1diq Citations

Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism.

J Mol Biol 295 357-74 (2000)
Cited: 45 times
EuropePMC logo PMID: 10623531

Abstract

The degradation of the toxic phenol p-cresol by Pseudomonas bacteria occurs by way of the protocatechuate metabolic pathway. The first enzyme in this pathway, p-cresol methylhydroxylase (PCMH), is a flavocytochrome c. The enzyme first catalyzes the oxidation of p-cresol to p-hydroxybenzyl alcohol, utilizing one atom of oxygen derived from water, and yielding one molecule of reduced FAD. The reducing electron equivalents are then passed one at a time from the flavin cofactor to the heme cofactor by intramolecular electron transfer, and subsequently to cytochrome oxidase within the periplasmic membrane via one or more soluble electron carrier proteins. The product, p-hydroxybenzyl alcohol, can also be oxidized by PCMH to yield p-hydroxybenzaldehyde. The fully refined X-ray crystal structure of PCMH in the native state has been obtained at 2. 5 A resolution on the basis of the gene sequence. The structure of the enzyme-substrate complex has also been refined, at 2.75 A resolution, and reveals significant conformational changes in the active site upon substrate binding. The active site for substrate oxidation is deeply buried in the interior of the PCMH molecule. A route for substrate access to the site has been identified and is shown to be governed by a swinging-gate mechanism. Two possible proton transfer pathways, that may assist in activating the substrate for nucleophilic attack and in removal of protons generated during the reaction, have been revealed. Hydrogen bonding interactions between the flavoprotein and cytochrome subunits that stabilize the intramolecular complex and may contribute to the electron transfer process have been identified.

Reviews citing this publication (11)

  1. Sequence-structure analysis of FAD-containing proteins. Dym O, Eisenberg D. Protein Sci 10 1712-1728 (2001)
  2. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJ, García JL, Díaz E. Microbiol Mol Biol Rev 73 71-133 (2009)
  3. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem Rev 114 4366-4469 (2014)
  4. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. FEBS J 275 3278-3289 (2008)
  5. To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Mattevi A. Trends Biochem Sci 31 276-283 (2006)
  6. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Boll M, Löffler C, Morris BE, Kung JW. Environ Microbiol 16 612-627 (2014)
  7. Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis. Blank LM, Ebert BE, Buehler K, Bühler B. Antioxid Redox Signal 13 349-394 (2010)
  8. The covalent FAD of monoamine oxidase: structural and functional role and mechanism of the flavinylation reaction. Edmondson DE, Newton-Vinson P. Antioxid Redox Signal 3 789-806 (2001)
  9. Enantiocomplementary enzymes: classification, molecular basis for their enantiopreference, and prospects for mirror-image biotransformations. Mugford PF, Wagner UG, Jiang Y, Faber K, Kazlauskas RJ. Angew Chem Int Ed Engl 47 8782-8793 (2008)
  10. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis. Sugumaran M. Int J Mol Sci 17 (2016)
  11. Direct Electron Transfer of Enzymes Facilitated by Cytochromes. Ma S, Ludwig R. ChemElectroChem 6 958-975 (2019)

Articles citing this publication (34)

  1. Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Krasowski MD, Nishikawa K, Nikolaeva N, Lin A, Harrison NL. Neuropharmacology 41 952-964 (2001)
  2. Divergence of interdomain geometry in two-domain proteins. Han JH, Kerrison N, Chothia C, Teichmann SA. Structure 14 935-945 (2006)
  3. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Alexeev I, Sultana A, Mäntsälä P, Niemi J, Schneider G. Proc Natl Acad Sci U S A 104 6170-6175 (2007)
  4. Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in desulfobacterium cetonicum. Müller JA, Galushko AS, Kappler A, Schink B. J Bacteriol 183 752-757 (2001)
  5. Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens. Peters F, Heintz D, Johannes J, van Dorsselaer A, Boll M. J Bacteriol 189 4729-4738 (2007)
  6. Crystal structure of 6-hydroxy-D-nicotine oxidase from Arthrobacter nicotinovorans. Koetter JW, Schulz GE. J Mol Biol 352 418-428 (2005)
  7. Length variations amongst protein domain superfamilies and consequences on structure and function. Sandhya S, Rani SS, Pankaj B, Govind MK, Offmann B, Srinivasan N, Sowdhamini R. PLoS One 4 e4981 (2009)
  8. Structure at 1.9 A resolution of a quinohemoprotein alcohol dehydrogenase from Pseudomonas putida HK5. Chen ZW, Matsushita K, Yamashita T, Fujii TA, Toyama H, Adachi O, Bellamy HD, Mathews FS. Structure 10 837-849 (2002)
  9. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. Jin J, Mazon H, van den Heuvel RH, Janssen DB, Fraaije MW. FEBS J 274 2311-2321 (2007)
  10. Inversion of stereospecificity of vanillyl-alcohol oxidase. van Den Heuvel RH, Fraaije MW, Ferrer M, Mattevi A, van Berkel WJ. Proc Natl Acad Sci U S A 97 9455-9460 (2000)
  11. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin. van den Heuvel RH, van den Berg WA, Rovida S, van Berkel WJ. J Biol Chem 279 33492-33500 (2004)
  12. Sequential action of two flavoenzymes, PgaE and PgaM, in angucycline biosynthesis: chemoenzymatic synthesis of gaudimycin C. Kallio P, Liu Z, Mäntsälä P, Niemi J, Metsä-Ketelä M. Chem Biol 15 157-166 (2008)
  13. Evolution of mitochondrial-type cytochrome c domains and of the protein machinery for their assembly. Bertini I, Cavallaro G, Rosato A. J Inorg Biochem 101 1798-1811 (2007)
  14. Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R. Appl Environ Microbiol 80 7592-7603 (2014)
  15. Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum. Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu SJ, Li S. J Biol Chem 291 6583-6594 (2016)
  16. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L, Vrielink A. Biochem J 400 13-22 (2006)
  17. Purification and characterization of active-site components of the putative p-cresol methylhydroxylase membrane complex from Geobacter metallireducens. Johannes J, Bluschke A, Jehmlich N, von Bergen M, Boll M. J Bacteriol 190 6493-6500 (2008)
  18. Alkylphenol biotransformations catalyzed by 4-ethylphenol methylenehydroxylase. Hopper DJ, Cottrell L. Appl Environ Microbiol 69 3650-3652 (2003)
  19. Crystal structure and immunologic characterization of the major grass pollen allergen Phl p 4. Zafred D, Nandy A, Pump L, Kahlert H, Keller W. J Allergy Clin Immunol 132 696-703.e10 (2013)
  20. Evolutionary history of D-lactate dehydrogenases: a phylogenomic perspective on functional diversity in the FAD binding oxidoreductase/transferase type 4 family. Cristescu ME, Egbosimba EE. J Mol Evol 69 276-287 (2009)
  21. Direction of the reactivity of vanillyl-alcohol oxidase with 4-alkylphenols. van den Heuvel RH, Fraaije MW, van Berkel WJ. FEBS Lett 481 109-112 (2000)
  22. Toluene bioconversion to p-hydroxybenzoate by fed-batch cultures of recombinant Pseudomonas putida. Miller ES, Peretti SW. Biotechnol Bioeng 77 340-351 (2002)
  23. Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase. Ewing TA, Nguyen QT, Allan RC, Gygli G, Romero E, Binda C, Fraaije MW, Mattevi A, van Berkel WJH. J Biol Chem 292 14668-14679 (2017)
  24. A single loop is essential for the octamerization of vanillyl alcohol oxidase. Ewing TA, Gygli G, van Berkel WJ. FEBS J 283 2546-2559 (2016)
  25. Heterologous expression in Pseudomonas aeruginosa and purification of the 9.2-kDa c-type cytochrome subunit of p-cresol methylhydroxylase. Cronin CN, McIntire WS. Protein Expr Purif 19 74-83 (2000)
  26. Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system. Du L, Dong S, Zhang X, Jiang C, Chen J, Yao L, Wang X, Wan X, Liu X, Wang X, Huang S, Cui Q, Feng Y, Liu SJ, Li S. Proc Natl Acad Sci U S A 114 E5129-E5137 (2017)
  27. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. Gygli G, Lucas MF, Guallar V, van Berkel WJH. PLoS Comput Biol 13 e1005787 (2017)
  28. Discovery, Biocatalytic Exploration and Structural Analysis of a 4-Ethylphenol Oxidase from Gulosibacter chungangensis. Alvigini L, Gran-Scheuch A, Guo Y, Trajkovic M, Saifuddin M, Fraaije MW, Mattevi A. Chembiochem 22 3225-3233 (2021)
  29. Flavin-Dependent Thymidylate Synthase as a Drug Target for Deadly Microbes: Mutational Study and a Strategy for Inhibitor Design. Mathews II. J Bioterror Biodef Suppl 12 004 (2013)
  30. Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2. Shettigar M, Balotra S, Kasprzak A, Pearce SL, Lacey MJ, Taylor MC, Liu JW, Cahill D, Oakeshott JG, Pandey G. Appl Environ Microbiol 86 e00375-20 (2020)
  31. Lactate dehydrogenase D is a general dehydrogenase for D-2-hydroxyacids and is associated with D-lactic acidosis. Jin S, Chen X, Yang J, Ding J. Nat Commun 14 6638 (2023)
  32. Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1. Chaput G, Billings AF, DeDiego L, Orellana R, Adkins JN, Nicora CD, Kim YM, Chu R, Simmons B, DeAngelis KM. PLoS One 15 e0233823 (2020)
  33. Structure, substrate specificity, and catalytic mechanism of human D-2-HGDH and insights into pathogenicity of disease-associated mutations. Yang J, Zhu H, Zhang T, Ding J. Cell Discov 7 3 (2021)
  34. Structure-based electron-confurcation mechanism of the Ldh-EtfAB complex. Kayastha K, Katsyv A, Himmrich C, Welsch S, Schuller JM, Ermler U, Müller V. Elife 11 e77095 (2022)


Related citations provided by authors (1)