1ecf Citations

Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli.

Protein Sci 7 39-51 (1998)
Cited: 49 times
EuropePMC logo PMID: 9514258

Abstract

Crystal structures of glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase from Escherichia coli have been determined to 2.0-A resolution in the absence of ligands, and to 2.5-A resolution with the feedback inhibitor AMP bound to the PRPP catalytic site. Glutamine PRPP amidotransferase (GPATase) employs separate catalytic domains to abstract nitrogen from the amide of glutamine and to transfer nitrogen to the acceptor substrate PRPP. The unliganded and AMP-bound structures, which are essentially identical, are interpreted as the inhibited form of the enzyme because the two active sites are disconnected and the PRPP active site is solvent exposed. The structures were compared with a previously reported 3.0-A structure of the homologous Bacillus subtilis enzyme (Smith JL et al., 1994, Science 264:1427-1433). The comparison indicates a pattern of conservation of peptide structures involved with catalysis and variability in enzyme regulatory functions. Control of glutaminase activity, communication between the active sites, and regulation by feedback inhibitors are addressed differently by E. coli and B. subtilis GPATases. The E. coli enzyme is a prototype for the metal-free GPATases, whereas the B. subtilis enzyme represents the metal-containing enzymes. The structure of the E. coli enzyme suggests that a common ancestor of the two enzyme subfamilies may have included an Fe-S cluster.

Articles - 1ecf mentioned but not cited (8)

  1. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH, Hung LW. Acta Crystallogr D Biol Crystallogr 65 582-601 (2009)
  2. Length variations amongst protein domain superfamilies and consequences on structure and function. Sandhya S, Rani SS, Pankaj B, Govind MK, Offmann B, Srinivasan N, Sowdhamini R. PLoS One 4 e4981 (2009)
  3. Automatic multiple-zone rigid-body refinement with a large convergence radius. Afonine PV, Grosse-Kunstleve RW, Urzhumtsev A, Adams PD. J Appl Crystallogr 42 607-615 (2009)
  4. Predictive characterization of hypothetical proteins in Staphylococcus aureus NCTC 8325. School K, Marklevitz J, K Schram W, K Harris L. Bioinformation 12 209-220 (2016)
  5. Rapid model building of alpha-helices in electron-density maps. Terwilliger TC. Acta Crystallogr D Biol Crystallogr 66 268-275 (2010)
  6. Crystal Structure of the Chloroplastic Glutamine Phosphoribosylpyrophosphate Amidotransferase GPRAT2 From Arabidopsis thaliana. Cao X, Du B, Han F, Zhou Y, Ren J, Wang W, Chen Z, Zhang Y. Front Plant Sci 11 157 (2020)
  7. Rapid chain tracing of polypeptide backbones in electron-density maps. Terwilliger TC. Acta Crystallogr D Biol Crystallogr 66 285-294 (2010)
  8. Rapid model building of beta-sheets in electron-density maps. Terwilliger TC. Acta Crystallogr D Biol Crystallogr 66 276-284 (2010)


Reviews citing this publication (5)

  1. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Huang X, Holden HM, Raushel FM. Annu Rev Biochem 70 149-180 (2001)
  2. Structural biology of the purine biosynthetic pathway. Zhang Y, Morar M, Ealick SE. Cell Mol Life Sci 65 3699-3724 (2008)
  3. Conformational changes in ammonia-channeling glutamine amidotransferases. Mouilleron S, Golinelli-Pimpaneau B. Curr Opin Struct Biol 17 653-664 (2007)
  4. Glutamine PRPP amidotransferase: snapshots of an enzyme in action. Smith JL. Curr Opin Struct Biol 8 686-694 (1998)
  5. Iron-sulfur clusters as inhibitors and catalysts of viral replication. Honarmand Ebrahimi K, Ciofi-Baffoni S, Hagedoorn PL, Nicolet Y, Le Brun NE, Hagen WR, Armstrong FA. Nat Chem 14 253-266 (2022)

Articles citing this publication (36)

  1. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Ling H, Boudsocq F, Woodgate R, Yang W. Cell 107 91-102 (2001)
  2. Structural comparison of Ntn-hydrolases. Oinonen C, Rouvinen J. Protein Sci 9 2329-2337 (2000)
  3. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Wang B, Dai P, Ding D, Del Rosario A, Grant RA, Pentelute BL, Laub MT. Nat Chem Biol 15 141-150 (2019)
  4. Structural basis for macrolactonization by the pikromycin thioesterase. Akey DL, Kittendorf JD, Giraldes JW, Fecik RA, Sherman DH, Smith JL. Nat Chem Biol 2 537-542 (2006)
  5. Crystal structure of a bifunctional aldolase-dehydrogenase: sequestering a reactive and volatile intermediate. Manjasetty BA, Powlowski J, Vrielink A. Proc Natl Acad Sci U S A 100 6992-6997 (2003)
  6. Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Jiménez A, Santos MA, Pompejus M, Revuelta JL. Appl Environ Microbiol 71 5743-5751 (2005)
  7. The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Ganguli D, Kumar C, Bachhawat AK. Genetics 175 1137-1151 (2007)
  8. Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. Steinbacher S, Kaiser J, Wungsintaweekul J, Hecht S, Eisenreich W, Gerhardt S, Bacher A, Rohdich F. J Mol Biol 316 79-88 (2002)
  9. Adaptation of an enzyme to regulatory function: structure of Bacillus subtilis PyrR, a pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase. Tomchick DR, Turner RJ, Switzer RL, Smith JL. Structure 6 337-350 (1998)
  10. Crystal structure of human Taspase1, a crucial protease regulating the function of MLL. Khan JA, Dunn BM, Tong L. Structure 13 1443-1452 (2005)
  11. A study in molecular contingency: glutamine phosphoribosylpyrophosphate amidotransferase is a promiscuous and evolvable phosphoribosylanthranilate isomerase. Patrick WM, Matsumura I. J Mol Biol 377 323-336 (2008)
  12. Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. Schumacher MA, Carter D, Scott DM, Roos DS, Ullman B, Brennan RG. EMBO J 17 3219-3232 (1998)
  13. A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi. Bompard-Gilles C, Villeret V, Davies GJ, Fanuel L, Joris B, Frère JM, Van Beeumen J. Structure 8 153-162 (2000)
  14. Inhibition of Escherichia coli CTP synthase by glutamate gamma-semialdehyde and the role of the allosteric effector GTP in glutamine hydrolysis. Bearne SL, Hekmat O, Macdonnell JE. Biochem J 356 223-232 (2001)
  15. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Shi T, Wang Y, Wang Z, Wang G, Liu D, Fu J, Chen T, Zhao X. Microb Cell Fact 13 101 (2014)
  16. Glutathione degradation by the alternative pathway (DUG pathway) in Saccharomyces cerevisiae is initiated by (Dug2p-Dug3p)2 complex, a novel glutamine amidotransferase (GATase) enzyme acting on glutathione. Kaur H, Ganguli D, Bachhawat AK. J Biol Chem 287 8920-8931 (2012)
  17. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase. Iyengar A, Bearne SL. Biochem J 369 497-507 (2003)
  18. Two-step dimerization for autoproteolysis to activate glycosylasparaginase. Wang Y, Guo HC. J Biol Chem 278 3210-3219 (2003)
  19. Aspartic peptide hydrolases in Salmonella enterica serovar typhimurium. Larsen RA, Knox TM, Miller CG. J Bacteriol 183 3089-3097 (2001)
  20. The crystal structure of the formiminotransferase domain of formiminotransferase-cyclodeaminase: implications for substrate channeling in a bifunctional enzyme. Kohls D, Sulea T, Purisima EO, MacKenzie RE, Vrielink A. Structure 8 35-46 (2000)
  21. Drosophila melanogaster Prat, a purine de novo synthesis gene, has a pleiotropic maternal-effect phenotype. Malmanche N, Clark DV. Genetics 168 2011-2023 (2004)
  22. Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. Cai X, Bennett GN. J Ind Microbiol Biotechnol 38 1013-1025 (2011)
  23. Multifunctional enzymes and evolution of biosynthetic pathways: retro-evolution by jumps. Roy S. Proteins 37 303-309 (1999)
  24. Crystallographic snapshot of a productive glycosylasparaginase-substrate complex. Wang Y, Guo HC. J Mol Biol 366 82-92 (2007)
  25. The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase. Schumacher MA, Bashor CJ, Song MH, Otsu K, Zhu S, Parry RJ, Ullman B, Brennan RG. Proc Natl Acad Sci U S A 99 78-83 (2002)
  26. Functional domains and interdomain communication in Candida albicans glucosamine-6-phosphate synthase. Olchowy J, Gabriel I, Milewski S. Biochem J 404 121-130 (2007)
  27. Glutamyl-gamma-boronate inhibitors of bacterial Glu-tRNA(Gln) amidotransferase. Decicco CP, Nelson DJ, Luo Y, Shen L, Horiuchi KY, Amsler KM, Foster LA, Spitz SM, Merrill JJ, Sizemore CF, Rogers KC, Copeland RA, Harpel MR. Bioorg Med Chem Lett 11 2561-2564 (2001)
  28. Alternative substrates for wild-type and L109A E. coli CTP synthases: kinetic evidence for a constricted ammonia tunnel. Lunn FA, Bearne SL. Eur J Biochem 271 4204-4212 (2004)
  29. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile. Bera AK, Chen S, Smith JL, Zalkin H. J Bacteriol 182 3734-3739 (2000)
  30. Crystal structure of a predicted phosphoribosyltransferase (TT1426) from Thermus thermophilus HB8 at 2.01 A resolution. Kukimoto-Niino M, Shibata R, Murayama K, Hamana H, Nishimoto M, Bessho Y, Terada T, Shirouzu M, Kuramitsu S, Yokoyama S. Protein Sci 14 823-827 (2005)
  31. Mutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing. Li S, Smith JL, Zalkin H. J Bacteriol 181 1403-1408 (1999)
  32. The kinase activity of the Helicobacter pylori Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase is sensitive to distal mutations in its putative ammonia tunnel. Zhao L, Dewage SW, Bell MJ, Chang KM, Fatma S, Joshi N, Silva G, Cisneros GA, Hendrickson TL. Biochemistry 51 273-285 (2012)
  33. Slow ligand-induced conformational switch increases the catalytic rate in Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase. Roy S, Karmakar T, Prahlada Rao VS, Nagappa LK, Balasubramanian S, Balaram H. Mol Biosyst 11 1410-1424 (2015)
  34. Substrate-induced conformational changes in Plasmodium falciparum guanosine monophosphate synthetase. Bhat JY, Venkatachala R, Balaram H. FEBS J 278 3756-3768 (2011)
  35. Mechanism of the dehydrogenase reaction of DmpFG and analysis of inter-subunit channeling efficiency and thermodynamic parameters in the overall reaction. Smith NE, Tie WJ, Flematti GR, Stubbs KA, Corry B, Attwood PV, Vrielink A. Int J Biochem Cell Biol 45 1878-1885 (2013)
  36. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway. Hicks KA, Ealick SE. Acta Crystallogr D Struct Biol 72 808-816 (2016)