1d5l Citations

Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 A resolution.

Biochemistry 40 13990-7 (2001)
Related entries: 1d7w, 1dnu, 1dnw, 1mhl

Cited: 60 times
EuropePMC logo PMID: 11705390

Abstract

The 1.9 A X-ray crystal structure of human myeloperoxidase complexed with cyanide (R = 0.175, R(free) = 0.215) indicates that cyanide binds to the heme iron with a bent Fe-C-N angle of approximately 157 degrees, and binding is accompanied by movement of the iron atom by 0.2 A into the porphyrin plane. The bent orientation of the cyanide allows the formation of three hydrogen bonds between its nitrogen atom and the distal histidine as well as two water molecules in the distal cavity. The 1.85 A X-ray crystal structure of an inhibitory complex with thiocyanate (R = 0.178, R(free) = 0.210) indicates replacement of chloride at a proximal helix halide binding site in addition to binding in the distal cavity in an orientation parallel with the heme. The thiocyanate replaces two water molecules in the distal cavity and is hydrogen bonded to Gln 91. The 1.9 A structures of the complexes formed by bromide (R = 0.215, R(free) = 0.270) and thiocyanate (R = 0.198, R(free) = 0.224) with the cyanide complex of myeloperoxidase show how the presence of bound cyanide alters the binding site for bromide in the distal heme cavity, while having little effect on thiocyanate binding. These results support a model for a single common binding site for halides and thiocyanate as substrates or as inhibitors near the delta-meso carbon of the porphyrin ring in myeloperoxidase.

Reviews - 1d5l mentioned but not cited (1)

  1. Myeloperoxidase: a target for new drug development? Malle E, Furtmüller PG, Sattler W, Obinger C. Br. J. Pharmacol. 152 838-854 (2007)


Reviews citing this publication (12)

  1. Mammalian heme peroxidases: from molecular mechanisms to health implications. Davies MJ, Hawkins CL, Pattison DI, Rees MD. Antioxid. Redox Signal. 10 1199-1234 (2008)
  2. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. van der Veen BS, de Winther MP, Heeringa P. Antioxid. Redox Signal. 11 2899-2937 (2009)
  3. Active site structure and catalytic mechanisms of human peroxidases. Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Arch. Biochem. Biophys. 445 199-213 (2006)
  4. Structural perspective on enzymatic halogenation. Blasiak LC, Drennan CL. Acc. Chem. Res. 42 147-155 (2009)
  5. Lactoperoxidase: structural insights into the function,ligand binding and inhibition. Sharma S, Singh AK, Kaushik S, Sinha M, Singh RP, Sharma P, Sirohi H, Kaur P, Singh TP. Int J Biochem Mol Biol 4 108-128 (2013)
  6. Chemical approaches to detect and analyze protein sulfenic acids. Furdui CM, Poole LB. Mass Spectrom Rev 33 126-146 (2014)
  7. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Nat Prod Rep 24 571-584 (2007)
  8. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Delporte C, Van Antwerpen P, Vanhamme L, Roumeguère T, Zouaoui Boudjeltia K. Mediators Inflamm. 2013 971579 (2013)
  9. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. Huang J, Milton A, Arnold RD, Huang H, Smith F, Panizzi JR, Panizzi P. J. Leukoc. Biol. 99 541-548 (2016)
  10. Rational drug design applied to myeloperoxidase inhibition. Van Antwerpen P, Zouaoui Boudjeltia K. Free Radic. Res. 49 711-720 (2015)
  11. The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. Zuhra K, Szabo C. FEBS J 289 2481-2515 (2022)
  12. Biosynthesis of human myeloperoxidase. Nauseef WM. Arch. Biochem. Biophys. 642 1-9 (2018)

Articles citing this publication (47)

  1. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Bhave G, Cummings CF, Vanacore RM, Kumagai-Cresse C, Ero-Tolliver IA, Rafi M, Kang JS, Pedchenko V, Fessler LI, Fessler JH, Hudson BG. Nat. Chem. Biol. 8 784-790 (2012)
  2. Crystal structure of lactoperoxidase at 2.4 A resolution. Singh AK, Singh N, Sharma S, Singh SB, Kaur P, Bhushan A, Srinivasan A, Singh TP. J. Mol. Biol. 376 1060-1075 (2008)
  3. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Spalteholz H, Panasenko OM, Arnhold J. Arch. Biochem. Biophys. 445 225-234 (2006)
  4. Crystallographic snapshots of cyanide- and water-bound C-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Kung Y, Doukov TI, Seravalli J, Ragsdale SW, Drennan CL. Biochemistry 48 7432-7440 (2009)
  5. Essential role of proximal histidine-asparagine interaction in mammalian peroxidases. Carpena X, Vidossich P, Schroettner K, Calisto BM, Banerjee S, Stampler J, Soudi M, Furtmüller PG, Rovira C, Fita I, Obinger C. J. Biol. Chem. 284 25929-25937 (2009)
  6. Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-A resolution. Singh AK, Singh N, Sharma S, Shin K, Takase M, Kaur P, Srinivasan A, Singh TP. Biophys. J. 96 646-654 (2009)
  7. Structural evidence of substrate specificity in mammalian peroxidases: structure of the thiocyanate complex with lactoperoxidase and its interactions at 2.4 A resolution. Sheikh IA, Singh AK, Singh N, Sinha M, Singh SB, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. J. Biol. Chem. 284 14849-14856 (2009)
  8. Glycosylation pattern of mature dimeric leukocyte and recombinant monomeric myeloperoxidase: glycosylation is required for optimal enzymatic activity. Van Antwerpen P, Slomianny MC, Boudjeltia KZ, Delporte C, Faid V, Calay D, Rousseau A, Moguilevsky N, Raes M, Vanhamme L, Furtmüller PG, Obinger C, Vanhaeverbeek M, Nève J, Michalski JC. J. Biol. Chem. 285 16351-16359 (2010)
  9. Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution. Singh AK, Kumar RP, Pandey N, Singh N, Sinha M, Bhushan A, Kaur P, Sharma S, Singh TP. J. Biol. Chem. 285 1569-1576 (2010)
  10. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. Singh AK, Singh N, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. J. Biol. Chem. 284 20311-20318 (2009)
  11. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M. J Biol Chem 296 100144 (2021)
  12. 4,4'-Diaminodiphenyl Sulfone (DDS) as an Inflammasome Competitor. Lee JH, An HK, Sohn MG, Kivela P, Oh S. Int J Mol Sci 21 E5953 (2020)
  13. Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes. Sokolov AV, Zakharova ET, Kostevich VA, Samygina VR, Vasilyev VB. Biometals 27 815-828 (2014)
  14. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Battistuzzi G, Bellei M, Vlasits J, Banerjee S, Furtmüller PG, Sola M, Obinger C. Arch. Biochem. Biophys. 494 72-77 (2010)
  15. The vinyl-sulfonium bond in human myeloperoxidase: impact on compound I formation and reduction by halides and thiocyanate. Zederbauer M, Furtmüller PG, Ganster B, Moguilevsky N, Obinger C. Biochem. Biophys. Res. Commun. 356 450-456 (2007)
  16. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae). Bensalem S, Soubhye J, Aldib I, Bournine L, Nguyen AT, Vanhaeverbeek M, Rousseau A, Boudjeltia KZ, Sarakbi A, Kauffmann JM, Nève J, Prévost M, Stévigny C, Maiza-Benabdesselam F, Bedjou F, Van Antwerpen P, Duez P. J Ethnopharmacol 154 361-369 (2014)
  17. Myeloperoxidase-catalyzed taurine chlorination: initial versus equilibrium rate. Ramos DR, Victoria García M, Canle L M, Arturo Santaballa J, Furtmüller PG, Obinger C. Arch. Biochem. Biophys. 466 221-233 (2007)
  18. Ciona intestinalis peroxinectin is a novel component of the peroxidase-cyclooxygenase gene superfamily upregulated by LPS. Vizzini A, Parrinello D, Sanfratello MA, Mangano V, Parrinello N, Cammarata M. Dev. Comp. Immunol. 41 59-67 (2013)
  19. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies. Clay MD, Yang TC, Jenney FE, Kung IY, Cosper CA, Krishnan R, Kurtz DM, Adams MW, Hoffman BM, Johnson MK. Biochemistry 45 427-438 (2006)
  20. Myeloperoxidase-catalyzed chlorination: the quest for the active species. Ramos DR, García MV, Canle L M, Santaballa JA, Furtmüller PG, Obinger C. J. Inorg. Biochem. 102 1300-1311 (2008)
  21. CO binding and ligand discrimination in human myeloperoxidase. Murphy EJ, Maréchal A, Segal AW, Rich PR. Biochemistry 49 2150-2158 (2010)
  22. How covalent heme to protein bonds influence the formation and reactivity of redox intermediates of a bacterial peroxidase. Auer M, Nicolussi A, Schütz G, Furtmüller PG, Obinger C. J. Biol. Chem. 289 31480-31491 (2014)
  23. Structural evidence for the order of preference of inorganic substrates in mammalian heme peroxidases: crystal structure of the complex of lactoperoxidase with four inorganic substrates, SCN, I, Br and Cl. Singh AK, Pandey N, Sinha M, Kaur P, Sharma S, Singh TP. Int J Biochem Mol Biol 2 328-339 (2011)
  24. Histidine 386 and its role in cyclooxygenase and peroxidase catalysis by prostaglandin-endoperoxide H synthases. Seibold SA, Ball T, Hsi LC, Mills DA, Abeysinghe RD, Micielli R, Rieke CJ, Cukier RI, Smith WL. J. Biol. Chem. 278 46163-46170 (2003)
  25. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Chaloupkova R, Prudnikova T, Rezacova P, Prokop Z, Koudelakova T, Daniel L, Brezovsky J, Ikeda-Ohtsubo W, Sato Y, Kuty M, Nagata Y, Kuta Smatanova I, Damborsky J. Acta Crystallogr. D Biol. Crystallogr. 70 1884-1897 (2014)
  26. Vernonia Amygdalina Del. stimulated glucose uptake in brain tissues enhances antioxidative activities; and modulates functional chemistry and dysregulated metabolic pathways. Erukainure OL, Oyebode OA, Ibeji CU, Koorbanally NA, Islam MS. Metab Brain Dis 34 721-732 (2019)
  27. MPO Inhibitors Selected by Virtual Screening. Malvezzi A, Queiroz RF, de Rezende L, Augusto O, Amaral AT. Mol Inform 30 605-613 (2011)
  28. Myeloperoxidase scavenges peroxynitrite: A novel anti-inflammatory action of the heme enzyme. Koyani CN, Flemmig J, Malle E, Arnhold J. Arch. Biochem. Biophys. 571 1-9 (2015)
  29. Study of interaction of ceruloplasmin, lactoferrin, and myeloperoxidase by photon correlation spectroscopy. Sokolov AV, Prozorovskii VN, Vasilyev VB. Biochemistry Mosc. 74 1225-1227 (2009)
  30. Healing acceleration of acetic acid-induced colitis by marigold (Calendula officinalis) in male rats. Tanideh N, Jamshidzadeh A, Sepehrimanesh M, Hosseinzadeh M, Koohi-Hosseinabadi O, Najibi A, Raam M, Daneshi S, Asadi-Yousefabad SL. Saudi J Gastroenterol 22 50-56 (2016)
  31. Human myeloperoxidase catalyzes an oscillating peroxidase-oxidase reaction. Brasen JC, Lunding A, Olsen LF. Arch. Biochem. Biophys. 431 55-62 (2004)
  32. Structure of human promyeloperoxidase (proMPO) and the role of the propeptide in processing and maturation. Grishkovskaya I, Paumann-Page M, Tscheliessnig R, Stampler J, Hofbauer S, Soudi M, Sevcnikar B, Oostenbrink C, Furtmüller PG, Djinović-Carugo K, Nauseef WM, Obinger C. J. Biol. Chem. 292 8244-8261 (2017)
  33. X-ray structure of the metcyano form of dehaloperoxidase from Amphitrite ornata: evidence for photoreductive dissociation of the iron-cyanide bond. de Serrano VS, Davis MF, Gaff JF, Zhang Q, Chen Z, D'Antonio EL, Bowden EF, Rose R, Franzen S. Acta Crystallogr. D Biol. Crystallogr. 66 770-782 (2010)
  34. An In Silico Study of the Antioxidant Ability for Two Caffeine Analogs Using Molecular Docking and Quantum Chemical Methods. Costa JDS, Ramos RDS, Costa KDSL, Brasil DDSB, Silva CHTPD, Ferreira EFB, Borges RDS, Campos JM, Macêdo WJDC, Santos CBRD. Molecules 23 (2018)
  35. Deglycosylation of myeloperoxidase uncovers its novel antigenicity. Yu JT, Li JN, Wang J, Jia XY, Cui Z, Zhao MH. Kidney Int. 91 1410-1419 (2017)
  36. The effect of myeloperoxidase isoforms on biophysical properties of red blood cells. Shamova EV, Gorudko IV, Grigorieva DV, Sokolov AV, Kokhan AU, Melnikova GB, Yafremau NA, Gusev SA, Sveshnikova AN, Vasilyev VB, Cherenkevich SN, Panasenko OM. Mol Cell Biochem 464 119-130 (2020)
  37. ESR and X-ray Structure Investigations on the Binding and Mechanism of Inhibition of the Native State of Myeloperoxidase with Low Molecular Weight Fragments. Chavali B, Masquelin T, Nilges MJ, Timm DE, Stout SL, Matter WF, Jin N, Jadhav PK, Deng GG. Appl Magn Reson 46 853-873 (2015)
  38. Specific Treatment Exists for SARS-CoV-2 ARDS. Kanwar B, Lee CJ, Lee JH. Vaccines (Basel) 9 635 (2021)
  39. DFT calculations suggest a new type of self-protection and self-inhibition mechanism in the mammalian heme enzyme myeloperoxidase: nucleophilic addition of a functional water rather than one-electron reduction. Sicking W, Somnitz H, Schmuck C. Chemistry 18 10937-10948 (2012)
  40. Design of anti-thyroid drugs: Binding studies and structure determination of the complex of lactoperoxidase with 2-mercaptoimidazole at 2.30 Å resolution. Sirohi HV, Singh PK, Iqbal N, Sharma P, Singh AK, Kaur P, Sharma S, Singh TP. Proteins 85 1882-1890 (2017)
  41. Highly Efficient Activatable MRI Probe to Sense Myeloperoxidase Activity. Wang C, Cheng D, Jalali Motlagh N, Kuellenberg EG, Wojtkiewicz GR, Schmidt SP, Stocker R, Chen JW. J Med Chem 64 5874-5885 (2021)
  42. Inhibition of Myeloperoxidase. Soubhye J, Furtmüller PG, Dufrasne F, Obinger C. Handb Exp Pharmacol 264 261-285 (2021)
  43. Mesna (2-mercaptoethane sodium sulfonate) functions as a regulator of myeloperoxidase. Jeelani R, Jahanbakhsh S, Kohan-Ghadr HR, Thakur M, Khan S, Aldhaheri SR, Yang Z, Andreana P, Morris R, Abu-Soud HM. Free Radic. Biol. Med. 110 54-62 (2017)
  44. Native glycosylation and binding of the antidepressant paroxetine in a low-resolution crystal structure of human myeloperoxidase. Krawczyk L, Semwal S, Soubhye J, Lemri Ouadriri S, Prévost M, Van Antwerpen P, Roos G, Bouckaert J. Acta Crystallogr D Struct Biol 78 1099-1109 (2022)
  45. Neutrophil activation in response to monomeric myeloperoxidase. Gorudko IV, Grigorieva DV, Sokolov AV, Shamova EV, Kostevich VA, Kudryavtsev IV, Syromiatnikova ED, Vasilyev VB, Cherenkevich SN, Panasenko OM. Biochem. Cell Biol. 96 592-601 (2018)
  46. Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study. Aldib I, Gelbcke M, Soubhye J, Prévost M, Furtmüller PG, Obinger C, Elfving B, Alard IC, Roos G, Delporte C, Berger G, Dufour D, Zouaoui Boudjeltia K, Nève J, Dufrasne F, Van Antwerpen P. Eur J Med Chem 123 746-762 (2016)
  47. Optimization of methods for the accurate characterization of whole blood neutrophils. Connelly AN, Huijbregts RPH, Pal HC, Kuznetsova V, Davis MD, Ong KL, Fay CX, Greene ME, Overton ET, Hel Z. Sci Rep 12 3667 (2022)


Related citations provided by authors (4)