 infected mothers and infants following vertical transmission. Ramakrishnan R, Ahmad N. Virology 359 201-211 (2007)
  231. Effect of intercalator and Lewis acid-base branched peptide complex formation: boosting affinity towards HIV-1 RRE RNA. Wynn JE, Zhang W, Tebit DM, Gray LR, Hammarskjold ML, Rekosh D, Santos WL. Medchemcomm 7 1436-1440 (2016)
  232. HIV-1 rev nuclear export signal binding peptides isolated by phage display. Jensen A, Jensen TH, Kjems J. J Mol Biol 283 245-254 (1998)
  233. Nucleobase modified neamines with a lysine as a linker, their inhibition specificity for TAR-Tat derived from HIV-1. Inoue R, Watanabe K, Katou T, Ikezawa Y, Hamasaki K. Bioorg Med Chem 23 2139-2147 (2015)
  234. A ratiometric fluorescence RRE RNA-targeted assay for a new fluorescence ligand. Qi L, Wei JR, Lv XJ, Huo Y, Zhang ZQ. Biosens Bioelectron 86 287-292 (2016)
  235. News An RNA groove. Ellington AD, Leclerc F, Cedergren R. Nat Struct Biol 3 981-984 (1996)
  236. Comparative analysis of RNA/protein dynamics for the arginine-rich-binding motif and zinc-finger-binding motif proteins encoded by HIV-1. Wang H, Ma X, Yeh YS, Zhu Y, Daugherty MD, Frankel AD, Musier-Forsyth K, Barbara PF. Biophys J 99 3454-3462 (2010)
  237. Conformational flexibility in the enterovirus RNA replication platform. Warden MS, Cai K, Cornilescu G, Burke JE, Ponniah K, Butcher SE, Pascal SM. RNA 25 376-387 (2019)
  238. Design of photocontrolled RNA-binding peptidomimetics. Mart RJ, Wysoczański P, Kneissl S, Ricci A, Brancale A, Allemann RK. Chembiochem 13 515-519 (2012)
  239. Direct detection of RNAs in living cells using peptide-inserted Renilla luciferase. Andou T, Endoh T, Mie M, Kobatake E. Analyst 136 2446-2449 (2011)
  240. HIV Rev peptides conjugated with peptide nucleic acids and their efficient binding to RRE RNA. Kumagai I, Takahashi T, Hamasaki K, Ueno A, Mihara H. Bioorg Med Chem Lett 11 1169-1172 (2001)
  241. Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability. Jayaraman B, Fernandes JD, Yang S, Smith C, Frankel AD. Sci Rep 9 5139 (2019)
  242. Identification of a homogenous structural basis for oligomerization by retroviral Rev-like proteins. Umunnakwe CN, Dorman KS, Dobbs D, Carpenter S. Retrovirology 14 40 (2017)
  243. Inhibition of Rev·RRE complexation by triplex tethered oligonucleotide probes. Moses AC, Huang SW, Schepartz A. Bioorg Med Chem 5 1123-1129 (1997)
  244. Investigation of potential RNA bulge stabilizing elements. Sandbrink J, Ossipov D, Aström H, Strömberg R. J Mol Recognit 18 318-326 (2005)
  245. Replacement of the lambda boxB RNA-N peptide with heterologous RNA-peptide interactions relaxes the strict spatial requirements for the formation of a transcription anti-termination complex. Horiya S, Inaba M, Koh CS, Uehara H, Masui N, Mizuguchi M, Ishibashi M, Matsufuji S, Harada K. Mol Microbiol 74 85-97 (2009)
  246. Solution structures and characterization of human immunodeficiency virus Rev responsive element IIB RNA targeting zinc finger proteins. Mishra SH, Shelley CM, Barrow DJ, Darby MK, Germann MW. Biopolymers 83 352-364 (2006)
  247. Stepwise functionalization of ribonucleopeptides: optimization of the response of fluorescent ribonucleopeptide sensors for ATP. Hasegawa T, Hagihara M, Fukuda M, Morii T. Nucleosides Nucleotides Nucleic Acids 26 1277-1281 (2007)
  248. Structural disorder and the loss of RNA homeostasis in aging and neurodegenerative disease. Gray DA, Woulfe J. Front Genet 4 149 (2013)
  249. Structural model of the Rev regulatory protein from equine infectious anemia virus. Ihm Y, Sparks WO, Lee JH, Cao H, Carpenter S, Wang CZ, Ho KM, Dobbs D. PLoS One 4 e4178 (2009)
  250. Tailoring the peptide-binding specificity of an RNA by combinations of specificity-altering mutations. Sugaya M, Nishimura F, Katoh A, Harada K. Nucleosides Nucleotides Nucleic Acids 27 534-545 (2008)
  251. A novel stable RNA pentaloop that interacts specifically with a motif peptide of lambda-N protein. Kawakami J, Sugimoto N, Tokitoh H, Tanabe Y. Nucleosides Nucleotides Nucleic Acids 25 397-416 (2006)
  252. Allosteric inhibition of the HIV-1 Rev/RRE interaction by a 3'-methylphosphonate modified antisense oligo-2'-O-methylribonucleotide. Prater CE, Saleh AD, Wear MP, Miller PS. Oligonucleotides 17 275-290 (2007)
  253. Computational modeling suggests dimerization of equine infectious anemia virus Rev is required for RNA binding. Umunnakwe CN, Loyd H, Cornick K, Chavez JR, Dobbs D, Carpenter S. Retrovirology 11 115 (2014)
  254. Cooperative dimerization of a stably folded protein directed by a flexible RNA in the assembly of the HIV Rev dimer-RRE stem II complex. Tanamura S, Terakado H, Harada K. J Mol Recognit 29 199-209 (2016)
  255. Creating a community resource for protein science. Berman HM. Protein Sci 21 1587-1596 (2012)
  256. Design of RNA-targeting macrocyclic peptides. Walker MJ, Varani G. Methods Enzymol 623 339-372 (2019)
  257. Diverse mutants of HIV RRE IIB recognize wild-type Rev ARM or Rev ARM R35G-N40V. Abdallah EY, Smith CA. J Mol Recognit 28 710-721 (2015)
  258. Exploring the RNA-Recognition Mechanism Using Supervised Molecular Dynamics (SuMD) Simulations: Toward a Rational Design for Ribonucleic-Targeting Molecules? Bissaro M, Sturlese M, Moro S. Front Chem 8 107 (2020)
  259. HIV-1 Rev function as target for antiretroviral drug development. Daelemans D, Pannecouque C. Curr Opin HIV AIDS 1 388-397 (2006)
  260. Merged screening for human immunodeficiency virus Tat and Rev inhibitors. Hamy F, Felder E, Lipson K, Klimkait T. J Biomol Screen 6 179-187 (2001)
  261. Editorial Molecular insights into the RNA world. Patel DJ. Biopolymers 48 97-100 (1998)
  262. Molecular recognition of a branched peptide with HIV-1 Rev Response Element (RRE) RNA. Dai Y, Peralta AN, Wynn JE, Sherpa C, Li H, Verma A, Le Grice SFJ, Santos WL. Bioorg Med Chem 27 1759-1765 (2019)
  263. Photocrosslinking of RNA and photoMet-containing amphiphilic alpha-helical peptides. Hyun S, Han A, Yu J. Chembiochem 10 987-989 (2009)
  264. Recognition of a bulged RNA by peptides derived from the influenza NS1 protein. Someya T, Hosono K, Morimura K, Takaku H, Kawai G. J Biochem 143 339-347 (2008)
  265. Structural Mimicry Drives HIV-1 Rev-Mediated HERV-K Expression. O'Carroll IP, Fan L, Kroupa T, McShane EK, Theodore C, Yates EA, Kondrup B, Ding J, Martin TS, Rein A, Wang YX. J Mol Biol 432 166711 (2020)
  266. The SMAD3 transcription factor binds complex RNA structures with high affinity. Dickey TH, Pyle AM. Nucleic Acids Res 45 11980-11988 (2017)
  267. Thermodynamic characterization of RNA 2 × 3 nucleotide internal loops. Hausmann NZ, Znosko BM. Biochemistry 51 5359-5368 (2012)
  268. UV-light-induced hydrogen transfer in guanosine-guanosine aggregates. Hunger K, Buschhaus L, Biemann L, Braun M, Kovalenko S, Improta R, Kleinermanns K. Chemistry 19 5425-5431 (2013)
  269. β-Globin Lentiviral Vectors Have Reduced Titers due to Incomplete Vector RNA Genomes and Lowered Virion Production. Han J, Tam K, Ma F, Tam C, Aleshe B, Wang X, Quintos JP, Morselli M, Pellegrini M, Hollis RP, Kohn DB. Stem Cell Reports 16 198-211 (2021)
  270. A 'cassette' RNase: site-selective cleavage of RNA by RNase S equipped with RNA-recognition segment. Futaki S, Araki M, Kiwada T, Nakase I, Sugiura Y. Bioorg Med Chem Lett 11 1165-1168 (2001)
  271. A Diversity-Oriented Library of Fluorophore-Modified Receptors Constructed from a Chemical Library of Synthetic Fluorophores. Nakano S, Tamura T, Das RK, Nakata E, Chang YT, Morii T. Chembiochem 18 2212-2216 (2017)
  272. Binding and thermodynamics of REV peptide-ctDNA interaction. Upadhyay SK. Biopolymers 108 (2017)
  273. Construction of a library of structurally diverse ribonucleopeptides with catalytic groups. Tamura T, Nakano S, Nakata E, Morii T. Bioorg Med Chem 25 1881-1888 (2017)
  274. Construction of ratiometric fluorescent sensors by ribonucleopeptides. Annoni C, Nakata E, Tamura T, Liew FF, Nakano S, Gelmi ML, Morii T. Org Biomol Chem 10 8767-8769 (2012)
  275. Functional roles of intrinsic disorder in CRISPR-associated protein Cas9. Du Z, Uversky VN. Mol Biosyst 13 1770-1780 (2017)
  276. Genetic and functional analysis of HIV-1 Rev Responsive Element (RRE) sequences from North-India. Sharma Y, Neogi U, Sood V, Banerjee S, Samrat S, Wanchu A, Singh S, Banerjea AC. AIDS Res Ther 7 28 (2010)
  277. Identification and Optimization of Thienopyridine Carboxamides as Inhibitors of HIV Regulatory Complexes. Nakamura RL, Burlingame MA, Yang S, Crosby DC, Talbot DJ, Chui K, Frankel AD, Renslo AR. Antimicrob Agents Chemother 61 (2017)
  278. Nucleolar Localization of HIV-1 Rev Is Required, Yet Insufficient for Production of Infectious Viral Particles. Arizala JAC, Takahashi M, Burnett JC, Ouellet DL, Li H, Rossi JJ. AIDS Res Hum Retroviruses 34 961-981 (2018)
  279. Role of Mutations in Differential Recognition of Viral RNA Molecules by Peptides. Kumar A, Vashisth H. J Chem Inf Model 62 3381-3390 (2022)
  280. Sequence and Functional Variation in the HIV-1 Rev Regulatory Axis. Jackson PEH, Dzhivhuho G, Rekosh D, Hammarskjold ML. Curr HIV Res 18 85-98 (2020)
  281. Stabilization of α-helices by the self-assembly of macrocyclic peptides on the surface of gold nanoparticles for molecular recognition. Kim B, Choi SJ, Han SH, Choi KY, Lim YB. Chem Commun (Camb) 49 7617-7619 (2013)
  282. Temperature inducible beta-sheet structure in the transactivation domains of retroviral regulatory proteins of the Rev family. Thumb W, Graf C, Parslow T, Schneider R, Auer M. Spectrochim Acta A Mol Biomol Spectrosc 55A 2729-2743 (1999)
  283. pH dependence of C•A, G•A and A•A mismatches in the stem of precursor microRNA-31. Kotar A, Ma S, Keane SC. Biophys Chem 283 106763 (2022)
  284. An Encodable Scaffold for Sequence-Specific Recognition of Duplex RNA. Kwok JG, Yuan Z, Arora PS. Angew Chem Int Ed Engl 62 e202308650 (2023)
  285. Binding stoichiometry and structural model of the HIV-1 Rev/importin β complex. Spittler D, Indorato RL, Boeri Erba E, Delaforge E, Signor L, Harris SJ, Garcia-Saez I, Palencia A, Gabel F, Blackledge M, Noirclerc-Savoye M, Petosa C. Life Sci Alliance 5 e202201431 (2022)
  286. Conformational dynamics and energetics of viral RNA recognition by lab-evolved proteins. Kumar A, Vashisth H. Phys Chem Chem Phys 23 24773-24779 (2021)
  287. Different views of the dynamic landscape covered by the 5'-hairpin of the 7SK small nuclear RNA. Brillet K, Martinez-Zapien D, Bec G, Ennifar E, Dock-Bregeon AC, Lebars I. RNA 26 1184-1197 (2020)
  288. HIV-1 Rev-RRE functional activity in primary isolates is highly dependent on minimal context-dependent changes in Rev. Dzhivhuho G, Holsey J, Honeycutt E, O'Farrell H, Rekosh D, Hammarskjold ML, Jackson PEH. Sci Rep 12 18416 (2022)
  289. Molecular recognition of HIV-1 RNAs with branched peptides. Peralta AN, Dai Y, Sherpa C, Le Grice SFJ, Santos WL. Methods Enzymol 623 373-400 (2019)
  290. Peptide conjugates with polyaromatic hydrocarbons can benefit the activity of catalytic RNAs. Sweeney KJ, Le T, Jorge MZ, Schellinger JG, Leman LJ, Müller UF. Chem Sci 14 10318-10328 (2023)
  291. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Levintov L, Vashisth H. Biophys J 120 5060-5073 (2021)
  292. Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev. Eren E, Watts NR, Randazzo D, Palmer I, Sackett DL, Wingfield PT. Structure 31 1233-1246.e5 (2023)
  293. Synthesis and conformational analysis of macrocyclic peptides consisting of both α-helix and polyproline helix segments. Choi SJ, Kwon Sh, Kim TH, Lim YB. Biopolymers 101 279-286 (2014)
  294. The sophisticated masters of the cell. Hol WG. Curr Opin Struct Biol 6 777-780 (1996)


Related citations provided by authors (3)

  1. Assignment and modeling of the Rev Response Element RNA bound to a Rev peptide using 13C-heteronuclear NMR.. Battiste JL, Tan R, Frankel AD, Williamson JR J Biomol NMR 6 375-89 (1995)
  2. Binding of an HIV Rev peptide to Rev responsive element RNA induces formation of purine-purine base pairs.. Battiste JL, Tan R, Frankel AD, Williamson JR Biochemistry 33 2741-7 (1994)
  3. RNA Recognition by an Isolated Alpha Helix. Tan R, Chen L, Buettner JA, Hudson D, Frankel AD Cell 73 1031- (1993)