1emo Citations

Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders.


The nuclear magnetic resonance structure of a covalently linked pair of calcium-binding (cb) epidermal growth factor-like (EGF) domains from human fibrillin-1, the protein defective in the Marfan syndrome, is described. The two domains are in a rigid, rod-like arrangement, stabilized by interdomain calcium binding and hydrophobic interactions. We propose a model for the arrangement of fibrillin monomers in microfibrils that reconciles structural and antibody binding data, and we describe a set of disease-causing mutations that provide the first clues to the specificity of cbEFG interactions. The residues involved in stabilizing the domain linkage are highly conserved in fibrillin, fibulin, thrombomodulin, and the low density lipoprotein receptor. We propose that the relative orientation of tandem cbEGF domains in these proteins is similar, but that in others, including Notch, pairs adopt a completely different conformation.

Reviews - 1emo mentioned but not cited (1)

  1. Microneme proteins in apicomplexans. Carruthers VB, Tomley FM. Subcell. Biochem. 47 33-45 (2008)

Articles - 1emo mentioned but not cited (3)

  1. A DNA-porphyrin minor-groove complex at atomic resolution: the structural consequences of porphyrin ruffling. Bennett M, Krah A, Wien F, Garman E, McKenna R, Sanderson M, Neidle S. Proc. Natl. Acad. Sci. U.S.A. 97 9476-9481 (2000)
  2. Characterization of a recurrent in-frame UMOD indel mutation causing late-onset autosomal dominant end-stage renal failure. Smith GD, Robinson C, Stewart AP, Edwards EL, Karet HI, Norden AG, Sandford RN, Karet Frankl FE. Clin J Am Soc Nephrol 6 2766-2774 (2011)
  3. Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity. Le SN, Porebski BT, McCoey J, Fodor J, Riley B, Godlewska M, Góra M, Czarnocka B, Banga JP, Hoke DE, Kass I, Buckle AM. PLoS ONE 10 e0142615 (2015)

Reviews citing this publication (52)

  1. Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Thomson J, Singh M, Eckersley A, Cain SA, Sherratt MJ, Baldock C. Semin. Cell Dev. Biol. 89 109-117 (2019)
  2. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels. Zeyer KA, Reinhardt DP. Mutat Res Rev Mutat Res 765 7-18 (2015)
  3. The multiple roles of epidermal growth factor repeat O-glycans in animal development. Haltom AR, Jafar-Nejad H. Glycobiology 25 1027-1042 (2015)
  4. Dissecting the fibrillin microfibril: structural insights into organization and function. Jensen SA, Robertson IB, Handford PA. Structure 20 215-225 (2012)
  5. Notch receptor-ligand binding and activation: insights from molecular studies. Chillakuri CR, Sheppard D, Lea SM, Handford PA. Semin. Cell Dev. Biol. 23 421-428 (2012)
  6. TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Robertson I, Jensen S, Handford P. Biochem. J. 433 263-276 (2011)
  7. Biogenesis and function of fibrillin assemblies. Ramirez F, Sakai LY. Cell Tissue Res. 339 71-82 (2010)
  8. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R. Glycobiology 20 931-949 (2010)
  9. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Biochem. Pharmacol. 77 700-712 (2009)
  10. Marfan syndrome and its disorder in periodontal tissues. Suda N, Shiga M, Ganburged G, Moriyama K. J. Exp. Zool. B Mol. Dev. Evol. 312B 503-509 (2009)
  11. Tissue elasticity and the ageing elastic fibre. Sherratt MJ. Age (Dordr) 31 305-325 (2009)
  12. Composition and function of the Crumbs protein complex in the mammalian retina. Gosens I, den Hollander AI, Cremers FP, Roepman R. Exp. Eye Res. 86 713-726 (2008)
  13. New insights into elastic fiber assembly. Wagenseil JE, Mecham RP. Birth Defects Res. C Embryo Today 81 229-240 (2007)
  14. Recent progress in genetics of Marfan syndrome and Marfan-associated disorders. Mizuguchi T, Matsumoto N. J. Hum. Genet. 52 1-12 (2007)
  15. Developmental roles of the BMP1/TLD metalloproteinases. Ge G, Greenspan DS. Birth Defects Res. C Embryo Today 78 47-68 (2006)
  16. Fibrillin-1 misfolding and disease. Whiteman P, Hutchinson S, Handford PA. Antioxid. Redox Signal. 8 338-346 (2006)
  17. The molecular genetics of Marfan syndrome and related disorders. Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M. J. Med. Genet. 43 769-787 (2006)
  18. Fibulin-5 function during tumorigenesis. Albig AR, Schiemann WP. Future Oncol 1 23-35 (2005)
  19. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. Rifkin DB. J. Biol. Chem. 280 7409-7412 (2005)
  20. Molecular genetics of Marfan syndrome. Boileau C, Jondeau G, Mizuguchi T, Matsumoto N. Curr. Opin. Cardiol. 20 194-200 (2005)
  21. Structure and physiologic function of the low-density lipoprotein receptor. Jeon H, Blacklow SC. Annu. Rev. Biochem. 74 535-562 (2005)
  22. CRB1 mutation spectrum in inherited retinal dystrophies. den Hollander AI, Davis J, van der Velde-Visser SD, Zonneveld MN, Pierrottet CO, Koenekoop RK, Kellner U, van den Born LI, Heckenlively JR, Hoyng CB, Handford PA, Roepman R, Cremers FP. Hum. Mutat. 24 355-369 (2004)
  23. Fine tuning of growth factor signals depends on fibrillin microfibril networks. Charbonneau NL, Ono RN, Corson GM, Keene DR, Sakai LY. Birth Defects Res. C Embryo Today 72 37-50 (2004)
  24. Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Hyytiäinen M, Penttinen C, Keski-Oja J. Crit Rev Clin Lab Sci 41 233-264 (2004)
  25. The EGF-TM7 family: a postgenomic view. Kwakkenbos MJ, Kop EN, Stacey M, Matmati M, Gordon S, Lin HH, Hamann J. Immunogenetics 55 655-666 (2004)
  26. What is new in the Marfan syndrome? Nollen GJ, Mulder BJ. Int. J. Cardiol. 97 Suppl 1 103-108 (2004)
  27. Fibulins: a versatile family of extracellular matrix proteins. Timpl R, Sasaki T, Kostka G, Chu ML. Nat. Rev. Mol. Cell Biol. 4 479-489 (2003)
  28. Genetic fibrillinopathies: new insights in molecular diagnosis and clinical management. Loeys BL, Matthys DM, de Paepe AM. Acta Clin Belg 58 3-11 (2003)
  29. Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Collod-Béroud G, Le Bourdelles S, Ades L, Ala-Kokko L, Booms P, Boxer M, Child A, Comeglio P, De Paepe A, Hyland JC, Holman K, Kaitila I, Loeys B, Matyas G, Nuytinck L, Peltonen L, Rantamaki T, Robinson P, Steinmann B, Junien C, Béroud C, Boileau C. Hum. Mutat. 22 199-208 (2003)
  30. Coming to grips with integrin binding to ligands. Arnaout MA, Goodman SL, Xiong JP. Curr. Opin. Cell Biol. 14 641-651 (2002)
  31. Domain structure and organisation in extracellular matrix proteins. Hohenester E, Engel J. Matrix Biol. 21 115-128 (2002)
  32. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. Kielty CM, Wess TJ, Haston L, Ashworth JL, Sherratt MJ, Shuttleworth CA. J. Muscle Res. Cell. Motil. 23 581-596 (2002)
  33. Fibrillin: from microfibril assembly to biomechanical function. Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357 207-217 (2002)
  34. Integrin structure: new twists and turns in dynamic cell adhesion. Arnaout MA. Immunol. Rev. 186 125-140 (2002)
  35. Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and related fibrillinopathies. Robinson PN, Booms P, Katzke S, Ladewig M, Neumann L, Palz M, Pregla R, Tiecke F, Rosenberg T. Hum. Mutat. 20 153-161 (2002)
  36. Structural biology of the C1 complex of complement unveils the mechanisms of its activation and proteolytic activity. Arlaud GJ, Gaboriaud C, Thielens NM, Budayova-Spano M, Rossi V, Fontecilla-Camps JC. Mol. Immunol. 39 383-394 (2002)
  37. Fibrillin-rich microfibrils of the extracellular matrix: ultrastructure and assembly. Sherratt MJ, Wess TJ, Baldock C, Ashworth J, Purslow PP, Shuttleworth CA, Kielty CM. Micron 32 185-200 (2001)
  38. Latency, activation, and binding proteins of TGF-beta. Koli K, Saharinen J, Hyytiäinen M, Penttinen C, Keski-Oja J. Microsc. Res. Tech. 52 354-362 (2001)
  39. Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Tomley FM, Soldati DS. Trends Parasitol. 17 81-88 (2001)
  40. The three dimensional structure of the type I insulin-like growth factor receptor. Ward CW, Garrett TP, McKern NM, Lou M, Cosgrove LJ, Sparrow LG, Frenkel MJ, Hoyne PA, Elleman TC, Adams TE, Lovrecz GO, Lawrence LJ, Tulloch PA. MP, Mol. Pathol. 54 125-132 (2001)
  41. Fibrillin-1, a calcium binding protein of extracellular matrix. Handford PA. Biochim. Biophys. Acta 1498 84-90 (2000)
  42. Fibrillin: from domain structure to supramolecular assembly. Handford PA, Downing AK, Reinhardt DP, Sakai LY. Matrix Biol. 19 457-470 (2000)
  43. Pathophysiology of the microfibril/elastic fiber system: introduction. Ramirez F. Matrix Biol. 19 455-456 (2000)
  44. The molecular genetics of Marfan syndrome and related microfibrillopathies. Robinson PN, Godfrey M. J. Med. Genet. 37 9-25 (2000)
  45. Structure and functions of the interaction domains of C1r and C1s: keystones of the architecture of the C1 complex. Thielens NM, Bersch B, Hernandez JF, Arlaud GJ. Immunopharmacology 42 3-13 (1999)
  46. Calcium. Evenäs J, Malmendal A, Forsén S. Curr Opin Chem Biol 2 293-302 (1998)
  47. Cellular and extracellular biology of the latent transforming growth factor-beta binding proteins. Sinha S, Nevett C, Shuttleworth CA, Kielty CM. Matrix Biol. 17 529-545 (1998)
  48. NMR of modular proteins. Campbell ID, Downing AK. Nat. Struct. Biol. 5 Suppl 496-499 (1998)
  49. The modular architecture of leukocyte cell-surface receptors. Campbell ID. Immunol. Rev. 163 11-18 (1998)
  50. Fibrillin-1 mutations in Marfan syndrome and other type-1 fibrillinopathies. Hayward C, Brock DJ. Hum. Mutat. 10 415-423 (1997)
  51. Structural and functional aspects of calcium binding in extracellular matrix proteins. Maurer P, Hohenester E. Matrix Biol. 15 569-80; discussion 581 (1997)
  52. Extracellular calcium-binding proteins. Maurer P, Hohenester E, Engel J. Curr. Opin. Cell Biol. 8 609-617 (1996)

Articles citing this publication (163)

  1. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Science 294 339-345 (2001)
  2. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, Callewaert B, Arbustini E, Mayer K, Arslan-Kirchner M, Kiotsekoglou A, Comeglio P, Marziliano N, Dietz HC, Halliday D, Beroud C, Bonithon-Kopp C, Claustres M, Muti C, Plauchu H, Robinson PN, Adès LC, Biggin A, Benetts B, Brett M, Holman KJ, De Backer J, Coucke P, Francke U, De Paepe A, Jondeau G, Boileau C. Am. J. Hum. Genet. 81 454-466 (2007)
  3. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G, Seto M, Morser J, Light DR, Bode W. Nature 404 518-525 (2000)
  4. Null mutations in LTBP2 cause primary congenital glaucoma. Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA, Hejtmancik JF, Khan SN, Firasat S, Shires M, Gilmour DF, Towns K, Murphy AL, Azmanov D, Tournev I, Cherninkova S, Jafri H, Raashid Y, Toomes C, Craig J, Mackey DA, Kalaydjieva L, Riazuddin S, Inglehearn CF. Am. J. Hum. Genet. 84 664-671 (2009)
  5. Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Hucthagowder V, Sausgruber N, Kim KH, Angle B, Marmorstein LY, Urban Z. Am. J. Hum. Genet. 78 1075-1080 (2006)
  6. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. Springer TA. J. Mol. Biol. 283 837-862 (1998)
  7. Analysis of the ARMD1 locus: evidence that a mutation in HEMICENTIN-1 is associated with age-related macular degeneration in a large family. Schultz DW, Klein ML, Humpert AJ, Luzier CW, Persun V, Schain M, Mahan A, Runckel C, Cassera M, Vittal V, Doyle TM, Martin TM, Weleber RG, Francis PJ, Acott TS. Hum. Mol. Genet. 12 3315-3323 (2003)
  8. Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. Morgan WD, Birdsall B, Frenkiel TA, Gradwell MG, Burghaus PA, Syed SE, Uthaipibull C, Holder AA, Feeney J. J. Mol. Biol. 289 113-122 (1999)
  9. Fibrillin assembly requires fibronectin. Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP. Mol. Biol. Cell 20 846-858 (2009)
  10. Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40. Hohenester E, Maurer P, Timpl R. EMBO J. 16 3778-3786 (1997)
  11. Cysteine substitutions in epidermal growth factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Schrijver I, Liu W, Brenn T, Furthmayr H, Francke U. Am. J. Hum. Genet. 65 1007-1020 (1999)
  12. Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H. Dev. Dyn. 230 316-324 (2004)
  13. The supramolecular organization of fibrillin-rich microfibrils. Baldock C, Koster AJ, Ziese U, Rock MJ, Sherratt MJ, Kadler KE, Shuttleworth CA, Kielty CM. J. Cell Biol. 152 1045-1056 (2001)
  14. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJ, Shuttleworth CA, Wess TJ, Kielty CM. J. Mol. Biol. 332 183-193 (2003)
  15. Drosophila dumpy is a gigantic extracellular protein required to maintain tension at epidermal-cuticle attachment sites. Wilkin MB, Becker MN, Mulvey D, Phan I, Chao A, Cooper K, Chung HJ, Campbell ID, Baron M, MacIntyre R. Curr. Biol. 10 559-567 (2000)
  16. The Tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA, Jimenez SA. J. Cell Biol. 140 1159-1166 (1998)
  17. Solution structure of the transforming growth factor beta-binding protein-like module, a domain associated with matrix fibrils. Yuan X, Downing AK, Knott V, Handford PA. EMBO J. 16 6659-6666 (1997)
  18. Defective intracellular trafficking of uromodulin mutant isoforms. Bernascone I, Vavassori S, Di Pentima A, Santambrogio S, Lamorte G, Amoroso A, Scolari F, Ghiggeri GM, Casari G, Polishchuk R, Rampoldi L. Traffic 7 1567-1579 (2006)
  19. UMD-predictor, a new prediction tool for nucleotide substitution pathogenicity -- application to four genes: FBN1, FBN2, TGFBR1, and TGFBR2. Frédéric MY, Lalande M, Boileau C, Hamroun D, Claustres M, Béroud C, Collod-Béroud G. Hum. Mutat. 30 952-959 (2009)
  20. The R345W mutation in EFEMP1 is pathogenic and causes AMD-like deposits in mice. Fu L, Garland D, Yang Z, Shukla D, Rajendran A, Pearson E, Stone EM, Zhang K, Pierce EA. Hum. Mol. Genet. 16 2411-2422 (2007)
  21. Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA. Eur. J. Immunol. 28 1701-1707 (1998)
  22. Evolution of distinct EGF domains with specific functions. Wouters MA, Rigoutsos I, Chu CK, Feng LL, Sparrow DB, Dunwoodie SL. Protein Sci. 14 1091-1103 (2005)
  23. Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Lee SS, Knott V, Jovanović J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI, Handford PA. Structure 12 717-729 (2004)
  24. Structural and functional properties of the human notch-1 ligand binding region. Hambleton S, Valeyev NV, Muranyi A, Knott V, Werner JM, McMichael AJ, Handford PA, Downing AK. Structure 12 2173-2183 (2004)
  25. Proteomic analysis of fibrillin-rich microfibrils. Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM. Proteomics 6 111-122 (2006)
  26. Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. Tien AC, Rajan A, Schulze KL, Ryoo HD, Acar M, Steller H, Bellen HJ. J. Cell Biol. 182 1113-1125 (2008)
  27. Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. Fredriksson R, Lagerström MC, Höglund PJ, Schiöth HB. FEBS Lett. 531 407-414 (2002)
  28. Primary structure of matrilin-3, a new member of a family of extracellular matrix proteins related to cartilage matrix protein (matrilin-1) and von Willebrand factor. Wagener R, Kobbe B, Paulsson M. FEBS Lett. 413 129-134 (1997)
  29. Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptible to proteolysis. A potential disease-causing mechanism in Marfan syndrome. Reinhardt DP, Ono RN, Notbohm H, Müller PK, Bächinger HP, Sakai LY. J. Biol. Chem. 275 12339-12345 (2000)
  30. Multiple molecular mechanisms underlying subdiagnostic variants of Marfan syndrome. Montgomery RA, Geraghty MT, Bull E, Gelb BD, Johnson M, McIntosh I, Francomano CA, Dietz HC. Am. J. Hum. Genet. 63 1703-1711 (1998)
  31. RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: a potential factor in the pathogenesis of the Marfan syndrome. Booms P, Pregla R, Ney A, Barthel F, Reinhardt DP, Pletschacher A, Mundlos S, Robinson PN. Hum. Genet. 116 51-61 (2005)
  32. A cartilage oligomeric matrix protein mutation associated with pseudoachondroplasia changes the structural and functional properties of the type 3 domain. Maddox BK, Mokashi A, Keene DR, Bächinger HP. J. Biol. Chem. 275 11412-11417 (2000)
  33. Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97. Lin HH, Stacey M, Hamann J, Gordon S, McKnight AJ. Genomics 67 188-200 (2000)
  34. Sequence and expression of a novel member (LTBP-4) of the family of latent transforming growth factor-beta binding proteins. Giltay R, Kostka G, Timpl R. FEBS Lett. 411 164-168 (1997)
  35. TGGE screening of the entire FBN1 coding sequence in 126 individuals with marfan syndrome and related fibrillinopathies. Katzke S, Booms P, Tiecke F, Palz M, Pletschacher A, Türkmen S, Neumann LM, Pregla R, Leitner C, Schramm C, Lorenz P, Hagemeier C, Fuchs J, Skovby F, Rosenberg T, Robinson PN. Hum. Mutat. 20 197-208 (2002)
  36. Identification of the minimal combination of clinical features in probands for efficient mutation detection in the FBN1 gene. Stheneur C, Collod-Béroud G, Faivre L, Buyck JF, Gouya L, Le Parc JM, Moura B, Muti C, Grandchamp B, Sultan G, Claustres M, Aegerter P, Chevallier B, Jondeau G, Boileau C. Eur. J. Hum. Genet. 17 1121-1128 (2009)
  37. N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly. Trask TM, Ritty TM, Broekelmann T, Tisdale C, Mecham RP. Biochem. J. 340 ( Pt 3) 693-701 (1999)
  38. Regions of Drosophila Notch that contribute to ligand binding and the modulatory influence of Fringe. Xu A, Lei L, Irvine KD. J. Biol. Chem. 280 30158-30165 (2005)
  39. CADASIL mutations enhance spontaneous multimerization of NOTCH3. Opherk C, Duering M, Peters N, Karpinska A, Rosner S, Schneider E, Bader B, Giese A, Dichgans M. Hum. Mol. Genet. 18 2761-2767 (2009)
  40. Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Rongish BJ, Drake CJ, Argraves WS, Little CD. Dev. Dyn. 212 461-471 (1998)
  41. Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains. Cardy CM, Handford PA. J. Mol. Biol. 276 855-860 (1998)
  42. Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly. Hubmacher D, El-Hallous EI, Nelea V, Kaartinen MT, Lee ER, Reinhardt DP. Proc. Natl. Acad. Sci. U.S.A. 105 6548-6553 (2008)
  43. A (1-->3)-beta-D-glucan recognition protein from the sponge Suberites domuncula. Mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Perović-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WE. Eur. J. Biochem. 271 1924-1937 (2004)
  44. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation. Faivre L, Collod-Beroud G, Callewaert B, Child A, Binquet C, Gautier E, Loeys BL, Arbustini E, Mayer K, Arslan-Kirchner M, Stheneur C, Kiotsekoglou A, Comeglio P, Marziliano N, Wolf JE, Bouchot O, Khau-Van-Kien P, Beroud C, Claustres M, Bonithon-Kopp C, Robinson PN, Adès L, De Backer J, Coucke P, Francke U, De Paepe A, Jondeau G, Boileau C. Eur. J. Hum. Genet. 17 491-501 (2009)
  45. Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function. Kettle S, Yuan X, Grundy G, Knott V, Downing AK, Handford PA. J. Mol. Biol. 285 1277-1287 (1999)
  46. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies. Sherratt MJ, Bax DV, Chaudhry SS, Hodson N, Lu JR, Saravanapavan P, Kielty CM. Biomaterials 26 7192-7206 (2005)
  47. Backbone dynamics of a cbEGF domain pair in the presence of calcium. Werner JM, Knott V, Handford PA, Campbell ID, Downing AK. J. Mol. Biol. 296 1065-1078 (2000)
  48. mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes. Bercher M, Wahl J, Vogel BE, Lu C, Hedgecock EM, Hall DH, Plenefisch JD. J. Cell Biol. 154 415-426 (2001)
  49. Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, Kremmer E, Haffner C, Giese A, Dichgans M, Opherk C. Hum. Mol. Genet. 20 3256-3265 (2011)
  50. Calcium determines the supramolecular organization of fibrillin-rich microfibrils. Wess TJ, Purslow PP, Sherratt MJ, Ashworth J, Shuttleworth CA, Kielty CM. J. Cell Biol. 141 829-837 (1998)
  51. Codistribution analysis of elastin and related fibrillar proteins in early vertebrate development. Visconti RP, Barth JL, Keeley FW, Little CD. Matrix Biol. 22 109-121 (2003)
  52. Calcium binding to tandem repeats of EGF-like modules. Expression and characterization of the EGF-like modules of human Notch-1 implicated in receptor-ligand interactions. Rand MD, Lindblom A, Carlson J, Villoutreix BO, Stenflo J. Protein Sci. 6 2059-2071 (1997)
  53. Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and mechanism for extensibility. Baldock C, Siegler V, Bax DV, Cain SA, Mellody KT, Marson A, Haston JL, Berry R, Wang MC, Grossmann JG, Roessle M, Kielty CM, Wess TJ. Proc. Natl. Acad. Sci. U.S.A. 103 11922-11927 (2006)
  54. Definition of EGF-like, closely interacting modules that bear activation epitopes in integrin beta subunits. Takagi J, Beglova N, Yalamanchili P, Blacklow SC, Springer TA. Proc. Natl. Acad. Sci. U.S.A. 98 11175-11180 (2001)
  55. Familial deafness, congenital heart defects, and posterior embryotoxon caused by cysteine substitution in the first epidermal-growth-factor-like domain of jagged 1. Le Caignec C, Lefevre M, Schott JJ, Chaventre A, Gayet M, Calais C, Moisan JP. Am. J. Hum. Genet. 71 180-186 (2002)
  56. Inflammatory destruction of elastic fibers in acquired cutis laxa is associated with missense alleles in the elastin and fibulin-5 genes. Hu Q, Reymond JL, Pinel N, Zabot MT, Urban Z. J. Invest. Dermatol. 126 283-290 (2006)
  57. Low-dose ultraviolet radiation selectively degrades chromophore-rich extracellular matrix components. Sherratt MJ, Bayley CP, Reilly SM, Gibbs NK, Griffiths CE, Watson RE. J. Pathol. 222 32-40 (2010)
  58. Polydom: a secreted protein with pentraxin, complement control protein, epidermal growth factor and von Willebrand factor A domains. Gilgès D, Vinit MA, Callebaut I, Coulombel L, Cacheux V, Romeo PH, Vigon I. Biochem. J. 352 Pt 1 49-59 (2000)
  59. Structure and interdomain interactions of a hybrid domain: a disulphide-rich module of the fibrillin/LTBP superfamily of matrix proteins. Jensen SA, Iqbal S, Lowe ED, Redfield C, Handford PA. Structure 17 759-768 (2009)
  60. A theoretical model for the Gla-TSR-EGF-1 region of the anticoagulant cofactor protein S: from biostructural pathology to species-specific cofactor activity. Villoutreix BO, Teleman O, Dahlbäck B. J. Comput. Aided Mol. Des. 11 293-304 (1997)
  61. Amphioxus AmphiDelta: evolution of Delta protein structure, segmentation, and neurogenesis. Rasmussen SL, Holland LZ, Schubert M, Beaster-Jones L, Holland ND. Genesis 45 113-122 (2007)
  62. The evolution of extracellular fibrillins and their functional domains. Piha-Gossack A, Sossin W, Reinhardt DP. PLoS ONE 7 e33560 (2012)
  63. Consequences of cysteine mutations in calcium-binding epidermal growth factor modules of fibrillin-1. Vollbrandt T, Tiedemann K, El-Hallous E, Lin G, Brinckmann J, John H, Bätge B, Notbohm H, Reinhardt DP. J. Biol. Chem. 279 32924-32931 (2004)
  64. NMR structure of a concatemer of the first and second ligand-binding modules of the human low-density lipoprotein receptor. Kurniawan ND, Atkins AR, Bieri S, Brown CJ, Brereton IM, Kroon PA, Smith R. Protein Sci. 9 1282-1293 (2000)
  65. Solution structure of the LDL receptor EGF-AB pair: a paradigm for the assembly of tandem calcium binding EGF domains. Saha S, Boyd J, Werner JM, Knott V, Handford PA, Campbell ID, Downing AK. Structure 9 451-456 (2001)
  66. EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1. Smallridge RS, Whiteman P, Doering K, Handford PA, Downing AK. J. Mol. Biol. 286 661-668 (1999)
  67. Cloning and characterization of a novel beta integrin-related cDNA coding for the protein TIED ("ten beta integrin EGF-like repeat domains") that maps to chromosome band 13q33: A divergent stand-alone integrin stalk structure. Berg RW, Leung E, Gough S, Morris C, Yao WP, Wang SX, Ni J, Krissansen GW. Genomics 56 169-178 (1999)
  68. Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID, Downing AK. J. Mol. Biol. 316 113-125 (2002)
  69. Fibrillin and the eye. Ashworth JL, Kielty CM, McLeod D. Br J Ophthalmol 84 1312-1317 (2000)
  70. Pathogenic FBN1 mutations in 146 adults not meeting clinical diagnostic criteria for Marfan syndrome: further delineation of type 1 fibrillinopathies and focus on patients with an isolated major criterion. Faivre L, Collod-Beroud G, Callewaert B, Child A, Loeys BL, Binquet C, Gautier E, Arbustini E, Mayer K, Arslan-Kirchner M, Kiotsekoglou A, Comeglio P, Grasso M, Beroud C, Bonithon-Kopp C, Claustres M, Stheneur C, Bouchot O, Wolf JE, Robinson PN, Adès L, De Backer J, Coucke P, Francke U, De Paepe A, Boileau C, Jondeau G. Am. J. Med. Genet. A 149A 854-860 (2009)
  71. Binding of fibulin-1 to nidogen depends on its C-terminal globular domain and a specific array of calcium-binding epidermal growth factor-like (EG) modules. Adam S, Göhring W, Wiedemann H, Chu ML, Timpl R, Kostka G. J. Mol. Biol. 272 226-236 (1997)
  72. Scanning transmission electron microscopy mass analysis of fibrillin-containing microfibrils from foetal elastic tissues. Sherratt MJ, Holmes DF, Shuttleworth CA, Kielty CM. Int. J. Biochem. Cell Biol. 29 1063-1070 (1997)
  73. Ca2+-dependent interface formation in fibrillin-1. Jensen SA, Corbett AR, Knott V, Redfield C, Handford PA. J. Biol. Chem. 280 14076-14084 (2005)
  74. Congenital diaphragmatic eventration and bilateral uretero-hydronephrosis in a patient with neonatal Marfan syndrome caused by a mutation in exon 25 of the FBN1 gene and review of the literature. Revencu N, Quenum G, Detaille T, Verellen G, De Paepe A, Verellen-Dumoulin C. Eur. J. Pediatr. 163 33-37 (2004)
  75. Antagonism of GxxPG fragments ameliorates manifestations of aortic disease in Marfan syndrome mice. Guo G, Muñoz-García B, Ott CE, Grünhagen J, Mousa SA, Pletschacher A, von Kodolitsch Y, Knaus P, Robinson PN. Hum. Mol. Genet. 22 433-443 (2013)
  76. Domain and functional analysis of a novel breast tumor suppressor protein, SCUBE2. Lin YC, Chen CC, Cheng CJ, Yang RB. J. Biol. Chem. 286 27039-27047 (2011)
  77. The FBN2 gene: new mutations, locus-specific database (Universal Mutation Database FBN2), and genotype-phenotype correlations. Frédéric MY, Monino C, Marschall C, Hamroun D, Faivre L, Jondeau G, Klein HG, Neumann L, Gautier E, Binquet C, Maslen C, Godfrey M, Gupta P, Milewicz D, Boileau C, Claustres M, Béroud C, Collod-Béroud G. Hum. Mutat. 30 181-190 (2009)
  78. Absence of autoantibodies against correctly folded recombinant fibrillin-1 protein in systemic sclerosis patients. Brinckmann J, Hunzelmann N, El-Hallous E, Krieg T, Sakai LY, Krengel S, Reinhardt DP. Arthritis Res. Ther. 7 R1221-6 (2005)
  79. EGFL6 is increasingly expressed in human obesity and promotes proliferation of adipose tissue-derived stromal vascular cells. Oberauer R, Rist W, Lenter MC, Hamilton BS, Neubauer H. Mol. Cell. Biochem. 343 257-269 (2010)
  80. Identification of a known mutation in Notch 3 in familiar CADASIL in China. Tan ZX, Li FF, Qu YY, Liu J, Liu GR, Zhou J, Zhu YL, Liu SL. PLoS ONE 7 e36590 (2012)
  81. NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor. Kurniawan ND, Aliabadizadeh K, Brereton IM, Kroon PA, Smith R. J. Mol. Biol. 311 341-356 (2001)
  82. Probing the activation of protein C by the thrombin-thrombomodulin complex using structural analysis, site-directed mutagenesis, and computer modeling. Knobe KE, Berntsdotter A, Shen L, Morser J, Dahlbäck B, Villoutreix BO. Proteins 35 218-234 (1999)
  83. The first laminin G-type domain in the SHBG-like region of protein S contains residues essential for activation of the receptor tyrosine kinase sky. Evenäs P, Dahlbäck B, García de Frutos P. Biol. Chem. 381 199-209 (2000)
  84. Cellular and molecular studies of Marfan syndrome mutations identify co-operative protein folding in the cbEGF12-13 region of fibrillin-1. Whiteman P, Willis AC, Warner A, Brown J, Redfield C, Handford PA. Hum. Mol. Genet. 16 907-918 (2007)
  85. EGF-like module pair 3-4 in vitamin K-dependent protein S: modulation of calcium affinity of module 4 by module 3, and interaction with factor X. Stenberg Y, Muranyi A, Steen C, Thulin E, Drakenberg T, Stenflo J. J. Mol. Biol. 293 653-665 (1999)
  86. Familial neonatal Marfan syndrome due to parental mosaicism of a missense mutation in the FBN1 gene. Tekin M, Cengiz FB, Ayberkin E, Kendirli T, Fitoz S, Tutar E, Ciftçi E, Conba A. Am. J. Med. Genet. A 143A 875-880 (2007)
  87. Induction of macrophage chemotaxis by aortic extracts from patients with Marfan syndrome is related to elastin binding protein. Guo G, Gehle P, Doelken S, Martin-Ventura JL, von Kodolitsch Y, Hetzer R, Robinson PN. PLoS ONE 6 e20138 (2011)
  88. Role of calcium ions in the structure and function of the di-isopropylfluorophosphatase from Loligo vulgaris. Hartleib J, Geschwindner S, Scharff EI, Rüterjans H. Biochem. J. 353 579-589 (2001)
  89. Analysis of a conformational B cell epitope of human thyroid peroxidase: identification of a tyrosine residue at a strategic location for immunodominance. Estienne V, Duthoit C, Blanchin S, Montserret R, Durand-Gorde JM, Chartier M, Baty D, Carayon P, Ruf J. Int. Immunol. 14 359-366 (2002)
  90. Aplysia temptin - the 'glue' in the water-borne attractin pheromone complex. Cummins SF, Xie F, de Vries MR, Annangudi SP, Misra M, Degnan BM, Sweedler JV, Nagle GT, Schein CH. FEBS J. 274 5425-5437 (2007)
  91. Drosophila MMP2 regulates the matrix molecule faulty attraction (Frac) to promote motor axon targeting in Drosophila. Miller CM, Liu N, Page-McCaw A, Broihier HT. J. Neurosci. 31 5335-5347 (2011)
  92. Fibrillin microfibrils: a key role for the interbead region in elasticity. Wang MC, Lu Y, Baldock C. J. Mol. Biol. 388 168-179 (2009)
  93. Molecular effects of homocysteine on cbEGF domain structure: insights into the pathogenesis of homocystinuria. Hutchinson S, Aplin RT, Webb H, Kettle S, Timmermans J, Boers GH, Handford PA. J. Mol. Biol. 346 833-844 (2005)
  94. Calcium-binding properties of the third and fourth epidermal-growth-factor-like modules in vitamin-K-dependent protein S. Stenberg Y, Julenius K, Dahlqvist I, Drakenberg T, Stenflo J. Eur. J. Biochem. 248 163-170 (1997)
  95. Congress Exfoliation syndrome: assembling the puzzle pieces. Pasquale LR, Borrás T, Fingert JH, Wiggs JL, Ritch R. Acta Ophthalmol 94 e505-12 (2016)
  96. Molecular characterisation of EmTFP250: a novel member of the TRAP protein family in Eimeria maxima. Witcombe DM, Belli SI, Wallach MG, Smith NC. Int. J. Parasitol. 33 691-702 (2003)
  97. Protein conformation as a regulator of cell-matrix adhesion. Hytönen VP, Wehrle-Haller B. Phys Chem Chem Phys 16 6342-6357 (2014)
  98. Rapid and efficient FBN1 mutation detection using automated sample preparation and direct sequencing as the primary strategy. Tjeldhorn L, Rand-Hendriksen S, Gervin K, Brandal K, Inderhaug E, Geiran O, Paus B. Genet. Test. 10 258-264 (2006)
  99. Role of Ca(2+) for the mechanical properties of fibrillin. Eriksen TA, Wright DM, Purslow PP, Duance VC. Proteins 45 90-95 (2001)
  100. Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly. Yadin DA, Robertson IB, McNaught-Davis J, Evans P, Stoddart D, Handford PA, Jensen SA, Redfield C. Structure 21 1743-1756 (2013)
  101. Evidence for the intramolecular pleating model of fibrillin microfibril organisation from single particle image analysis. Lu Y, Holmes DF, Baldock C. J. Mol. Biol. 349 73-85 (2005)
  102. Raman microscopy and X-ray diffraction, a combined study of fibrillin-rich microfibrillar elasticity. Haston JL, Engelsen SB, Roessle M, Clarkson J, Blanch EW, Baldock C, Kielty CM, Wess TJ. J. Biol. Chem. 278 41189-41197 (2003)
  103. Structural effects of fibulin 5 missense mutations associated with age-related macular degeneration and cutis laxa. Jones RP, Ridley C, Jowitt TA, Wang MC, Howard M, Bobola N, Wang T, Bishop PN, Kielty CM, Baldock C, Lotery AJ, Trump D. Invest. Ophthalmol. Vis. Sci. 51 2356-2362 (2010)
  104. The clinical spectrum of missense mutations of the first aspartic acid of cbEGF-like domains in fibrillin-1 including a recessive family. Hilhorst-Hofstee Y, Rijlaarsdam ME, Scholte AJ, Swart-van den Berg M, Versteegh MI, van der Schoot-van Velzen I, Schäbitz HJ, Bijlsma EK, Baars MJ, Kerstjens-Frederikse WS, Giltay JC, Hamel BC, Breuning MH, Pals G. Hum. Mutat. 31 E1915-27 (2010)
  105. The role of introns in repeat protein gene formation. Street TO, Rose GD, Barrick D. J. Mol. Biol. 360 258-266 (2006)
  106. The roles of two novel FBN1 gene mutations in the genotype-phenotype correlations of Marfan syndrome and ectopia lentis patients with marfanoid habitus. Li D, Yu J, Gu F, Pang X, Ma X, Li R, Liu N, Ma X. Genet. Test. 12 325-330 (2008)
  107. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry. Ryde U. Dalton Trans 607-625 (2007)
  108. Ectopia lentis as the presenting and primary feature in Marfan syndrome. Zadeh N, Bernstein JA, Niemi AK, Dugan S, Kwan A, Liang D, Hyland JC, Hoyme HE, Hudgins L, Manning MA. Am. J. Med. Genet. A 155A 2661-2668 (2011)
  109. Spectrum of CREBBP mutations in Indian patients with Rubinstein-Taybi syndrome. Sharma N, Mali AM, Bapat SA. J. Biosci. 35 187-202 (2010)
  110. Bovine model of Marfan syndrome results from an amino acid change (c.3598G > A, p.E1200K) in a calcium-binding epidermal growth factor-like domain of fibrillin-1. Singleton AC, Mitchell AL, Byers PH, Potter KA, Pace JM. Hum. Mutat. 25 348-352 (2005)
  111. NMR structure determination of proteins supplemented by quantum chemical calculations: detailed structure of the Ca2+ sites in the EGF34 fragment of protein S. Hsiao YW, Drakenberg T, Ryde U. J. Biomol. NMR 31 97-114 (2005)
  112. Non-Linear and Flexible Regions of the Human Notch1 Extracellular Domain Revealed by High-Resolution Structural Studies. Weisshuhn PC, Sheppard D, Taylor P, Whiteman P, Lea SM, Handford PA, Redfield C. Structure 24 555-566 (2016)
  113. Calcium binding activity of the epidermal growth factor-like domains of the apicomplexan microneme protein EtMIC4. Periz J, Gill AC, Knott V, Handford PA, Tomley FM. Mol. Biochem. Parasitol. 143 192-199 (2005)
  114. Latent transforming growth factor beta-binding protein-3 and fibulin-1C interact with the extracellular domain of the heparin-binding EGF-like growth factor precursor. Brooke JS, Cha JH, Eidels L. BMC Cell Biol. 3 2 (2002)
  115. Two novel mutations of fibrillin-1 gene correlate with different phenotypes of Marfan syndrome in Chinese families. Zhao F, Pan X, Zhao K, Zhao C. Mol. Vis. 19 751-758 (2013)
  116. Letter An integrated approach to management of Marfan syndrome caused by an FBN1 exon 18 mutation in an Australian Aboriginal family. Summers KM, Xu D, West JA, McGill JJ, Galbraith A, Whight CM, Brocque SL, Nataatmadja M, Kong LK, Dondey J, Stark D, West MJ. Clin. Genet. 65 66-69 (2004)
  117. Changes in the molecular packing of fibrillin microfibrils during extension indicate intrafibrillar and interfibrillar reorganization in elastic response. Glab J, Wess T. J. Mol. Biol. 383 1171-1180 (2008)
  118. Context-Dependent Sensitivity to Mutations Disrupting the Structural Integrity of Individual EGF Repeats in the Mouse Notch Ligand DLL1. Schuster-Gossler K, Cordes R, Müller J, Geffers I, Delany-Heiken P, Taft M, Preller M, Gossler A. Genetics 202 1119-1133 (2016)
  119. Early fibrillin-1 assembly monitored through a modifiable recombinant cell approach. Hubmacher D, Bergeron E, Fagotto-Kaufmann C, Sakai LY, Reinhardt DP. Biomacromolecules 15 1456-1468 (2014)
  120. First structural glimpse of CCN3 and CCN5 multifunctional signaling regulators elucidated by small angle x-ray scattering. Holbourn KP, Malfois M, Acharya KR. J. Biol. Chem. 286 22243-22249 (2011)
  121. Identification and study of a FBN1 gene mutation in a Chinese family with ectopia lentis. Li H, Qu W, Meng B, Zhang S, Yang T, Huang S, Yuan H. Mol. Vis. 18 504-511 (2012)
  122. Independent multimerization of Latent TGFβ Binding Protein-1 stabilized by cross-linking and enhanced by heparan sulfate. Troilo H, Steer R, Collins RF, Kielty CM, Baldock C. Sci Rep 6 34347 (2016)
  123. The mechanical function and structure of aortic microfibrils in the lobster Homarus americanus. Bussiere CT, Wright GM, DeMont ME. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 143 417-428 (2006)
  124. The tetralogy of Fallot-associated G274D mutation impairs folding of the second epidermal growth factor repeat in Jagged-1. Guarnaccia C, Dhir S, Pintar A, Pongor S. FEBS J. 276 6247-6257 (2009)
  125. Tissue specific differences in fibrillin microfibrils analysed using single particle image analysis. Lu Y, Sherratt MJ, Wang MC, Baldock C. J. Struct. Biol. 155 285-293 (2006)
  126. Comparative proteomics of kidney samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis. Lu J, Chen H, Xu Q, Zheng J, Liu H, Li J, Chen K. Toxicol. Mech. Methods 20 345-354 (2010)
  127. Fibrillin-containing microfibrils are key signal relay stations for cell function. Zeyer KA, Reinhardt DP. J Cell Commun Signal 9 309-325 (2015)
  128. Identification of a novel FBN1 gene mutation in a Chinese family with Marfan syndrome. Meng B, Li H, Yang T, Huang S, Sun X, Yuan H. Mol. Vis. 17 2421-2427 (2011)
  129. Identification of distinctive interdomain interactions among ZP-N, ZP-C and other domains of zona pellucida glycoproteins underlying association of chicken egg-coat matrix. Okumura H, Sato T, Sakuma R, Fukushima H, Matsuda T, Ujita M. FEBS Open Bio 5 454-465 (2015)
  130. Novel FBN1 gene mutation and maternal germinal mosaicism as the cause of neonatal form of Marfan syndrome. Sípek A, Grodecká L, Baxová A, Cibulková P, Dvořáková M, Mazurová S, Magner M, Zeman J, Honzík T, Freiberger T. Am. J. Med. Genet. A 164A 1559-1564 (2014)
  131. Overview of extracellular matrix. Mecham RP. Curr Protoc Cell Biol Chapter 10 Unit 10.1 (2001)
  132. Decreased frequency of FBN1 missense variants in Ghent criteria-positive Marfan syndrome and characterization of novel FBN1 variants. Baudhuin LM, Kotzer KE, Lagerstedt SA. J. Hum. Genet. 60 241-252 (2015)
  133. Fibulin 5 forms a compact dimer in physiological solutions. Jones RP, Wang MC, Jowitt TA, Ridley C, Mellody KT, Howard M, Wang T, Bishop PN, Lotery AJ, Kielty CM, Baldock C, Trump D. J. Biol. Chem. 284 25938-25943 (2009)
  134. NMR spectroscopic and bioinformatic analyses of the LTBP1 C-terminus reveal a highly dynamic domain organisation. Robertson IB, Handford PA, Redfield C. PLoS ONE 9 e87125 (2014)
  135. The epidermal growth factor precursor. A calcium-binding, beta-hydroxyasparagine containing modular protein present on the surface of platelets. Valcarce C, Björk I, Stenflo J. Eur. J. Biochem. 260 200-207 (1999)
  136. The morphology of adsorbed extracellular matrix assemblies is critically dependent on solution calcium concentration. Sherratt MJ, Baldock C, Morgan A, Kielty CM. Matrix Biol. 26 156-166 (2007)
  137. Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa. Sasaki T, Hanisch FG, Deutzmann R, Sakai LY, Sakuma T, Miyamoto T, Yamamoto T, Hannappel E, Chu ML, Lanig H, von der Mark K. Matrix Biol. 56 132-149 (2016)
  138. Qualitative and quantitative analysis of FBN1 mRNA from 16 patients with Marfan Syndrome. Tjeldhorn L, Amundsen SS, Barøy T, Rand-Hendriksen S, Geiran O, Frengen E, Paus B. BMC Med. Genet. 16 113 (2015)
  139. Xerl: a novel secretory protein expressed in eye and brain of Xenopus embryo. Kuriyama S, Miyatani S, Kinoshita T. Mech. Dev. 93 233-237 (2000)
  140. Badly engineered fibrillin lessons from molecular studies of marfan syndrome. Rantamäki T, Karttunen L, Peltonen L. Trends Cardiovasc. Med. 7 282-288 (1997)
  141. Regulatory role of mouse epidermal growth factor-like protein 8 in thymic epithelial cells. Choi HJ, Yoon TD, Muhammad I, Jeong MH, Lee J, Baek SY, Kim BS, Yoon S. Biochem. Biophys. Res. Commun. 425 250-255 (2012)
  142. Anti-fibrillin-1 autoantibodies in normal pregnancy and recurrent pregnancy loss. Atanasova MA, Konova EI, Aleksovska TA, Todorova KN, Georgieva MN, Lukanov TH. Autoimmun Rev 10 131-136 (2011)
  143. Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensity. Anjos L, Morgado I, Guerreiro M, Cardoso JC, Melo EP, Power DM. Proteins 85 242-255 (2017)
  144. Dipeptide frequency/bias analysis identifies conserved sites of nonrandomness shared by cysteine-rich motifs. Campion SR, Ameen AS, Lai L, King JM, Munzenmaier TN. Proteins 44 321-328 (2001)
  145. Exome Sequencing Identified a Novel FBN2 Mutation in a Chinese Family with Congenital Contractural Arachnodactyly. You G, Zu B, Wang B, Wang Z, Xu Y, Fu Q. Int J Mol Sci 18 (2017)
  146. Hydroxylase Activity of ASPH Promotes Hepatocellular Carcinoma Metastasis Through Epithelial-to-Mesenchymal Transition Pathway. Zou Q, Hou Y, Wang H, Wang K, Xing X, Xia Y, Wan X, Li J, Jiao B, Liu J, Huang A, Wu D, Xiang H, Pawlik TM, Wang H, Lau WY, Wang Y, Shen F. EBioMedicine 31 287-298 (2018)
  147. Identification and characterization of a novel FBN1 gene variant in an extended family with variable clinical phenotype of Marfan syndrome. Ergoren MC, Turkgenc B, Teralı K, Rodoplu O, Verstraeten A, Van Laer L, Mocan G, Loeys B, Tetik O, Temel SG. Connect. Tissue Res. 60 146-154 (2019)
  148. Molecular characterization and expression analysis of mouse epidermal growth factor-like domain 8. Song IJ, Ikram M, Subhan F, Choi DJ, Lee JR, Kim HS, Lim YT, Yoon S. Int. J. Mol. Med. 36 541-550 (2015)
  149. Multiple functions of the first EGF domain in matrilin-3: Secretion and endoplasmic reticulum stress. Wang YC, Liu JS, Chen JY, Wu SQ, Wang GR, Nie J, Zhang SK, Guo QL, Luo JM. Int. J. Mol. Med. 36 1648-1656 (2015)
  150. Novel FBN1 mutations are responsible for cardiovascular manifestations of Marfan syndrome. Wang J, Yan Y, Chen J, Gong L, Zhang Y, Yuan M, Cui B, Wang Y. Mol. Biol. Rep. 43 1227-1232 (2016)
  151. Comment One more piece in the fibrillin puzzle. Hubmacher D, Reinhardt DP. Structure 17 635-636 (2009)
  152. Spiroplasma eriocheiris Adhesin-Like Protein (ALP) Interacts with Epidermal Growth Factor (EGF) Domain Proteins to Facilitate Infection. Hou L, Liu Y, Gao Q, Xu X, Ning M, Bi J, Liu H, Liu M, Gu W, Wang W, Meng Q. Front Cell Infect Microbiol 7 13 (2017)
  153. The N-Terminal Region of Fibrillin-1 Mediates a Bipartite Interaction with LTBP1. Robertson IB, Dias HF, Osuch IH, Lowe ED, Jensen SA, Redfield C, Handford PA. Structure 25 1208-1221.e5 (2017)
  154. ¹H, ¹³C and ¹⁵N resonance assignments for the fibrillin-1 EGF2-EGF3-hybrid1-cbEGF1 four-domain fragment. Robertson IB, Osuch I, Yadin DA, Handford PA, Jensen SA, Redfield C. Biomol NMR Assign 8 189-194 (2014)
  155. 1H, 15N and (13)C assignments and secondary structure of the EGF-like module pair 3-4 from vitamin K-dependent protein S. Muranyi A, Evenäs J, Stenberg Y, Stenflo J, Drakenberg T. FEBS Lett. 475 135-138 (2000)
  156. Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Baron M. Mol. Membr. Biol. 34 33-49 (2017)
  157. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose. DiScipio RG, Liddington RC, Schraufstatter IU. Protein Expr. Purif. 121 118-124 (2016)
  158. Fibulin-4 exerts a dual role in LTBP-4L-mediated matrix assembly and function. Kumra H, Nelea V, Hakami H, Pagliuzza A, Djokic J, Xu J, Yanagisawa H, Reinhardt DP. Proc. Natl. Acad. Sci. U.S.A. 116 20428-20437 (2019)
  159. Global computational mutagenesis of domain structures associated with inherited eye disease. Ortiz FW, Sergeev YV. Sci Rep 9 3676 (2019)
  160. Identification of Three Novel FBN1 Mutations and Their Phenotypic Relationship of Marfan Syndrome. Kayhan G, Ergun MA, Ergun SG, Kula S, Percin FE. Genet Test Mol Biomarkers 22 474-480 (2018)
  161. Structural assembly of the megadalton-sized receptor for intestinal vitamin B12 uptake and kidney protein reabsorption. Larsen C, Etzerodt A, Madsen M, Skjødt K, Moestrup SK, Andersen CBF. Nat Commun 9 5204 (2018)
  162. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations. Fuchs H, Sabrautzki S, Przemeck GK, Leuchtenberger S, Lorenz-Depiereux B, Becker L, Rathkolb B, Horsch M, Garrett L, Östereicher MA, Hans W, Abe K, Sagawa N, Rozman J, Vargas-Panesso IL, Sandholzer M, Lisse TS, Adler T, Aguilar-Pimentel JA, Calzada-Wack J, Ehrhard N, Elvert R, Gau C, Hölter SM, Micklich K, Moreth K, Prehn C, Puk O, Racz I, Stoeger C, Vernaleken A, Michel D, Diener S, Wieland T, Adamski J, Bekeredjian R, Busch DH, Favor J, Graw J, Klingenspor M, Lengger C, Maier H, Neff F, Ollert M, Stoeger T, Yildirim AÖ, Strom TM, Zimmer A, Wolf E, Wurst W, Klopstock T, Beckers J, Gailus-Durner V, Hrabé de Angelis M. G3 (Bethesda) 6 4035-4046 (2016)
  163. The phenotypic heterogeneity of patients with Marfan-related disorders and their variant spectrums. Seo GH, Kim YM, Kang E, Kim GH, Seo EJ, Lee BH, Choi JH, Yoo HW. Medicine (Baltimore) 97 e10767 (2018)

Related citations provided by authors (1)

  1. Calcium binding properties of an epidermal growth factor-like domain pair from human fibrillin-1.. Knott V, Downing AK, Cardy CM, Handford P J. Mol. Biol. 255 22-7 (1996)