1en7 Citations

X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture.

EMBO J 18 1447-58 (1999)
Cited: 93 times
EuropePMC logo PMID: 10075917

Abstract

Phage T4 endonuclease VII (Endo VII), the first enzyme shown to resolve Holliday junctions, recognizes a broad spectrum of DNA substrates ranging from branched DNAs to single base mismatches. We have determined the crystal structures of the Ca2+-bound wild-type and the inactive N62D mutant enzymes at 2.4 and 2.1 A, respectively. The Endo VII monomers form an elongated, highly intertwined molecular dimer exhibiting extreme domain swapping. The major dimerization elements are two pairs of antiparallel helices forming a novel 'four-helix cross' motif. The unique monomer fold, almost completely lacking beta-sheet structure and containing a zinc ion tetrahedrally coordinated to four cysteines, does not resemble any of the known junction-resolving enzymes, including the Escherichia coli RuvC and lambda integrase-type recombinases. The S-shaped dimer has two 'binding bays' separated by approximately 25 A which are lined by positively charged residues and contain near their base residues known to be essential for activity. These include Asp40 and Asn62, which function as ligands for the bound calcium ions. A pronounced bipolar charge distribution suggests that branched DNA substrates bind to the positively charged face with the scissile phosphates located near the divalent cations. A model for the complex with a four-way DNA junction is presented.

Reviews - 1en7 mentioned but not cited (1)

  1. Holliday junction resolvases. Wyatt HD, West SC. Cold Spring Harb Perspect Biol 6 a023192 (2014)

Articles - 1en7 mentioned but not cited (12)

  1. Structural classification of zinc fingers: survey and summary. Krishna SS, Majumdar I, Grishin NV. Nucleic Acids Res 31 532-550 (2003)
  2. Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM. EMBO J 20 4399-4407 (2001)
  3. Treble clef finger--a functionally diverse zinc-binding structural motif. Grishin NV. Nucleic Acids Res 29 1703-1714 (2001)
  4. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Orlowski J, Bujnicki JM. Nucleic Acids Res 36 3552-3569 (2008)
  5. Type II restriction endonuclease R.KpnI is a member of the HNH nuclease superfamily. Saravanan M, Bujnicki JM, Cymerman IA, Rao DN, Nagaraja V. Nucleic Acids Res 32 6129-6135 (2004)
  6. HNH family subclassification leads to identification of commonality in the His-Me endonuclease superfamily. Mehta P, Katta K, Krishnaswamy S. Protein Sci 13 295-300 (2004)
  7. Structural insights into the function of ZRANB3 in replication stress response. Sebesta M, Cooper CDO, Ariza A, Carnie CJ, Ahel D. Nat Commun 8 15847 (2017)
  8. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  9. Open interface and large quaternary structure movements in 3D domain swapped proteins: insights from molecular dynamics simulations of the C-terminal swapped dimer of ribonuclease A. Merlino A, Ceruso MA, Vitagliano L, Mazzarella L. Biophys J 88 2003-2012 (2005)
  10. Identification of a single HNH active site in type IIS restriction endonuclease Eco31I. Jakubauskas A, Giedriene J, Bujnicki JM, Janulaitis A. J Mol Biol 370 157-169 (2007)
  11. Systematic classification of the His-Me finger superfamily. Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Nucleic Acids Res 45 11479-11494 (2017)
  12. The enigma of the near-symmetry of proteins: Domain swapping. Bonjack-Shterengartz M, Avnir D. PLoS One 12 e0180030 (2017)


Reviews citing this publication (14)

  1. Bacteriophage T4 genome. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Microbiol Mol Biol Rev 67 86-156, table of contents (2003)
  2. 3D domain swapping: as domains continue to swap. Liu Y, Eisenberg D. Protein Sci 11 1285-1299 (2002)
  3. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Chevalier BS, Stoddard BL. Nucleic Acids Res 29 3757-3774 (2001)
  4. The unfolding story of three-dimensional domain swapping. Rousseau F, Schymkowitz JW, Itzhaki LS. Structure 11 243-251 (2003)
  5. The junction-resolving enzymes. Lilley DM, White MF. Nat Rev Mol Cell Biol 2 433-443 (2001)
  6. Happy Hollidays: 40th anniversary of the Holliday junction. Liu Y, West SC. Nat Rev Mol Cell Biol 5 937-944 (2004)
  7. Protein folding and three-dimensional domain swapping: a strained relationship? Newcomer ME. Curr Opin Struct Biol 12 48-53 (2002)
  8. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Déclais AC, Lilley DM. Curr Opin Struct Biol 18 86-95 (2008)
  9. Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Nishino T, Morikawa K. Oncogene 21 9022-9032 (2002)
  10. The X philes: structure-specific endonucleases that resolve Holliday junctions. Sharples GJ. Mol Microbiol 39 823-834 (2001)
  11. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Ruhe ZC, Low DA, Hayes CS. Annu Rev Microbiol 74 497-520 (2020)
  12. The stacked-X DNA Holliday junction and protein recognition. Khuu PA, Voth AR, Hays FA, Ho PS. J Mol Recognit 19 234-242 (2006)
  13. Holliday junction-resolving enzymes-structures and mechanisms. Lilley DMJ. FEBS Lett 591 1073-1082 (2017)
  14. Crystallographic studies on protein misfolding: Domain swapping and amyloid formation in the SH3 domain. Cámara-Artigas A. Arch Biochem Biophys 602 116-126 (2016)

Articles citing this publication (66)

  1. Inference of macromolecular assemblies from crystalline state. Krissinel E, Henrick K. J Mol Biol 372 774-797 (2007)
  2. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Aravind L, Makarova KS, Koonin EV. Nucleic Acids Res 28 3417-3432 (2000)
  3. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Aravind L, Koonin EV. Genome Res 11 1365-1374 (2001)
  4. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. Lawrence JG, Hatfull GF, Hendrix RW. J Bacteriol 184 4891-4905 (2002)
  5. The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Eichman BF, Vargason JM, Mooers BH, Ho PS. Proc Natl Acad Sci U S A 97 3971-3976 (2000)
  6. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Lavigne R, Burkal'tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G. Virology 312 49-59 (2003)
  7. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Biertümpfel C, Yang W, Suck D. Nature 449 616-620 (2007)
  8. Structural parsimony in endonuclease active sites: should the number of homing endonuclease families be redefined? Kühlmann UC, Moore GR, James R, Kleanthous C, Hemmings AM. FEBS Lett 463 1-2 (1999)
  9. Characterization of the C-terminal DNA-binding/DNA endonuclease region of a group II intron-encoded protein. San Filippo J, Lambowitz AM. J Mol Biol 324 933-951 (2002)
  10. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. Li CL, Hor LI, Chang ZF, Tsai LC, Yang WZ, Yuan HS. EMBO J 22 4014-4025 (2003)
  11. Crystal structure of the archaeal holliday junction resolvase Hjc and implications for DNA recognition. Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Structure 9 197-204 (2001)
  12. An equivalent metal ion in one- and two-metal-ion catalysis. Yang W. Nat Struct Mol Biol 15 1228-1231 (2008)
  13. Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Bond CS, Kvaratskhelia M, Richard D, White MF, Hunter WN. Proc Natl Acad Sci U S A 98 5509-5514 (2001)
  14. Resolving the relationships of resolving enzymes. Lilley DM, White MF. Proc Natl Acad Sci U S A 97 9351-9353 (2000)
  15. DNA binding and degradation by the HNH protein ColE7. Hsia KC, Chak KF, Liang PH, Cheng YS, Ku WY, Yuan HS. Structure 12 205-214 (2004)
  16. Polyphyletic evolution of type II restriction enzymes revisited: two independent sources of second-hand folds revealed. Bujnicki JM, Radlinska M, Rychlewski L. Trends Biochem Sci 26 9-11 (2001)
  17. The crystal structure of the nuclease domain of colicin E7 suggests a mechanism for binding to double-stranded DNA by the H-N-H endonucleases. Cheng YS, Hsia KC, Doudeva LG, Chak KF, Yuan HS. J Mol Biol 324 227-236 (2002)
  18. Genome of Xanthomonas oryzae bacteriophage Xp10: an odd T-odd phage. Yuzenkova J, Nechaev S, Berlin J, Rogulja D, Kuznedelov K, Inman R, Mushegian A, Severinov K. J Mol Biol 330 735-748 (2003)
  19. The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence-specific cleavage. McGregor N, Ayora S, Sedelnikova S, Carrasco B, Alonso JC, Thaw P, Rafferty J. Structure 13 1341-1351 (2005)
  20. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Mosig G, Gewin J, Luder A, Colowick N, Vo D. Proc Natl Acad Sci U S A 98 8306-8311 (2001)
  21. Crystal structure of the fission yeast mitochondrial Holliday junction resolvase Ydc2. Ceschini S, Keeley A, McAlister MS, Oram M, Phelan J, Pearl LH, Tsaneva IR, Barrett TE. EMBO J 20 6601-6611 (2001)
  22. Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I. Hadden JM, Déclais AC, Phillips SE, Lilley DM. EMBO J 21 3505-3515 (2002)
  23. Quasi-equivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a three-way Lox DNA junction. Woods KC, Martin SS, Chu VC, Baldwin EP. J Mol Biol 313 49-69 (2001)
  24. Two Holliday junction resolving enzymes in Sulfolobus solfataricus. Kvaratskhelia M, White MF. J Mol Biol 297 923-932 (2000)
  25. A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Tranier S, Iobbi-Nivol C, Birck C, Ilbert M, Mortier-Barrière I, Méjean V, Samama JP. Structure 11 165-174 (2003)
  26. Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex. Herdendorf TJ, Albrecht DW, Benkovic SJ, Nelson SW. J Biol Chem 286 2382-2392 (2011)
  27. Metal ions and phosphate binding in the H-N-H motif: crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions. Sui MJ, Tsai LC, Hsia KC, Doudeva LG, Ku WY, Han GW, Yuan HS. Protein Sci 11 2947-2957 (2002)
  28. Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+. Doudeva LG, Huang H, Hsia KC, Shi Z, Li CL, Shen Y, Cheng YS, Yuan HS. Protein Sci 15 269-280 (2006)
  29. Holliday junction resolving enzymes of archaeal viruses SIRV1 and SIRV2. Birkenbihl RP, Neef K, Prangishvili D, Kemper B. J Mol Biol 309 1067-1076 (2001)
  30. The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases. Huang H, Yuan HS. J Mol Biol 368 812-821 (2007)
  31. Lecture The search for a human Holliday junction resolvase. West SC. Biochem Soc Trans 37 519-526 (2009)
  32. Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Middleton CL, Parker JL, Richard DJ, White MF, Bond CS. Nucleic Acids Res 32 5442-5451 (2004)
  33. The complex between a four-way DNA junction and T7 endonuclease I. Déclais AC, Fogg JM, Freeman AD, Coste F, Hadden JM, Phillips SE, Lilley DM. EMBO J 22 1398-1409 (2003)
  34. Distortion of DNA junctions imposed by the binding of resolving enzymes: a fluorescence study. Fogg JM, Kvaratskhelia M, White MF, Lilley DM. J Mol Biol 313 751-764 (2001)
  35. The active site of the junction-resolving enzyme T7 endonuclease I. Déclais AC, Hadden J, Phillips SE, Lilley DM. J Mol Biol 307 1145-1158 (2001)
  36. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Moodley S, Maxwell KL, Kanelis V. Protein Sci 21 809-818 (2012)
  37. Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease. Cymerman IA, Obarska A, Skowronek KJ, Lubys A, Bujnicki JM. Proteins 65 867-876 (2006)
  38. Hjc resolvase is a distantly related member of the type II restriction endonuclease family. Daiyasu H, Komori K, Sakae S, Ishino Y, Toh H. Nucleic Acids Res 28 4540-4543 (2000)
  39. The structure of Escherichia coli RusA endonuclease reveals a new Holliday junction DNA binding fold. Rafferty JB, Bolt EL, Muranova TA, Sedelnikova SE, Leonard P, Pasquo A, Baker PJ, Rice DW, Sharples GJ, Lloyd RG. Structure 11 1557-1567 (2003)
  40. Holliday junction binding and resolution by the Rap structure-specific endonuclease of phage lambda. Sharples GJ, Curtis FA, McGlynn P, Bolt EL. J Mol Biol 340 739-751 (2004)
  41. Dual role for Zn2+ in maintaining structural integrity and inducing DNA sequence specificity in a promiscuous endonuclease. Saravanan M, Vasu K, Ghosh S, Nagaraja V. J Biol Chem 282 32320-32326 (2007)
  42. NrdH-redoxin of Corynebacterium ammoniagenes forms a domain-swapped dimer. Stehr M, Lindqvist Y. Proteins 55 613-619 (2004)
  43. RusA proteins from the extreme thermophile Aquifex aeolicus and lactococcal phage r1t resolve Holliday junctions. Sharples GJ, Bolt EL, Lloyd RG. Mol Microbiol 44 549-559 (2002)
  44. Specific recognition of four-way DNA junctions by the C-terminal zinc-binding domain of HPV oncoprotein E6. Ristriani T, Nominé Y, Masson M, Weiss E, Travé G. J Mol Biol 305 729-739 (2001)
  45. Genome sequence and characterization of a Rhodococcus equi phage REQ1. Petrovski S, Seviour RJ, Tillett D. Virus Genes 46 588-590 (2013)
  46. The fragment transformation method to detect the protein structural motifs. Lu CH, Lin YS, Chen YC, Yu CS, Chang SY, Hwang JK. Proteins 63 636-643 (2006)
  47. The major apoptotic endonuclease DFF40/CAD is a deoxyribose-specific and double-strand-specific enzyme. Hanus J, Kalinowska-Herok M, Widlak P. Apoptosis 13 377-382 (2008)
  48. Site-directed mutagenesis of the yeast resolving enzyme Cce1 reveals catalytic residues and relationship with the intron-splicing factor Mrs1. Wardleworth BN, Kvaratskhelia M, White MF. J Biol Chem 275 23725-23728 (2000)
  49. Letter Solution structure of the hypothetical protein YqgF from Escherichia coli reveals an RNAse H fold. Liu D, Wang YS, Wyss DF. J Biomol NMR 27 389-392 (2003)
  50. Analysis of conserved basic residues associated with DNA binding (Arg69) and catalysis (Lys76) by the RusA holliday junction resolvase. Bolt EL, Sharples GJ, Lloyd RG. J Mol Biol 304 165-176 (2000)
  51. Comparison of backbone dynamics of monomeric and domain-swapped stefin A. Japelj B, Waltho JP, Jerala R. Proteins 54 500-512 (2004)
  52. Identification of a conserved DNA sulfur recognition domain by characterizing the phosphorothioate-specific endonuclease SprMcrA from Streptomyces pristinaespiralis. Yu H, Liu G, Zhao G, Hu W, Wu G, Deng Z, He X. Mol Microbiol 110 484-497 (2018)
  53. Structural insights into apoptotic DNA degradation by CED-3 protease suppressor-6 (CPS-6) from Caenorhabditis elegans. Lin JL, Nakagawa A, Lin CL, Hsiao YY, Yang WZ, Wang YT, Doudeva LG, Skeen-Gaar RR, Xue D, Yuan HS. J Biol Chem 287 7110-7120 (2012)
  54. Ab initio folding of a trefoil-fold motif reveals structural similarity with a β-propeller blade motif. Tenorio CA, Longo LM, Parker JB, Lee J, Blaber M. Protein Sci 29 1172-1185 (2020)
  55. Crystal structure of NucB, a biofilm-degrading endonuclease. Baslé A, Hewitt L, Koh A, Lamb HK, Thompson P, Burgess JG, Hall MJ, Hawkins AR, Murray H, Lewis RJ. Nucleic Acids Res 46 473-484 (2018)
  56. Multiple Holliday junction resolving enzyme activities in the Crenarchaeota and Euryarchaeota. Kvaratskhelia M, Wardleworth BN, White MF. FEBS Lett 491 243-246 (2001)
  57. Computational studies of the reversible domain swapping of p13suc1. Chahine J, Cheung MS. Biophys J 89 2693-2700 (2005)
  58. In silico analysis of mycobacteriophage Che12 genome: characterization of genes required to lysogenise Mycobacterium tuberculosis. Gomathi NS, Sameer H, Kumar V, Balaji S, Dustackeer VN, Narayanan PR. Comput Biol Chem 31 82-91 (2007)
  59. Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli. Bolt EL, Lloyd RG, Sharples GJ. J Mol Biol 310 577-589 (2001)
  60. Genetic engineering of Escherichia coli to produce a 1:1 complex of the anabaena sp. PCC 7120 nuclease NucA and its inhibitor NuiA. Korn C, Meiss G, Gast F, Gimadutdinow O, Urbanke C, Pingoud A. Gene 253 221-229 (2000)
  61. Metal ion binding in the active site of the junction-resolving enzyme T7 endonuclease I in the presence and in the absence of DNA. Freeman AD, Déclais AC, Lilley DM. J Mol Biol 333 59-73 (2003)
  62. Structural insights into dynamics of RecU-HJ complex formation elucidates key role of NTR and stalk region toward formation of reactive state. Khavnekar S, Dantu SC, Sedelnikova S, Ayora S, Rafferty J, Kale A. Nucleic Acids Res 45 975-986 (2017)
  63. Crystal structure and initial characterization of a novel archaeal-like Holliday junction-resolving enzyme from Thermus thermophilus phage Tth15-6. Ahlqvist J, Linares-Pastén JA, Håkansson M, Jasilionis A, Kwiatkowska-Semrau K, Friðjónsson ÓH, Kaczorowska AK, Dabrowski S, Ævarsson A, Hreggviðsson GÓ, Al-Karadaghi S, Kaczorowski T, Nordberg Karlsson E. Acta Crystallogr D Struct Biol 78 212-227 (2022)
  64. F-CphI represents a new homing endonuclease family using the Endo VII catalytic motif. Fang X, Jiang Y, Li K, Zeng Q. Mob DNA 9 27 (2018)
  65. High affinity of endonuclease VII for the Holliday structure containing one nick ensures productive resolution. Birkenbihl RP, Kemper B. J Mol Biol 321 21-28 (2002)
  66. Analyses of spontaneous mutations of cloned gene 49 of phage T4. Hartung M, Slack M, Kemper B. Mutat Res 473 201-210 (2001)