1dmo Citations

Calcium-induced conformational transition revealed by the solution structure of apo calmodulin.

Nat. Struct. Biol. 2 758-67 (1995)
Cited: 353 times
EuropePMC logo PMID: 7552747

Abstract

The solution structure of Ca(2+)-free calmodulin has been determined by NMR spectroscopy, and is compared to the previously reported structure of the Ca(2+)-saturated form. The removal of Ca2+ causes the interhelical angles of four EF-hand motifs to increase by 36 degrees-44 degrees. This leads to major changes in surface properties, including the closure of the deep hydrophobic cavity essential for target protein recognition. Concerted movements of helices A and D with respect to B and C, and of helices E and H with respect to F and G are likely responsible for the cooperative Ca(2+)-binding property observed between two adjacent EF-hand sites in the amino- and carboxy-terminal domains.

Reviews - 1dmo mentioned but not cited (5)

  1. The multifunctional role of phospho-calmodulin in pathophysiological processes. Villalobo A. Biochem. J. 475 4011-4023 (2018)
  2. Protein conformational switches: from nature to design. Ha JH, Loh SN. Chemistry 18 7984-7999 (2012)
  3. Hub promiscuity in protein-protein interaction networks. Patil A, Kinoshita K, Nakamura H. Int J Mol Sci 11 1930-1943 (2010)
  4. A primer on ankyrin repeat function in TRP channels and beyond. Gaudet R. Mol Biosyst 4 372-379 (2008)
  5. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. Sandvig K, van Deurs B. EMBO J. 19 5943-5950 (2000)

Articles - 1dmo mentioned but not cited (32)

  1. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, Lund J, Hedley PL, Camm AJ, Wettrell G, Fosdal I, Christiansen M, Børglum AD. Am. J. Hum. Genet. 91 703-712 (2012)
  2. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Ikura M, Ames JB. Proc. Natl. Acad. Sci. U.S.A. 103 1159-1164 (2006)
  3. Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5. Chagot B, Chazin WJ. J. Mol. Biol. 406 106-119 (2011)
  4. The structure and regulation of human muscle α-actinin. Ribeiro Ede A, Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J, Sjöblom B, Schreiner C, Polyansky AA, Gkougkoulia EA, Holt MR, Aachmann FL, Zagrović B, Bordignon E, Pirker KF, Svergun DI, Gautel M, Djinović-Carugo K. Cell 159 1447-1460 (2014)
  5. Structural insights into Ca2+-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1. Li C, Chan J, Haeseleer F, Mikoshiba K, Palczewski K, Ikura M, Ames JB. J. Biol. Chem. 284 2472-2481 (2009)
  6. Analysis and elimination of a bias in targeted molecular dynamics simulations of conformational transitions: application to calmodulin. Ovchinnikov V, Karplus M. J Phys Chem B 116 8584-8603 (2012)
  7. Regulation of the NaV1.5 cytoplasmic domain by calmodulin. Gabelli SB, Boto A, Kuhns VH, Bianchet MA, Farinelli F, Aripirala S, Yoder J, Jakoncic J, Tomaselli GF, Amzel LM. Nat Commun 5 5126 (2014)
  8. Solution structure of S100A1 bound to the CapZ peptide (TRTK12). Wright NT, Cannon BR, Wilder PT, Morgan MT, Varney KM, Zimmer DB, Weber DJ. J. Mol. Biol. 386 1265-1277 (2009)
  9. Mass spectrometry evidence for cisplatin as a protein cross-linking reagent. Li H, Zhao Y, Phillips HI, Qi Y, Lin TY, Sadler PJ, O'Connor PB. Anal. Chem. 83 5369-5376 (2011)
  10. Protein flexibility is key to cisplatin crosslinking in calmodulin. Li H, Wells SA, Jimenez-Roldan JE, Römer RA, Zhao Y, Sadler PJ, O'Connor PB. Protein Sci. 21 1269-1279 (2012)
  11. Assembly of membrane-bound protein complexes: detection and analysis by single molecule diffusion. Ziemba BP, Knight JD, Falke JJ. Biochemistry 51 1638-1647 (2012)
  12. Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin. Yamniuk AP, Ishida H, Lippert D, Vogel HJ. Biophys. J. 96 1495-1507 (2009)
  13. Is buffer a good proxy for a crowded cell-like environment? A comparative NMR study of calmodulin side-chain dynamics in buffer and E. coli lysate. Latham MP, Kay LE. PLoS ONE 7 e48226 (2012)
  14. Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin. Feldkamp MD, O'Donnell SE, Yu L, Shea MA. Proteins 78 2265-2282 (2010)
  15. Calmodulin and PI(3,4,5)P₃ cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production. Wang X, Boyken SE, Hu J, Xu X, Rimer RP, Shea MA, Shaw AS, Andreotti AH, Huang YH. Sci Signal 7 ra74 (2014)
  16. Nuclear magnetic resonance structure of calcium-binding protein 1 in a Ca(2+) -bound closed state: implications for target recognition. Park S, Li C, Ames JB. Protein Sci. 20 1356-1366 (2011)
  17. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB. J. Biol. Chem. 291 4429-4441 (2016)
  18. Mapping conformational dynamics of proteins using torsional dynamics simulations. Gangupomu VK, Wagner JR, Park IH, Jain A, Vaidehi N. Biophys. J. 104 1999-2008 (2013)
  19. Calmodulin has the Potential to Function as a Ca-Dependent Adaptor Protein. Yamniuk AP, Rainaldi M, Vogel HJ. Plant Signal Behav 2 354-357 (2007)
  20. Protein-Inhibitor Interaction Studies Using NMR. Ishima R. Appl NMR Spectrosc 1 143-181 (2015)
  21. Representing and comparing protein structures as paths in three-dimensional space. Zhi D, Krishna SS, Cao H, Pevzner P, Godzik A. BMC Bioinformatics 7 460 (2006)
  22. Structural insights into activation of the retinal L-type Ca²⁺ channel (Cav1.4) by Ca²⁺-binding protein 4 (CaBP4). Park S, Li C, Haeseleer F, Palczewski K, Ames JB. J. Biol. Chem. 289 31262-31273 (2014)
  23. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes. Uchikoga N, Hirokawa T. BMC Bioinformatics 11 236 (2010)
  24. Internal coordinate molecular dynamics: a foundation for multiscale dynamics. Vaidehi N, Jain A. J Phys Chem B 119 1233-1242 (2015)
  25. Relative Cosolute Size Influences the Kinetics of Protein-Protein Interactions. Hoffman L, Wang X, Sanabria H, Cheung MS, Putkey JA, Waxham MN. Biophys. J. 109 510-520 (2015)
  26. Structure of the small Dictyostelium discoideum myosin light chain MlcB provides insights into MyoB IQ motif recognition. Liburd J, Chitayat S, Crawley SW, Munro K, Miller E, Denis CM, Spencer HL, Côté GP, Smith SP. J. Biol. Chem. 289 17030-17042 (2014)
  27. Two-photon fluorescence spectroscopy and imaging of 4-dimethylaminonaphthalimide peptide and protein conjugates. McLean AM, Socher E, Varnavski O, Clark TB, Imperiali B, Goodson T. J Phys Chem B 117 15935-15942 (2013)
  28. Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated calcium channel. Wang K, Holt C, Lu J, Brohus M, Larsen KT, Overgaard MT, Wimmer R, Van Petegem F. Proc. Natl. Acad. Sci. U.S.A. 115 E10556-E10565 (2018)
  29. Biomimetic conformation-specific assembly of proteins at artificial binding sites nanopatterned on silicon. de la Rica R, Matsui H. J. Am. Chem. Soc. 131 14180-14181 (2009)
  30. Mapping site-specific changes that affect stability of the N-terminal domain of calmodulin. Krause ME, Martin TT, Laurence JS. Mol. Pharm. 9 734-743 (2012)
  31. Molecular Dynamics Study of the Changes in Conformation of Calmodulin with Calcium Binding and/or Target Recognition. Kawasaki H, Soma N, Kretsinger RH. Sci Rep 9 10688 (2019)
  32. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition. Langelaan DN, Liburd J, Yang Y, Miller E, Chitayat S, Crawley SW, Côté GP, Smith SP. J. Biol. Chem. 291 19607-19617 (2016)


Reviews citing this publication (41)

  1. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Pitard I, Malliavin TE. Toxins (Basel) 11 (2019)
  2. Calmodulinopathy: Functional Effects of CALM Mutations and Their Relationship With Clinical Phenotypes. Badone B, Ronchi C, Kotta MC, Sala L, Ghidoni A, Crotti L, Zaza A. Front Cardiovasc Med 5 176 (2018)
  3. Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications. Song Z, Fu H, Wang R, Pacheco LA, Wang X, Lin Y, Cheng J. Chem Soc Rev 47 7401-7425 (2018)
  4. Towards Understanding Plant Calcium Signaling through Calmodulin-Like Proteins: A Biochemical and Structural Perspective. La Verde V, Dominici P, Astegno A. Int J Mol Sci 19 (2018)
  5. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Bagur R, Hajnóczky G. Mol. Cell 66 780-788 (2017)
  6. Molecular Modeling of the Catalytic Domain of CyaA Deepened the Knowledge of Its Functional Dynamics. Malliavin TE. Toxins (Basel) 9 (2017)
  7. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Walweel K, Oo YW, Laver DR. Clin. Exp. Pharmacol. Physiol. 44 135-142 (2017)
  8. Calcium Homeostasis and Organelle Function in the Pathogenesis of Obesity and Diabetes. Arruda AP, Hotamisligil GS. Cell Metab. 22 381-397 (2015)
  9. Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M. Biochem. Biophys. Res. Commun. 460 5-21 (2015)
  10. Interplay between conformational selection and induced fit in multidomain protein-ligand binding probed by paramagnetic relaxation enhancement. Clore GM. Biophys. Chem. 186 3-12 (2014)
  11. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Neely A, Hidalgo P. Front Physiol 5 209 (2014)
  12. The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability. Villarroel A, Taglialatela M, Bernardo-Seisdedos G, Alaimo A, Agirre J, Alberdi A, Gomis-Perez C, Soldovieri MV, Ambrosino P, Malo C, Areso P. J. Mol. Biol. 426 2717-2735 (2014)
  13. The many structural faces of calmodulin: a multitasking molecular jackknife. Kursula P. Amino Acids 46 2295-2304 (2014)
  14. Ion mobility-mass spectrometry of intact protein--ligand complexes for pharmaceutical drug discovery and development. Niu S, Rabuck JN, Ruotolo BT. Curr Opin Chem Biol 17 809-817 (2013)
  15. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Poovaiah BW, Du L, Wang H, Yang T. Plant Physiol. 163 531-542 (2013)
  16. Structural diversity of calmodulin binding to its target sites. Tidow H, Nissen P. FEBS J. 280 5551-5565 (2013)
  17. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Di Sole F, Vadnagara K, Moe OW, Babich V. Am. J. Physiol. Renal Physiol. 303 F165-79 (2012)
  18. Molecular motions as a drug target: mechanistic simulations of anthrax toxin edema factor function led to the discovery of novel allosteric inhibitors. Laine E, Martínez L, Ladant D, Malliavin T, Blondel A. Toxins (Basel) 4 580-604 (2012)
  19. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Grabarek Z. Biochim. Biophys. Acta 1813 913-921 (2011)
  20. Myosin V from head to tail. Trybus KM. Cell. Mol. Life Sci. 65 1378-1389 (2008)
  21. EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. Capozzi F, Casadei F, Luchinat C. J. Biol. Inorg. Chem. 11 949-962 (2006)
  22. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J. Mol. Biol. 359 509-525 (2006)
  23. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Yamniuk AP, Vogel HJ. Mol. Biotechnol. 27 33-57 (2004)
  24. Target selectivity in EF-hand calcium binding proteins. Bhattacharya S, Bunick CG, Chazin WJ. Biochim. Biophys. Acta 1742 69-79 (2004)
  25. Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Kraus PR, Heitman J. Biochem. Biophys. Res. Commun. 311 1151-1157 (2003)
  26. Novel aspects of calmodulin target recognition and activation. Vetter SW, Leclerc E. Eur. J. Biochem. 270 404-414 (2003)
  27. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Plant Cell 14 Suppl S389-400 (2002)
  28. Engineering and design of ligand-induced conformational change in proteins. Mizoue LS, Chazin WJ. Curr. Opin. Struct. Biol. 12 459-463 (2002)
  29. Structure-function relationships in Ca(2+) cycling proteins. MacLennan DH, Abu-Abed M, Kang C. J. Mol. Cell. Cardiol. 34 897-918 (2002)
  30. Ca(2+)/CaM-dependent kinases: from activation to function. Hook SS, Means AR. Annu. Rev. Pharmacol. Toxicol. 41 471-505 (2001)
  31. Analogous structural motifs in myelin basic protein and in MARCKS. Harauz G, Ishiyama N, Bates IR. Mol. Cell. Biochem. 209 155-163 (2000)
  32. Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Palczewski K, Polans AS, Baehr W, Ames JB. Bioessays 22 337-350 (2000)
  33. EF-hand calcium-binding proteins. Lewit-Bentley A, Réty S. Curr. Opin. Struct. Biol. 10 637-643 (2000)
  34. A strange calmodulin of yeast. Yazawa M, Nakashima K, Yagi K. Mol. Cell. Biochem. 190 47-54 (1999)
  35. Apocalmodulin. Jurado LA, Chockalingam PS, Jarrett HW. Physiol. Rev. 79 661-682 (1999)
  36. Diversity of conformational states and changes within the EF-hand protein superfamily. Yap KL, Ames JB, Swindells MB, Ikura M. Proteins 37 499-507 (1999)
  37. Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction. Williams SB, Stewart V. Mol. Microbiol. 33 1093-1102 (1999)
  38. Myosin light chain kinase: functional domains and structural motifs. Stull JT, Lin PJ, Krueger JK, Trewhella J, Zhi G. Acta Physiol. Scand. 164 471-482 (1998)
  39. Calcium binding and conformational response in EF-hand proteins. Ikura M. Trends Biochem. Sci. 21 14-17 (1996)
  40. Protein complexes studied by NMR spectroscopy. Wand AJ, Englander SW. Curr. Opin. Biotechnol. 7 403-408 (1996)
  41. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Südhof TC, Rizo J. Neuron 17 379-388 (1996)

Articles citing this publication (275)

  1. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. Wu MM, Buchanan J, Luik RM, Lewis RS. J. Cell Biol. 174 803-813 (2006)
  2. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Essen LO, Perisic O, Cheung R, Katan M, Williams RL. Nature 380 595-602 (1996)
  3. Characterization of molecular recognition features, MoRFs, and their binding partners. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK. J. Proteome Res. 6 2351-2366 (2007)
  4. CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. Zielinski RE. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 697-725 (1998)
  5. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). Bánfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnár GZ, Krause KH, Cox JA. J. Biol. Chem. 279 18583-18591 (2004)
  6. Cold-shock induced high-yield protein production in Escherichia coli. Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. Nat. Biotechnol. 22 877-882 (2004)
  7. Calmodulin mutations associated with recurrent cardiac arrest in infants. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann BM, Clark T, Shaffer C, Benson DW, Kääb S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL. Circulation 127 1009-1017 (2013)
  8. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Gagné SM, Tsuda S, Li MX, Smillie LB, Sykes BD. Nat. Struct. Biol. 2 784-789 (1995)
  9. A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase. Li G, Cui Q. Biophys. J. 83 2457-2474 (2002)
  10. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. Akerboom J, Rivera JD, Guilbe MM, Malavé EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER. J. Biol. Chem. 284 6455-6464 (2009)
  11. Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Junker JP, Ziegler F, Rief M. Science 323 633-637 (2009)
  12. Crystal structure of calcium bound domain VI of calpain at 1.9 A resolution and its role in enzyme assembly, regulation, and inhibitor binding. Lin GD, Chattopadhyay D, Maki M, Wang KK, Carson M, Jin L, Yuen PW, Takano E, Hatanaka M, DeLucas LJ, Narayana SV. Nat. Struct. Biol. 4 539-547 (1997)
  13. Loss of conformational stability in calmodulin upon methionine oxidation. Gao J, Yin DH, Yao Y, Sun H, Qin Z, Schöneich C, Williams TD, Squier TC. Biophys. J. 74 1115-1134 (1998)
  14. Calcium regulation of Ndr protein kinase mediated by S100 calcium-binding proteins. Millward TA, Heizmann CW, Schäfer BW, Hemmings BA. EMBO J. 17 5913-5922 (1998)
  15. Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca2+ binding and implications for kinase activation. Peersen OB, Madsen TS, Falke JJ. Protein Sci. 6 794-807 (1997)
  16. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Bayley PM, Findlay WA, Martin SR. Protein Sci. 5 1215-1228 (1996)
  17. Structural basis for endothelial nitric oxide synthase binding to calmodulin. Aoyagi M, Arvai AS, Tainer JA, Getzoff ED. EMBO J. 22 766-775 (2003)
  18. Structure of a novel extracellular Ca(2+)-binding module in BM-40. Hohenester E, Maurer P, Hohenadl C, Timpl R, Jansonius JN, Engel J. Nat. Struct. Biol. 3 67-73 (1996)
  19. Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Jong WS, ten Hagen-Jongman CM, den Blaauwen T, Slotboom DJ, Tame JR, Wickström D, de Gier JW, Otto BR, Luirink J. Mol. Microbiol. 63 1524-1536 (2007)
  20. Structure and dynamics of calmodulin in solution. Wriggers W, Mehler E, Pitici F, Weinstein H, Schulten K. Biophys. J. 74 1622-1639 (1998)
  21. Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Schumacher MA, Crum M, Miller MC. Structure 12 849-860 (2004)
  22. Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S. Neuron 41 573-586 (2004)
  23. Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C. Structure 5 1695-1711 (1997)
  24. Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Zheng L, Stathopulos PB, Li GY, Ikura M. Biochem. Biophys. Res. Commun. 369 240-246 (2008)
  25. Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Houdusse A, Gaucher JF, Krementsova E, Mui S, Trybus KM, Cohen C. Proc. Natl. Acad. Sci. U.S.A. 103 19326-19331 (2006)
  26. Ligand binding and thermodynamic stability of a multidomain protein, calmodulin. Masino L, Martin SR, Bayley PM. Protein Sci. 9 1519-1529 (2000)
  27. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. Sánchez-Barrena MJ, Martínez-Ripoll M, Zhu JK, Albert A. J. Mol. Biol. 345 1253-1264 (2005)
  28. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Shifman JM, Choi MH, Mihalas S, Mayo SL, Kennedy MB. Proc. Natl. Acad. Sci. U.S.A. 103 13968-13973 (2006)
  29. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Smith SP, Shaw GS. Structure 6 211-222 (1998)
  30. A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction. Gsponer J, Christodoulou J, Cavalli A, Bui JM, Richter B, Dobson CM, Vendruscolo M. Structure 16 736-746 (2008)
  31. Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin. Young KA, Caldwell JH. J. Physiol. (Lond.) 565 349-370 (2005)
  32. The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins. Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, Chazin WJ. Structure 6 223-231 (1998)
  33. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K. Plant Cell Physiol. 41 898-903 (2000)
  34. Energetics of target peptide binding by calmodulin reveals different modes of binding. Brokx RD, Lopez MM, Vogel HJ, Makhatadze GI. J. Biol. Chem. 276 14083-14091 (2001)
  35. Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings. Chou JJ, Li S, Bax A. J. Biomol. NMR 18 217-227 (2000)
  36. Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. Yap KL, Yuan T, Mal TK, Vogel HJ, Ikura M. J. Mol. Biol. 328 193-204 (2003)
  37. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, Sato M, Shimizu T. J. Biol. Chem. 278 42240-42246 (2003)
  38. The WW domain of dystrophin requires EF-hands region to interact with beta-dystroglycan. Rentschler S, Linn H, Deininger K, Bedford MT, Espanel X, Sudol M. Biol. Chem. 380 431-442 (1999)
  39. C2 domain conformational changes in phospholipase C-delta 1. Grobler JA, Essen LO, Williams RL, Hurley JH. Nat. Struct. Biol. 3 788-795 (1996)
  40. Transient, sparsely populated compact states of apo and calcium-loaded calmodulin probed by paramagnetic relaxation enhancement: interplay of conformational selection and induced fit. Anthis NJ, Doucleff M, Clore GM. J. Am. Chem. Soc. 133 18966-18974 (2011)
  41. Energetics of target peptide recognition by calmodulin: a calorimetric study. Wintrode PL, Privalov PL. J. Mol. Biol. 266 1050-1062 (1997)
  42. Ensemble-based convergence analysis of biomolecular trajectories. Lyman E, Zuckerman DM. Biophys. J. 91 164-172 (2006)
  43. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Shim JS, Lee J, Park HJ, Park SJ, Kwon HJ. Chem. Biol. 11 1455-1463 (2004)
  44. Binding of calcium ions and SNAP-25 to the hexa EF-hand protein secretagogin. Rogstam A, Linse S, Lindqvist A, James P, Wagner L, Berggård T. Biochem. J. 401 353-363 (2007)
  45. The EF-hand domain: a globally cooperative structural unit. Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ. Protein Sci. 11 198-205 (2002)
  46. Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective. Grabarek Z. J. Mol. Biol. 346 1351-1366 (2005)
  47. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Uttenweiler A, Schwarz H, Neumann H, Mayer A. Mol. Biol. Cell 18 166-175 (2007)
  48. A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Houdusse A, Silver M, Cohen C. Structure 4 1475-1490 (1996)
  49. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis. Drum CL, Yan SZ, Sarac R, Mabuchi Y, Beckingham K, Bohm A, Grabarek Z, Tang WJ. J. Biol. Chem. 275 36334-36340 (2000)
  50. Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Vigil D, Gallagher SC, Trewhella J, García AE. Biophys. J. 80 2082-2092 (2001)
  51. Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity. Rodríguez-Castañeda F, Maestre-Martínez M, Coudevylle N, Dimova K, Junge H, Lipstein N, Lee D, Lee D, Becker S, Brose N, Jahn O, Carlomagno T, Griesinger C. EMBO J. 29 680-691 (2010)
  52. Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Wall ME, Clarage JB, Phillips GN. Structure 5 1599-1612 (1997)
  53. Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Nat. Struct. Mol. Biol. 20 1085-1092 (2013)
  54. Evidence of noncovalent dimerization of calmodulin. Lafitte D, Heck AJ, Hill TJ, Jumel K, Harding SE, Derrick PJ. Eur. J. Biochem. 261 337-344 (1999)
  55. Crystal structure of CHP2 complexed with NHE1-cytosolic region and an implication for pH regulation. Ammar YB, Takeda S, Hisamitsu T, Mori H, Wakabayashi S. EMBO J. 25 2315-2325 (2006)
  56. Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. Nemirovskiy O, Giblin DE, Gross ML. J. Am. Soc. Mass Spectrom. 10 711-718 (1999)
  57. Relating form and function of EF-hand calcium binding proteins. Chazin WJ. Acc. Chem. Res. 44 171-179 (2011)
  58. Structure of a Ca2+-myristoyl switch protein that controls activation of a phosphatidylinositol 4-kinase in fission yeast. Lim S, Strahl T, Thorner J, Ames JB. J. Biol. Chem. 286 12565-12577 (2011)
  59. Letter Pre-formation of the semi-open conformation by the apo-calmodulin C-terminal domain and implications binding IQ-motifs. Swindells MB, Ikura M. Nat. Struct. Biol. 3 501-504 (1996)
  60. A conformation- and ion-sensitive plasmonic biosensor. Hall WP, Modica J, Anker J, Lin Y, Mrksich M, Van Duyne RP. Nano Lett. 11 1098-1105 (2011)
  61. Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin. Komeiji Y, Ueno Y, Uebayasi M. FEBS Lett. 521 133-139 (2002)
  62. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J. Elife 2 e00813 (2013)
  63. NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca2+ by Tb3+. Biekofsky RR, Muskett FW, Schmidt JM, Martin SR, Browne JP, Bayley PM, Feeney J. FEBS Lett. 460 519-526 (1999)
  64. A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale. Shepherd CM, Vogel HJ. Biophys. J. 87 780-791 (2004)
  65. Solvation energetics and conformational change in EF-hand proteins. Ababou A, Desjarlais JR. Protein Sci. 10 301-312 (2001)
  66. The calmodulin-related calcium sensor CML42 plays a role in trichome branching. Dobney S, Chiasson D, Lam P, Smith SP, Snedden WA. J. Biol. Chem. 284 31647-31657 (2009)
  67. Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. Liu Y, Zheng X, Mueller GA, Sobhany M, DeRose EF, Zhang Y, London RE, Birnbaumer L. J. Biol. Chem. 287 43030-43041 (2012)
  68. Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences. Martin SR, Masino L, Bayley PM. Protein Sci. 9 2477-2488 (2000)
  69. Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins. Weljie AM, Yamniuk AP, Yoshino H, Izumi Y, Vogel HJ. Protein Sci. 12 228-236 (2003)
  70. Protein-metal interactions of calmodulin and alpha-synuclein monitored by selective noncovalent adduct protein probing mass spectrometry. Ly T, Julian RR. J. Am. Soc. Mass Spectrom. 19 1663-1672 (2008)
  71. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Lytle BL, Volkman BF, Westler WM, Wu JH. Arch. Biochem. Biophys. 379 237-244 (2000)
  72. A molecular dynamics study of the effect of Ca2+ removal on calmodulin structure. Project E, Friedman R, Nachliel E, Gutman M. Biophys. J. 90 3842-3850 (2006)
  73. Characterization of the Ca2+ -dependent and -independent interactions between calmodulin and its binding domain of inducible nitric oxide synthase. Yuan T, Vogel HJ, Sutherland C, Walsh MP. FEBS Lett. 431 210-214 (1998)
  74. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Li W, Wang W, Takada S. Proc. Natl. Acad. Sci. U.S.A. 111 10550-10555 (2014)
  75. Solution structure, dynamics, and hydrodynamics of the calcium-bound cross-reactive birch pollen allergen Bet v 4 reveal a canonical monomeric two EF-hand assembly with a regulatory function. Neudecker P, Nerkamp J, Eisenmann A, Nourse A, Lauber T, Schweimer K, Lehmann K, Schwarzinger S, Ferreira F, Rösch P. J. Mol. Biol. 336 1141-1157 (2004)
  76. Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. Yamamoto D, Nagura N, Omote S, Taniguchi M, Ando T. Biophys. J. 97 2358-2367 (2009)
  77. Unique features in the C-terminal domain provide caltractin with target specificity. Hu H, Chazin WJ. J. Mol. Biol. 330 473-484 (2003)
  78. Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Sharp JS, Tomer KB. Biophys. J. 92 1682-1692 (2007)
  79. Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. Johnson CK. Biochemistry 45 14233-14246 (2006)
  80. The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements. Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ. Protein Sci. 7 2451-2459 (1998)
  81. Domain organization of calbindin D28k as determined from the association of six synthetic EF-hand fragments. Linse S, Thulin E, Gifford LK, Radzewsky D, Hagan J, Wilk RR, Akerfeldt KS. Protein Sci. 6 2385-2396 (1997)
  82. Structure of myosin-1c tail bound to calmodulin provides insights into calcium-mediated conformational coupling. Lu Q, Li J, Li J, Ye F, Zhang M. Nat. Struct. Mol. Biol. 22 81-88 (2015)
  83. Ca2+-bound calmodulin forms a compact globular structure on binding four trifluoperazine molecules in solution. Matsushima N, Hayashi N, Jinbo Y, Izumi Y. Biochem. J. 347 Pt 1 211-215 (2000)
  84. Regulatory implications of a novel mode of interaction of calmodulin with a double IQ-motif target sequence from murine dilute myosin V. Martin SR, Bayley PM. Protein Sci. 11 2909-2923 (2002)
  85. 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta. Potts BC, Carlström G, Okazaki K, Hidaka H, Chazin WJ. Protein Sci. 5 2162-2174 (1996)
  86. Down-regulation of S100A11, a calcium-binding protein, in human endometrium may cause reproductive failure. Liu XM, Ding GL, Jiang Y, Pan HJ, Zhang D, Wang TT, Zhang RJ, Shu J, Sheng JZ, Huang HF. J. Clin. Endocrinol. Metab. 97 3672-3683 (2012)
  87. Fast methionine-based solution structure determination of calcium-calmodulin complexes. Gifford JL, Ishida H, Vogel HJ. J. Biomol. NMR 50 71-81 (2011)
  88. Immunosuppressive activity of a molecule isolated from Artemisia annua on DTH responses compared with cyclosporin A. Noori S, Naderi GA, Hassan ZM, Habibi Z, Bathaie SZ, Hashemi SM. Int. Immunopharmacol. 4 1301-1306 (2004)
  89. Dynamic light scattering study of calmodulin-target peptide complexes. Papish AL, Tari LW, Vogel HJ. Biophys. J. 83 1455-1464 (2002)
  90. Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R90A, and R90G. Sorensen BR, Shea MA. Biophys. J. 71 3407-3420 (1996)
  91. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder. VanScyoc WS, Shea MA. Protein Sci. 10 1758-1768 (2001)
  92. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently. Guo Q, Jureller JE, Warren JT, Solomaha E, Florián J, Tang WJ. J. Biol. Chem. 283 23836-23845 (2008)
  93. Selective incorporation of nitrile-based infrared probes into proteins via cysteine alkylation. Jo H, Culik RM, Korendovych IV, Degrado WF, Gai F. Biochemistry 49 10354-10356 (2010)
  94. X-ray structures of magnesium and manganese complexes with the N-terminal domain of calmodulin: insights into the mechanism and specificity of metal ion binding to an EF-hand. Senguen FT, Grabarek Z. Biochemistry 51 6182-6194 (2012)
  95. A rapid induction by elicitors of the mRNA encoding CCD-1, a 14kDa Ca2+ -binding protein in wheat cultured cells. Takezawa D. Plant Mol. Biol. 42 807-817 (2000)
  96. Spectroscopic characterization of the interaction between calmodulin-dependent protein kinase I and calmodulin. Gomes AV, Barnes JA, Vogel HJ. Arch. Biochem. Biophys. 379 28-36 (2000)
  97. Structural insights into membrane targeting by the flagellar calcium-binding protein (FCaBP), a myristoylated and palmitoylated calcium sensor in Trypanosoma cruzi. Wingard JN, Ladner J, Vanarotti M, Fisher AJ, Robinson H, Buchanan KT, Engman DM, Ames JB. J. Biol. Chem. 283 23388-23396 (2008)
  98. Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: a highly sensitive toolset for the detection of biomolecular interactions. Loving G, Imperiali B. Bioconjug. Chem. 20 2133-2141 (2009)
  99. Approaches for the measurement of solvent exposure in proteins by 19F NMR. Kitevski-LeBlanc JL, Evanics F, Prosser RS. J. Biomol. NMR 45 255-264 (2009)
  100. Both the C-terminal polylysine region and the farnesylation of K-RasB are important for its specific interaction with calmodulin. Wu LJ, Xu LR, Liao JM, Chen J, Liang Y. PLoS ONE 6 e21929 (2011)
  101. Facile formation of dynamic hydrogel microspheres for triggered growth factor delivery. King WJ, Toepke MW, Murphy WL. Acta Biomater 7 975-985 (2011)
  102. Interaction between calcium-free calmodulin and IQ motif of neurogranin studied by nuclear magnetic resonance spectroscopy. Cui Y, Wen J, Hung Sze K, Man D, Lin D, Liu M, Zhu G. Anal. Biochem. 315 175-182 (2003)
  103. Regulatory interaction of sodium channel IQ-motif with calmodulin C-terminal lobe. Mori M, Konno T, Morii T, Nagayama K, Imoto K. Biochem. Biophys. Res. Commun. 307 290-296 (2003)
  104. Unexpected structure of the Ca2+-regulatory region from soybean calcium-dependent protein kinase-alpha. Weljie AM, Vogel HJ. J. Biol. Chem. 279 35494-35502 (2004)
  105. CaBP1, a neuronal Ca2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions. Li C, Enomoto M, Rossi AM, Seo MD, Rahman T, Stathopulos PB, Taylor CW, Ikura M, Ames JB. Proc. Natl. Acad. Sci. U.S.A. 110 8507-8512 (2013)
  106. Calcium-induced folding of a fragment of calmodulin composed of EF-hands 2 and 3. Lakowski TM, Lee GM, Okon M, Reid RE, McIntosh LP. Protein Sci. 16 1119-1132 (2007)
  107. NMR solution structure of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Tossavainen H, Permi P, Annila A, Kilpeläinen I, Drakenberg T. Eur. J. Biochem. 270 2505-2512 (2003)
  108. Solution structure of the Eps15 homology domain of a human POB1 (partner of RalBP1). Koshiba S, Kigawa T, Iwahara J, Kikuchi A, Yokoyama S. FEBS Lett. 442 138-142 (1999)
  109. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis. Laine E, Yoneda JD, Blondel A, Malliavin TE. Proteins 71 1813-1829 (2008)
  110. A novel Ca2+/calmodulin antagonist HBC inhibits angiogenesis and down-regulates hypoxia-inducible factor. Jung HJ, Kim JH, Shim JS, Kwon HJ. J. Biol. Chem. 285 25867-25874 (2010)
  111. An EF-hand phage display study of calmodulin subdomain pairing. Linse S, Voorhies M, Norström E, Schultz DA. J. Mol. Biol. 296 473-486 (2000)
  112. Calcium-dependent stabilization of the central sequence between Met(76) and Ser(81) in vertebrate calmodulin. Qin Z, Squier TC. Biophys. J. 81 2908-2918 (2001)
  113. Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. Valeyev NV, Bates DG, Heslop-Harrison P, Postlethwaite I, Kotov NV, Kotov NV. BMC Syst Biol 2 48 (2008)
  114. Inherent flexibility and protein function: The open/closed conformational transition in the N-terminal domain of calmodulin. Tripathi S, Portman JJ. J Chem Phys 128 205104 (2008)
  115. Interactions of the 18.5-kDa isoform of myelin basic protein with Ca(2+)-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy. Libich DS, Harauz G. Biochem. Cell Biol. 80 395-406 (2002)
  116. Ligand-induced conformational changes and a mechanism for domain closure in Aspergillus nidulans dehydroquinate synthase. Nichols CE, Ren J, Lamb HK, Hawkins AR, Stammers DK. J. Mol. Biol. 327 129-144 (2003)
  117. Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. Johnson E, Bruschweiler-Li L, Showalter SA, Vuister GW, Zhang F, Brüschweiler R. J. Mol. Biol. 377 945-955 (2008)
  118. Substitution of the methionine residues of calmodulin with the unnatural amino acid analogs ethionine and norleucine: biochemical and spectroscopic studies. Yuan T, Vogel HJ. Protein Sci. 8 113-121 (1999)
  119. Temperature jump kinetic study of the stability of apo-calmodulin. Rabl CR, Martin SR, Neumann E, Bayley PM. Biophys. Chem. 101-102 553-564 (2002)
  120. Tryptophan fluorescence of calmodulin binding domain peptides interacting with calmodulin containing unnatural methionine analogues. Weljie AM, Vogel HJ. Protein Eng. 13 59-66 (2000)
  121. Allosteric actuation of inverse phase transition of a stimulus-responsive fusion polypeptide by ligand binding. Kim B, Chilkoti A. J. Am. Chem. Soc. 130 17867-17873 (2008)
  122. Intrinsically disordered PEP-19 confers unique dynamic properties to apo and calcium calmodulin. Wang X, Kleerekoper QK, Xiong LW, Putkey JA. Biochemistry 49 10287-10297 (2010)
  123. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation. Lundström P, Akke M. Chembiochem 6 1685-1692 (2005)
  124. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins. Lundström P, Akke M. J. Biomol. NMR 32 163-173 (2005)
  125. An assignment of intrinsically disordered regions of proteins based on NMR structures. Ota M, Koike R, Amemiya T, Tenno T, Romero PR, Hiroaki H, Dunker AK, Fukuchi S. J. Struct. Biol. 181 29-36 (2013)
  126. Characterisation of two calmodulin-like proteins from the liver fluke, Fasciola hepatica. Russell SL, McFerran NV, Hoey EM, Trudgett A, Timson DJ. Biol. Chem. 388 593-599 (2007)
  127. Development of a new Ca2+/calmodulin antagonist and its anti-proliferative activity against colorectal cancer cells. Shim JS, Lee J, Kim KN, Kwon HJ. Biochem. Biophys. Res. Commun. 359 747-751 (2007)
  128. The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug. Horváth I, Harmat V, Perczel A, Pálfi V, Nyitray L, Nagy A, Hlavanda E, Náray-Szabó G, Ovádi J. J. Biol. Chem. 280 8266-8274 (2005)
  129. Assignment and secondary structure of calcium-bound human S100B. Smith SP, Shaw GS. J. Biomol. NMR 10 77-88 (1997)
  130. Comparative analysis of the amino- and carboxy-terminal domains of calmodulin by Fourier transform infrared spectroscopy. Fabian H, Yuan T, Vogel HJ, Mantsch HH. Eur. Biophys. J. 24 195-201 (1996)
  131. Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean. Weljie AM, Clarke TE, Juffer AH, Harmon AC, Vogel HJ. Proteins 39 343-357 (2000)
  132. Detection of protein conformational change by optical second-harmonic generation. Salafsky JS. J Chem Phys 125 074701 (2006)
  133. Spectroscopic characterization of the calmodulin-binding and autoinhibitory domains of calcium/calmodulin-dependent protein kinase I. Yuan T, Gomes AV, Barnes JA, Hunter HN, Vogel HJ. Arch. Biochem. Biophys. 421 192-206 (2004)
  134. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca(2+) sensor in Arabidopsis. Bender KW, Dobney S, Ogunrinde A, Chiasson D, Mullen RT, Teresinski HJ, Singh P, Munro K, Smith SP, Snedden WA. Biochem. J. 457 127-136 (2014)
  135. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin. Meyer DF, Mabuchi Y, Grabarek Z. J. Biol. Chem. 271 11284-11290 (1996)
  136. Unwinding the helical linker of calcium-loaded calmodulin: a molecular dynamics study. Fiorin G, Biekofsky RR, Pastore A, Carloni P. Proteins 61 829-839 (2005)
  137. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Lee CH, MacKinnon R. Science 360 508-513 (2018)
  138. Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins. Malik S, Revington M, Smith SP, Shaw GS. Proteins 73 28-42 (2008)
  139. Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation. Das A, Chakrabarti J, Ghosh M. Biophys. J. 104 1274-1284 (2013)
  140. Cooperative cyclic interactions involved in metal binding to pairs of sites in EF-hand proteins. Biekofsky RR, Feeney J. FEBS Lett. 439 101-106 (1998)
  141. FhCaBP3: a Fasciola hepatica calcium binding protein with EF-hand and dynein light chain domains. Banford S, Drysdale O, Hoey EM, Trudgett A, Timson DJ. Biochimie 95 751-758 (2013)
  142. Identification of the binding and inhibition sites in the calmodulin molecule for ophiobolin A by site-directed mutagenesis. Kong Au T, Chow Leung P. Plant Physiol. 118 965-973 (1998)
  143. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II. Newman RA, Van Scyoc WS, Sorensen BR, Jaren OR, Shea MA. Proteins 71 1792-1812 (2008)
  144. Nereis sarcoplasmic Ca2+-binding protein has a highly unstructured apo state which is switched to the native state upon binding of the first Ca2+ ion. Prêcheur B, Cox JA, Petrova T, Mispelter J, Craescu CT. FEBS Lett. 395 89-94 (1996)
  145. Probing the Borrelia burgdorferi surface lipoprotein secretion pathway using a conditionally folding protein domain. Chen S, Zückert WR. J. Bacteriol. 193 6724-6732 (2011)
  146. Solution structures of yeast Saccharomyces cerevisiae calmodulin in calcium- and target peptide-bound states reveal similarities and differences to vertebrate calmodulin. Ogura K, Kumeta H, Takahasi K, Kobashigawa Y, Yoshida R, Itoh H, Yazawa M, Inagaki F. Genes Cells 17 159-172 (2012)
  147. The gating effect of calmodulin and calcium on the connexin50 hemichannel. Zhang X, Zou T, Liu Y, Qi Y. Biol. Chem. 387 595-601 (2006)
  148. The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells. Huang H, Ishida H, Vogel HJ. Protein Sci. 19 475-485 (2010)
  149. A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2. Larsson G, Schleucher J, Onions J, Hermann S, Grundström T, Wijmenga SS. Protein Sci. 10 169-186 (2001)
  150. Activation of the edema factor of Bacillus anthracis by calmodulin: evidence of an interplay between the EF-calmodulin interaction and calcium binding. Laine E, Martínez L, Blondel A, Malliavin TE. Biophys. J. 99 2264-2272 (2010)
  151. Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Kushwaha HR, Kumar G, Verma PK, Singla-Pareek SL, Pareek A. Plant Physiol. Biochem. 49 996-1004 (2011)
  152. Backbone dynamic properties of the central linker region of calcium-calmodulin in 35% trifluoroethanol. Brokx RD, Scheek RM, Weljie AM, Vogel HJ. J. Struct. Biol. 146 272-280 (2004)
  153. Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin. Settimo L, Donnini S, Juffer AH, Woody RW, Marin O. Biopolymers 88 373-385 (2007)
  154. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Konermann L, Pan Y. Expert Rev Proteomics 9 497-504 (2012)
  155. FhCaBP4: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Orr R, Kinkead R, Newman R, Anderson L, Hoey EM, Trudgett A, Timson DJ. Parasitol. Res. 111 1707-1713 (2012)
  156. Intra- and interdomain effects due to mutation of calcium-binding sites in calmodulin. Xiong LW, Kleerekoper QK, Wang X, Putkey JA. J. Biol. Chem. 285 8094-8103 (2010)
  157. Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy. Ulrich A, Schmitz AA, Braun T, Yuan T, Vogel HJ, Vergères G. Proc. Natl. Acad. Sci. U.S.A. 97 5191-5196 (2000)
  158. NMR analysis of the Mg2+-binding properties of aequorin, a Ca2+-binding photoprotein. Ohashi W, Inouye S, Yamazaki T, Hirota H. J. Biochem. 138 613-620 (2005)
  159. Structure of the inhibitor W7 bound to the regulatory domain of cardiac troponin C. Hoffman RM, Sykes BD. Biochemistry 48 5541-5552 (2009)
  160. A structural and dynamic characterization of the EF-hand protein CLSP. Babini E, Bertini I, Capozzi F, Chirivino E, Luchinat C. Structure 14 1029-1038 (2006)
  161. Amplification of bifunctional ligands for calmodulin from a dynamic combinatorial library. Milanesi L, Hunter CA, Sedelnikova SE, Waltho JP. Chemistry 12 1081-1087 (2006)
  162. An altered mode of calcium coordination in methionine-oxidized calmodulin. Jones EM, Squier TC, Sacksteder CA. Biophys. J. 95 5268-5280 (2008)
  163. News Dance of the dimers. Krebs J, Quadroni M, Van Eldik LJ. Nat. Struct. Biol. 2 711-714 (1995)
  164. Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Selwa E, Laine E, Malliavin TE. Proteins 80 1028-1040 (2012)
  165. Dynamics and energetics: a consensus analysis of the impact of calcium on EF-CaM protein complex. Laine E, Blondel A, Malliavin TE. Biophys. J. 96 1249-1263 (2009)
  166. Regulation of K-Ras4B Membrane Binding by Calmodulin. Sperlich B, Kapoor S, Waldmann H, Winter R, Weise K. Biophys. J. 111 113-122 (2016)
  167. Solution structure and dynamics of S100A5 in the apo and Ca2+-bound states. Bertini I, Das Gupta S, Hu X, Karavelas T, Luchinat C, Parigi G, Yuan J. J. Biol. Inorg. Chem. 14 1097-1107 (2009)
  168. Solution structures of Ca2+-CIB1 and Mg2+-CIB1 and their interactions with the platelet integrin alphaIIb cytoplasmic domain. Huang H, Ishida H, Yamniuk AP, Vogel HJ. J. Biol. Chem. 286 17181-17192 (2011)
  169. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function. Astegno A, Maresi E, Marino V, Dominici P, Pedroni M, Piccinelli F, Dell'Orco D. Nanoscale 6 15037-15047 (2014)
  170. A novel calmodulin-like protein from the liver fluke, Fasciola hepatica. Russell SL, McFerran NV, Moore CM, Tsang Y, Glass P, Hoey EM, Trudgett A, Timson DJ. Biochimie 94 2398-2406 (2012)
  171. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies. Selwa E, Davi M, Chenal A, Sotomayor-Pérez AC, Ladant D, Malliavin TE. J. Biol. Chem. 289 21131-21141 (2014)
  172. Differential Regulation of PI(4,5)P2 Sensitivity of Kv7.2 and Kv7.3 Channels by Calmodulin. Gomis-Perez C, Soldovieri MV, Malo C, Ambrosino P, Taglialatela M, Areso P, Villarroel A. Front Mol Neurosci 10 117 (2017)
  173. Multiple calcium binding sites make calmodulin multifunctional. Valeyev NV, Heslop-Harrison P, Postlethwaite I, Kotov NV, Bates DG. Mol Biosyst 4 66-73 (2008)
  174. The length of the calmodulin linker determines the extent of transient interdomain association and target affinity. Anthis NJ, Clore GM. J. Am. Chem. Soc. 135 9648-9651 (2013)
  175. Thermal unfolding simulations of apo-calmodulin using leap-dynamics. Kleinjung J, Fraternali F, Martin SR, Bayley PM. Proteins 50 648-656 (2003)
  176. Trifluoperazine regulation of calmodulin binding to Fas: a computational study. Pan D, Yan Q, Chen Y, McDonald JM, Song Y. Proteins 79 2543-2556 (2011)
  177. Biochemical properties of V91G calmodulin: A calmodulin point mutation that deregulates muscle contraction in Drosophila. Wang B, Martin SR, Newman RA, Hamilton SL, Shea MA, Bayley PM, Beckingham KM. Protein Sci. 13 3285-3297 (2004)
  178. Calcineurin regulatory subunit B is a unique calcium sensor that regulates calcineurin in both calcium-dependent and calcium-independent manner. Li J, Jia Z, Zhou W, Wei Q. Proteins 77 612-623 (2009)
  179. Calmodulin antagonists suppress gap junction coupling in isolated Hensen cells of the guinea pig cochlea. Blödow A, Ngezahayo A, Ernst A, Kolb HA. Pflugers Arch. 446 36-41 (2003)
  180. Characterization of apo and partially saturated states of calerythrin, an EF-hand protein from S. erythraea: a molten globule when deprived of Ca(2+). Aitio H, Laakso T, Pihlajamaa T, Torkkeli M, Kilpeläinen I, Drakenberg T, Serimaa R, Annila A. Protein Sci. 10 74-82 (2001)
  181. Crystal structure of human calmodulin-like protein: insights into its functional role. Han BG, Han M, Sui H, Yaswen P, Walian PJ, Jap BK. FEBS Lett. 521 24-30 (2002)
  182. Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. Tanaka T, Ames JB, Kainosho M, Stryer L, Ikura M. J. Biomol. NMR 11 135-152 (1998)
  183. Effect of the Brugada syndrome mutation A39V on calmodulin regulation of Cav1.2 channels. Simms BA, Souza IA, Zamponi GW. Mol Brain 7 34 (2014)
  184. FRET-FCS detection of intralobe dynamics in calmodulin. Price ES, Aleksiejew M, Johnson CK. J Phys Chem B 115 9320-9326 (2011)
  185. Impact of methionine oxidation on calmodulin structural dynamics. McCarthy MR, Thompson AR, Nitu F, Moen RJ, Olenek MJ, Klein JC, Thomas DD. Biochem. Biophys. Res. Commun. 456 567-572 (2015)
  186. Metal ions-induced conformational change of P23 by using TNS as fluorescence probe. Wang ZJ, Ren LX, Zhao YQ, Li GT, Liang AH, Yang BS. Spectrochim Acta A Mol Biomol Spectrosc 66 1323-1326 (2007)
  187. Solvent-induced differentiation of protein backbone hydrogen bonds in calmodulin. Juranić N, Atanasova E, Streiff JH, Macura S, Prendergast FG. Protein Sci. 16 1329-1337 (2007)
  188. Structural requirements for N-trimethylation of lysine 115 of calmodulin. Cobb JA, Roberts DM. J. Biol. Chem. 275 18969-18975 (2000)
  189. Understanding the EF-hand closing pathway using non-biased interatomic potentials. Dupuis L, Mousseau N. J Chem Phys 136 035101 (2012)
  190. Utilization of a calmodulin lysine methyltransferase co-expression system for the generation of a combinatorial library of post-translationally modified proteins. Magnani R, Chaffin B, Dick E, Bricken ML, Houtz RL, Bradley LH. Protein Expr. Purif. 86 83-88 (2012)
  191. Ca2+ binding sites in calmodulin and troponin C alter interhelical angle movements. Goto K, Toyama A, Takeuchi H, Takayama K, Saito T, Iwamoto M, Yeh JZ, Narahashi T. FEBS Lett. 561 51-57 (2004)
  192. Characterization of calmodulin-Fas death domain interaction: an integrated experimental and computational study. Fancy RM, Wang L, Napier T, Lin J, Jing G, Lucius AL, McDonald JM, Zhou T, Song Y. Biochemistry 53 2680-2688 (2014)
  193. Conformational States and kinetics of the calcium binding domain of NADPH oxidase 5. Wei CC, Motl N, Levek K, Chen LQ, Yang YP, Johnson T, Hamilton L, Stuehr DJ. Open Biochem J 4 59-67 (2010)
  194. Construction of an epitope-tagged calmodulin useful for the analysis of calmodulin-binding proteins: addition of a hemagglutinin epitope does not affect calmodulin-dependent activation of smooth muscle myosin light chain kinase. Szymanska G, O'Connor MB, O'Connor CM. Anal. Biochem. 252 96-105 (1997)
  195. Global and local mobility of apocalmodulin monitored through fast-field cycling relaxometry. Borsi V, Luchinat C, Parigi G. Biophys. J. 97 1765-1771 (2009)
  196. Increase in the molecular weight and radius of gyration of apocalmodulin induced by binding of target peptide: evidence for complex formation. Izumi Y, Kuwamoto S, Jinbo Y, Yoshino H. FEBS Lett. 495 126-130 (2001)
  197. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions. Lai M, Brun D, Edelstein SJ, Le Novère N. PLoS Comput. Biol. 11 e1004063 (2015)
  198. Prediction of protein motions from amino acid sequence and its application to protein-protein interaction. Hirose S, Yokota K, Kuroda Y, Wako H, Endo S, Kanai S, Noguchi T. BMC Struct. Biol. 10 20 (2010)
  199. Role of intramolecular interaction in connexin50: mediating the Ca2+-dependent binding of calmodulin to gap junction. Zhang X, Qi Y. Arch. Biochem. Biophys. 440 111-117 (2005)
  200. Structural genomics of caenorhabditis elegans: crystal structure of calmodulin. Symersky J, Lin G, Li S, Qiu S, Carson M, Schormann N, Luo M. Proteins 53 947-949 (2003)
  201. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity. Beccia MR, Sauge-Merle S, Lemaire D, Brémond N, Pardoux R, Blangy S, Guilbaud P, Berthomieu C. J. Biol. Inorg. Chem. 20 905-919 (2015)
  202. Approaches to the assignment of (19)F resonances from 3-fluorophenylalanine labeled calmodulin using solution state NMR. Kitevski-Leblanc JL, Evanics F, Scott Prosser R. J. Biomol. NMR 47 113-123 (2010)
  203. Conformational transition pathway in the allosteric process of calcium-induced recoverin: molecular dynamics simulations. Li JL, Geng CY, Bu Y, Huang XR, Sun CC. J Comput Chem 30 1135-1145 (2009)
  204. Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap. Hedison TM, Leferink NG, Hay S, Scrutton NS. ACS Catal 6 5170-5180 (2016)
  205. Electric charge balance mechanism of extended soluble proteins. Uchikoga N, Takahashi SY, Ke R, Sonoyama M, Mitaku S. Protein Sci. 14 74-80 (2005)
  206. Electrostatic control of the overall shape of calmodulin: numerical calculations. Isvoran A, Craescu CT, Alexov E. Eur. Biophys. J. 36 225-237 (2007)
  207. Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter-domain electrostatic repulsion. Hellstrand E, Kukora S, Shuman CF, Steenbergen S, Thulin E, Kohli A, Krouse B, Linse S, Åkerfeldt KS. FEBS J. 280 2675-2687 (2013)
  208. Isotope-labeled vibrational circular dichroism studies of calmodulin and its interactions with ligands. Pandyra AA, Yamniuk AP, Andrushchenko VV, Wieser H, Vogel HJ. Biopolymers 79 231-237 (2005)
  209. Photocontrol of calmodulin interaction with target peptides using azobenzene derivative. Shishido H, Yamada MD, Kondo K, Maruta S. J. Biochem. 146 581-590 (2009)
  210. Prediction of three dimensional structure of calmodulin. Chen K, Ruan J, Kurgan LA. Protein J. 25 57-70 (2006)
  211. Probing conformational and functional substates of calmodulin by high pressure FTIR spectroscopy: influence of Ca2+ binding and the hypervariable region of K-Ras4B. Erwin N, Patra S, Winter R. Phys Chem Chem Phys 18 30020-30028 (2016)
  212. Significance of the extra C-terminal tail of CaLP, a novel calmodulin-like protein involved in oyster calcium metabolism. Li S, Xie L, Meng Q, Zhang R. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 144 463-471 (2006)
  213. Structural modulation of calmodulin and calmodulin-dependent protein kinase II by pea protein hydrolysates. Li H, Aluko RE. Int J Food Sci Nutr 57 178-189 (2006)
  214. Time-resolved fluorescence anisotropy studies show domain-specific interactions of calmodulin with IQ target sequences of myosin V. Bayley P, Martin S, Browne P, Royer C. Eur. Biophys. J. 32 122-127 (2003)
  215. Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain. Palczewska M, Batta G, Groves P, Linse S, Kuznicki J. Protein Sci. 14 1879-1887 (2005)
  216. Cooperative folding units of escherichia coli tryptophan repressor. Wallqvist A, Lavoie TA, Chanatry JA, Covell DG, Carey J. Biophys. J. 77 1619-1626 (1999)
  217. Interactions of calmodulin with metal ions and with its target proteins revealed by conformation-sensitive monoclonal antibodies. Wolf T, Solomon B, Ivnitski D, Rishpon J, Fleminger G. J. Mol. Recognit. 11 14-19 (1998)
  218. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds. Ying S, Hill AT, Pyc M, Anderson EM, Snedden WA, Mullen RT, She YM, Plaxton WC. Plant Physiol. 174 1012-1027 (2017)
  219. Structural and thermodynamic studies of the tobacco calmodulin-like rgs-CaM protein. Makiyama RK, Fernandes CA, Dreyer TR, Moda BS, Matioli FF, Fontes MR, Maia IG. Int. J. Biol. Macromol. 92 1288-1297 (2016)
  220. Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels. Meissner G, Pasek DA, Yamaguchi N, Ramachandran S, Dokholyan NV, Tripathy A. Proteins 74 207-211 (2009)
  221. Analysis of lanthanide-induced conformational change of the C-terminal domain on centrin. Zhao YQ, Yan J, Song L, Feng YN, Liang AH, Yang BS. J Fluoresc 22 485-494 (2012)
  222. Ca2+/S100 proteins inhibit the interaction of FKBP38 with Bcl-2 and Hsp90. Shimamoto S, Tsuchiya M, Yamaguchi F, Kubota Y, Tokumitsu H, Kobayashi R. Biochem. J. 458 141-152 (2014)
  223. Engineering strontium binding affinity in an EF-hand motif: a quantum chemical and molecular dynamics study. Rinaldo D, Vita C, Field MJ. J. Biomol. Struct. Dyn. 22 281-297 (2004)
  224. Enhanced ligand affinity for receptors in which components of the binding site are independently mobile. Trevitt CR, Craven CJ, Milanesi L, Syson K, Mattinen ML, Perkins J, Annila A, Hunter CA, Waltho JP. Chem. Biol. 12 89-97 (2005)
  225. Exploring the natural conformational changes of the C-terminal domain of calmodulin. Elezgaray J, Marcou G, Sanejouand YH. Phys Rev E Stat Nonlin Soft Matter Phys 66 031908 (2002)
  226. Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker. Bradley LH, Bricken ML, Randle C. Protein Expr. Purif. 75 186-191 (2011)
  227. Identification of regions responsible for the open conformation of S100A10 using chimaeric S100A11-S100A10 proteins. Santamaria-Kisiel L, Shaw GS. Biochem. J. 434 37-48 (2011)
  228. Mutation of Lys-75 affects calmodulin conformation. Medvedeva MV, Polyakova OV, Watterson DM, Gusev NB. FEBS Lett. 450 139-143 (1999)
  229. Regulation of a Coupled MARCKS-PI3K Lipid Kinase Circuit by Calmodulin: Single-Molecule Analysis of a Membrane-Bound Signaling Module. Ziemba BP, Swisher GH, Masson G, Burke JE, Williams RL, Falke JJ. Biochemistry 55 6395-6405 (2016)
  230. Relationships between IgE/IgG4 epitopes, structure and function in Anisakis simplex Ani s 5, a member of the SXP/RAL-2 protein family. García-Mayoral MF, Treviño MA, Pérez-Piñar T, Caballero ML, Knaute T, Umpierrez A, Bruix M, Rodríguez-Pérez R. PLoS Negl Trop Dis 8 e2735 (2014)
  231. Size-dependent impact of CNTs on dynamic properties of calmodulin. Gao J, Wang L, Kang SG, Zhao L, Ji M, Chen C, Zhao Y, Zhou R, Li J. Nanoscale 6 12828-12837 (2014)
  232. Structure and calcium-binding studies of calmodulin-like domain of human non-muscle α-actinin-1. Drmota Prebil S, Slapšak U, Pavšič M, Ilc G, Puž V, de Almeida Ribeiro E, Anrather D, Hartl M, Backman L, Plavec J, Lenarčič B, Djinović-Carugo K. Sci Rep 6 27383 (2016)
  233. Altered methylation substrate kinetics and calcium binding of a calmodulin with a Val136-->Thr substitution. Han CH, Roberts DM. Eur. J. Biochem. 244 904-912 (1997)
  234. Arabidopsis Calmodulin-Like Proteins, CML15 and CML16 Possess Biochemical Properties Distinct from Calmodulin and Show Non-overlapping Tissue Expression Patterns. Ogunrinde A, Munro K, Davidson A, Ubaid M, Snedden WA. Front Plant Sci 8 2175 (2017)
  235. Biophysical characterization of the interaction of p21 with calmodulin: a mechanistic study. Shi Q, Wang X, Ren J. Biophys. Chem. 138 138-143 (2008)
  236. Ca-Dependent Folding of Human Calumenin. Mazzorana M, Hussain R, Sorensen T. PLoS ONE 11 e0151547 (2016)
  237. Calmodulin UAS-constructs and the in vivo roles of calmodulin: analysis of a muscle-specific phenotype. Wang B, Bolduc C, Beckingham K. Genesis 34 86-90 (2002)
  238. MD simulations of anthrax edema factor: calmodulin complexes with mutations in the edema factor "switch a" region and docking of 3'-deoxy ATP into the adenylyl cyclase active site of wild-type and mutant edema factor variants. Zhao J, Roy SA, Nelson DJ. J. Biomol. Struct. Dyn. 21 159-170 (2003)
  239. Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide. Ganoth A, Nachliel E, Friedman R, Gutman M. Proteins 64 133-146 (2006)
  240. N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor-1. Chandra K, Ramakrishnan V, Sharma Y, Chary KV. J. Biol. Inorg. Chem. 16 81-95 (2011)
  241. Opposing Intermolecular Tuning of Ca2+ Affinity for Calmodulin by Neurogranin and CaMKII Peptides. Zhang P, Tripathi S, Trinh H, Cheung MS. Biophys. J. 112 1105-1119 (2017)
  242. Peptide and metal ion-dependent association of isolated helix-loop-helix calcium binding domains: studies of thrombic fragments of calmodulin. Brokx RD, Vogel HJ. Protein Sci. 9 964-975 (2000)
  243. Comment Protein kinases. Twitching worms catch S100. Johnson KA, Quiocho FA. Nature 380 585-587 (1996)
  244. Pull-down of calmodulin-binding proteins. Kaleka KS, Petersen AN, Florence MA, Gerges NZ. J Vis Exp (2012)
  245. Ridaifen G, tamoxifen analog, is a potent anticancer drug working through a combinatorial association with multiple cellular factors. Ikeda K, Kamisuki S, Uetake S, Mizusawa A, Ota N, Sasaki T, Tsukuda S, Kusayanagi T, Takakusagi Y, Morohashi K, Yamori T, Dan S, Shiina I, Sugawara F. Bioorg. Med. Chem. 23 6118-6124 (2015)
  246. Structural Insights into the Incorporation of the Mo Cofactor into Sulfite Oxidase from Site-Directed Spin Labeling. Hahn A, Engelhard C, Reschke S, Teutloff C, Bittl R, Leimkühler S, Risse T. Angew. Chem. Int. Ed. Engl. 54 11865-11869 (2015)
  247. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3. Li C, Lim S, Braunewell KH, Ames JB. PLoS ONE 11 e0165921 (2016)
  248. The biochemical effect of Ser166 phosphorylation on Euplotes octocarinatus centrin. Zhao YQ, Yan J, Chao JB, Liang AH, Yang BS. J. Biol. Inorg. Chem. 18 123-136 (2013)
  249. A cryptophane-based "turn-on" 129Xe NMR biosensor for monitoring calmodulin. Riggle BA, Greenberg ML, Wang Y, Wissner RF, Zemerov SD, Petersson EJ, Dmochowski IJ. Org. Biomol. Chem. 15 8883-8887 (2017)
  250. Coordination to lanthanide ions distorts binding site conformation in calmodulin. Edington SC, Gonzalez A, Middendorf TR, Halling DB, Aldrich RW, Baiz CR. Proc. Natl. Acad. Sci. U.S.A. 115 E3126-E3134 (2018)
  251. Crystallization and preliminary diffraction analysis of Ca(2+)-calmodulin-drug and apocalmodulin-drug complexes. Vertessy BG, Böcskei Z, Harmath V, Náray-Szabó G, Ovádi J. Proteins 28 131-134 (1997)
  252. Dynamic secondary structural changes in Ca²⁺-saturated calmodulin upon interaction with the antagonist, W-7. Sasakura D, Nunomura W, Takakuwa Y. Biochem. Biophys. Res. Commun. 423 360-365 (2012)
  253. Enzymatic activity of the CaM-PDE1 system upon addition of actinyl ions. Brulfert F, Safi S, Jeanson A, Foerstendorf H, Weiss S, Berthomieu C, Sauge-Merle S, Simoni É. J. Inorg. Biochem. 172 46-54 (2017)
  254. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM). Zhang J, Li J, Craig TA, Kumar R, Gross ML. Biochemistry 56 3523-3530 (2017)
  255. Impact of graphyne on structural and dynamical properties of calmodulin. Feng M, Bell DR, Luo J, Zhou R. Phys Chem Chem Phys 19 10187-10195 (2017)
  256. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation. Yu Y, Wang J, Shao Q, Shi J, Zhu W. J Chem Phys 142 125105 (2015)
  257. Luminescent and paramagnetic properties of nanoparticles shed light on their interactions with proteins. Dal Cortivo G, Wagner GE, Cortelletti P, Padmanabha Das KM, Zangger K, Speghini A, Dell'Orco D, Meyer NH. Sci Rep 8 3420 (2018)
  258. N-terminal and C-terminal domains of calmodulin mediate FADD and TRADD interaction. Papoff G, Trivieri N, Marsilio S, Crielesi R, Lalli C, Castellani L, Balog EM, Ruberti G. PLoS ONE 10 e0116251 (2015)
  259. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy. Devore MS, Gull SF, Johnson CK. Chem Phys 422 (2013)
  260. Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites. Stucchi R, Plucińska G, Hummel JJA, Zahavi EE, Guerra San Juan I, Klykov O, Scheltema RA, Altelaar AFM, Hoogenraad CC. Cell Rep 24 685-700 (2018)
  261. Residue-residue interactions regulating the Ca2+-induced EF-hand conformation changes in calmodulin. Shimoyama H, Takeda-Shitaka M. J. Biochem. 162 259-270 (2017)
  262. Single-Molecule FRET States, Conformational Interchange, and Conformational Selection by Dye Labels in Calmodulin. DeVore MS, Braimah A, Benson DR, Johnson CK. J Phys Chem B 120 4357-4364 (2016)
  263. Specific conformation and Ca(2+)-binding mode of yeast calmodulin: insight into evolutionary development. Nakashima K, Ishida H, Nakatomi A, Yazawa M. J. Biochem. 152 27-35 (2012)
  264. The dynamics of Ca2+ ions within the solvation shell of calbindin D9k. Project E, Nachliel E, Gutman M. PLoS ONE 6 e14718 (2011)
  265. A structural comparison of 'real' and 'model' calmodulin clarified allosteric interactions regulating domain motion. Shimoyama H. J. Biomol. Struct. Dyn. 37 1567-1581 (2019)
  266. Allosterically Activated Protein Self-Assembly for the Construction of Helical Microfilaments with Tunable Helicity. Xu M, Liu L, Yan Q. Angew. Chem. Int. Ed. Engl. 57 5029-5032 (2018)
  267. An EF-handed Ca(2+)-binding protein of Chinese liver fluke Clonorchis sinensis. Chung EJ, Kim TY, Hong SJ, Yong TS. Parasitol. Res. 112 4121-4128 (2013)
  268. Consequences of Hydrophobic Nanotube Binding on the Functional Dynamics of Signaling Protein Calmodulin. Zhu W, Kong J, Zhang J, Wang J, Li W, Wang W. ACS Omega 4 10494-10501 (2019)
  269. Coordination structures of Mg2+ and Ca2+ in three types of tobacco calmodulins in solution: Fourier-transform infrared spectroscopic studies of side-chain COO- groups. Suzuki N, Imai LF, Kato Y, Nagata K, Ohashi Y, Kuchitsu K, Tanokura M, Sakamoto A, Nara M, Nakano M, Yonezawa N. Biopolymers 99 472-483 (2013)
  270. Directly observed hydrogen bonds at calcium-binding-sites of calmodulin in solution relate to affinity of the calcium-binding. Juranić N, Atanasova E, Macura S, Prendergast FG. J. Inorg. Biochem. 103 1415-1418 (2009)
  271. Kinetic regulation of multi-ligand binding proteins. Salakhieva DV, Sadreev II, Chen MZ, Umezawa Y, Evstifeev AI, Welsh GI, Kotov NV. BMC Syst Biol 10 32 (2016)
  272. MESMER: minimal ensemble solutions to multiple experimental restraints. Ihms EC, Foster MP. Bioinformatics 31 1951-1958 (2015)
  273. Resonance assignments and secondary structure of calmodulin in complex with its target sequence in rat olfactory cyclic nucleotide-gated ion channel. Irene D, Sung FH, Huang JW, Lin TH, Chen YC, Chyan CL. Biomol NMR Assign 8 97-102 (2014)
  274. Structural dynamics of calmodulin-ryanodine receptor interactions: electron paramagnetic resonance using stereospecific spin labels. Her C, Thompson AR, Karim CB, Thomas DD. Sci Rep 8 10681 (2018)
  275. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Chyan CL, Irene D, Lin SM. Molecules 22 (2017)