1d5g Citations

Solution structure of the PDZ2 domain from cytosolic human phosphatase hPTP1E complexed with a peptide reveals contribution of the beta2-beta3 loop to PDZ domain-ligand interactions.

J Mol Biol 320 813-20 (2002)
Cited: 56 times
EuropePMC logo PMID: 12095257

Abstract

The solution structure of the second PDZ domain from human phosphatase hPTP1E in complex with a C-terminal peptide from the guanine nucleotide exchange factor RA-GEF-2 has been determined using 2D and 3D heteronuclear NMR experiments. Compared to previously solved structures, the hPTP1E complex shows an enlarged interaction surface with the C terminus of the bound peptide. Novel contacts were found between the long structured beta2/beta3 loop of the PDZ domain and the sixth amino acid residue from the C terminus of the peptide. This work underlines the importance of the beta2/beta3 loop for ligand selection by PDZ domains.

Reviews - 1d5g mentioned but not cited (4)

  1. The origin of allosteric functional modulation: multiple pre-existing pathways. del Sol A, Tsai CJ, Ma B, Nussinov R. Structure 17 1042-1050 (2009)
  2. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Igumenova TI, Frederick KK, Wand AJ. Chem Rev 106 1672-1699 (2006)
  3. Frameworks for understanding long-range intra-protein communication. Whitley MJ, Lee AL. Curr Protein Pept Sci 10 116-127 (2009)
  4. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. Liu X, Fuentes EJ. Int Rev Cell Mol Biol 343 129-218 (2019)

Articles - 1d5g mentioned but not cited (12)

  1. Signaling pathways of PDZ2 domain: a molecular dynamics interaction correlation analysis. Kong Y, Karplus M. Proteins 74 145-154 (2009)
  2. Structure of PICK1 and other PDZ domains obtained with the help of self-binding C-terminal extensions. Elkins JM, Papagrigoriou E, Berridge G, Yang X, Phillips C, Gileadi C, Savitsky P, Doyle DA. Protein Sci 16 683-694 (2007)
  3. Functional dynamics of PDZ binding domains: a normal-mode analysis. De Los Rios P, Cecconi F, Pretre A, Dietler G, Michielin O, Piazza F, Juanico B. Biophys J 89 14-21 (2005)
  4. Crystallographic and nuclear magnetic resonance evaluation of the impact of peptide binding to the second PDZ domain of protein tyrosine phosphatase 1E. Zhang J, Sapienza PJ, Ke H, Chang A, Hengel SR, Wang H, Phillips GN, Lee AL. Biochemistry 49 9280-9291 (2010)
  5. Kinetic response of a photoperturbed allosteric protein. Buchli B, Waldauer SA, Walser R, Donten ML, Pfister R, Blöchliger N, Steiner S, Caflisch A, Zerbe O, Hamm P. Proc Natl Acad Sci U S A 110 11725-11730 (2013)
  6. Putting into practice domain-linear motif interaction predictions for exploration of protein networks. Luck K, Fournane S, Kieffer B, Masson M, Nominé Y, Travé G. PLoS One 6 e25376 (2011)
  7. MCPath: Monte Carlo path generation approach to predict likely allosteric pathways and functional residues. Kaya C, Armutlulu A, Ekesan S, Haliloglu T. Nucleic Acids Res 41 W249-55 (2013)
  8. Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility. Ho BK, Agard DA. Protein Sci 19 398-411 (2010)
  9. Accurate prediction of the dynamical changes within the second PDZ domain of PTP1e. Cilia E, Vuister GW, Lenaerts T. PLoS Comput Biol 8 e1002794 (2012)
  10. Effects of NMR spectral resolution on protein structure calculation. Tikole S, Jaravine V, Orekhov VY, Güntert P. PLoS One 8 e68567 (2013)
  11. Multi-Dimensional Structure and Dynamics Landscape of Proteins in Mammalian Cells Revealed by In-Cell NMR. Kadavath H, Cecilia Prymaczok N, Eichmann C, Riek R, Gerez JA. Angew Chem Int Ed Engl 62 e202213976 (2023)
  12. SenseNet, a tool for analysis of protein structure networks obtained from molecular dynamics simulations. Schneider M, Antes I. PLoS One 17 e0265194 (2022)


Reviews citing this publication (3)

  1. Plasticity of PDZ domains in ligand recognition and signaling. Ivarsson Y. FEBS Lett 586 2638-2647 (2012)
  2. The protein tyrosine phosphatase PTP-Basophil/Basophil-like. Interacting proteins and molecular functions. Erdmann KS. Eur J Biochem 270 4789-4798 (2003)
  3. Allosterism in the PDZ Family. Stevens AO, He Y. Int J Mol Sci 23 1454 (2022)

Articles citing this publication (37)

  1. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. Fuentes EJ, Der CJ, Lee AL. J Mol Biol 335 1105-1115 (2004)
  2. Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides. Wiedemann U, Boisguerin P, Leben R, Leitner D, Krause G, Moelling K, Volkmer-Engert R, Oschkinat H. J Mol Biol 343 703-718 (2004)
  3. Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families. Zhang Y, Yeh S, Appleton BA, Held HA, Kausalya PJ, Phua DCY, Lee Wong W, Lasky LA, Wiesmann C, Hunziker W, Sidhu SS. J Biol Chem 281 22299-22311 (2006)
  4. Evaluation of energetic and dynamic coupling networks in a PDZ domain protein. Fuentes EJ, Gilmore SA, Mauldin RV, Lee AL. J Mol Biol 364 337-351 (2006)
  5. Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity. Appleton BA, Zhang Y, Wu P, Yin JP, Hunziker W, Skelton NJ, Sidhu SS, Wiesmann C. J Biol Chem 281 22312-22320 (2006)
  6. Demonstration of long-range interactions in a PDZ domain by NMR, kinetics, and protein engineering. Gianni S, Walma T, Arcovito A, Calosci N, Bellelli A, Engström A, Travaglini-Allocatelli C, Brunori M, Jemth P, Vuister GW. Structure 14 1801-1809 (2006)
  7. Molecular roots of degenerate specificity in syntenin's PDZ2 domain: reassessment of the PDZ recognition paradigm. Kang BS, Cooper DR, Devedjiev Y, Derewenda U, Derewenda ZS. Structure 11 845-853 (2003)
  8. An improved method for the synthesis of cellulose membrane-bound peptides with free C termini is useful for PDZ domain binding studies. Boisguerin P, Leben R, Ay B, Radziwill G, Moelling K, Dong L, Volkmer-Engert R. Chem Biol 11 449-459 (2004)
  9. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Runyon ST, Zhang Y, Appleton BA, Sazinsky SL, Wu P, Pan B, Wiesmann C, Skelton NJ, Sidhu SS. Protein Sci 16 2454-2471 (2007)
  10. Targeting specific PDZ domains of PSD-95; structural basis for enhanced affinity and enzymatic stability of a cyclic peptide. Piserchio A, Salinas GD, Li T, Marshall J, Spaller MR, Mierke DF. Chem Biol 11 469-473 (2004)
  11. Sequence-specific long range networks in PSD-95/discs large/ZO-1 (PDZ) domains tune their binding selectivity. Gianni S, Haq SR, Montemiglio LC, Jürgens MC, Engström Å, Chi CN, Brunori M, Jemth P. J Biol Chem 286 27167-27175 (2011)
  12. Structural and functional analysis of the ligand specificity of the HtrA2/Omi PDZ domain. Zhang Y, Appleton BA, Wu P, Wiesmann C, Sidhu SS. Protein Sci 16 1738-1750 (2007)
  13. The Tiam1 PDZ domain couples to Syndecan1 and promotes cell-matrix adhesion. Shepherd TR, Klaus SM, Liu X, Ramaswamy S, DeMali KA, Fuentes EJ. J Mol Biol 398 730-746 (2010)
  14. Distal interactions within the par3-VE-cadherin complex. Tyler RC, Peterson FC, Volkman BF. Biochemistry 49 951-957 (2010)
  15. Structural basis of beta-catenin recognition by Tax-interacting protein-1. Zhang J, Yan X, Shi C, Yang X, Guo Y, Tian C, Long J, Shen Y. J Mol Biol 384 255-263 (2008)
  16. The structure of the Tiam1 PDZ domain/ phospho-syndecan1 complex reveals a ligand conformation that modulates protein dynamics. Liu X, Shepherd TR, Murray AM, Xu Z, Fuentes EJ. Structure 21 342-354 (2013)
  17. Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. Kachel N, Erdmann KS, Kremer W, Wolff P, Gronwald W, Heumann R, Kalbitzer HR. J Mol Biol 334 143-155 (2003)
  18. Beyond the binding site: the role of the β₂-β₃ loop and extra-domain structures in PDZ domains. Mostarda S, Gfeller D, Rao F. PLoS Comput Biol 8 e1002429 (2012)
  19. Solution structure of AF-6 PDZ domain and its interaction with the C-terminal peptides from Neurexin and Bcr. Zhou H, Xu Y, Yang Y, Huang A, Wu J, Shi Y. J Biol Chem 280 13841-13847 (2005)
  20. A closed binding pocket and global destabilization modify the binding properties of an alternatively spliced form of the second PDZ domain of PTP-BL. Walma T, Aelen J, Nabuurs SB, Oostendorp M, van den Berk L, Hendriks W, Vuister GW. Structure 12 11-20 (2004)
  21. Fas-associated phosphatase 1 (Fap1) influences βcatenin activity in myeloid progenitor cells expressing the Bcr-abl oncogene. Huang W, Bei L, Eklund EA. J Biol Chem 288 12766-12776 (2013)
  22. The role of Fas-associated phosphatase 1 in leukemia stem cell persistence during tyrosine kinase inhibitor treatment of chronic myeloid leukemia. Huang W, Luan CH, Hjort EE, Bei L, Mishra R, Sakamoto KM, Platanias LC, Eklund EA. Leukemia 30 1502-1509 (2016)
  23. The structural flexibility of the shank1 PDZ domain is important for its binding to different ligands. Lee JH, Park H, Park SJ, Kim HJ, Eom SH. Biochem Biophys Res Commun 407 207-212 (2011)
  24. Solution structure and backbone dynamics of the AF-6 PDZ domain/Bcr peptide complex. Chen Q, Niu X, Xu Y, Wu J, Shi Y. Protein Sci 16 1053-1062 (2007)
  25. Recognition of protein allosteric states and residues: Machine learning approaches. Zhou H, Dong Z, Tao P. J Comput Chem 39 1481-1490 (2018)
  26. Peptide binding to the PDZ3 domain by conformational selection. Steiner S, Caflisch A. Proteins 80 2562-2572 (2012)
  27. Targeting the PDZ domains of molecular scaffolds of transmembrane ion channels. Piserchio A, Spaller M, Mierke DF. AAPS J 8 E396-401 (2006)
  28. Characterization of PDZ domain-peptide interaction interface based on energetic patterns. Li N, Hou T, Ding B, Wang W. Proteins 79 3208-3220 (2011)
  29. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Huang W, Bei L, Eklund EA. Oncotarget 9 25891-25902 (2018)
  30. Spotting the difference in molecular dynamics simulations of biomolecules. Sakuraba S, Kono H. J Chem Phys 145 074116 (2016)
  31. Redox-regulated affinity of the third PDZ domain in the phosphotyrosine phosphatase PTP-BL for cysteine-containing target peptides. van den Berk LC, Landi E, Harmsen E, Dente L, Hendriks WJ. FEBS J 272 3306-3316 (2005)
  32. Biochemical Large-Scale Interaction Analysis of Murine Olfactory Receptors and Associated Signaling Proteins with Post-Synaptic Density 95, Drosophila Discs Large, Zona-Occludens 1 (PDZ) Domains. Jansen F, Kalbe B, Scholz P, Fränzel B, Osterloh M, Wolters D, Hatt H, Neuhaus EM, Osterloh S. Mol Cell Proteomics 14 2072-2084 (2015)
  33. Real-time observation of ligand-induced allosteric transitions in a PDZ domain. Bozovic O, Zanobini C, Gulzar A, Jankovic B, Buhrke D, Post M, Wolf S, Stock G, Hamm P. Proc Natl Acad Sci U S A 117 26031-26039 (2020)
  34. Understanding the effect of alternative splicing in the folding and function of the second PDZ from protein tyrosine phosphatase-BL. Di Silvio E, Toto A, Bonetti D, Morrone A, Gianni S. Sci Rep 5 9299 (2015)
  35. Atomic resolution protein allostery from the multi-state structure of a PDZ domain. Ashkinadze D, Kadavath H, Pokharna A, Chi CN, Friedmann M, Strotz D, Kumari P, Minges M, Cadalbert R, Königl S, Güntert P, Vögeli B, Riek R. Nat Commun 13 6232 (2022)
  36. ESI-MS and FTIR studies of the interaction between the second PDZ domain of hPTP1E and target peptides. Papp R, Ekiel I, English AM. Biochem Cell Biol 81 71-80 (2003)
  37. Phosphorylation-induced changes in the PDZ domain of Dishevelled 3. Jurásek M, Kumar J, Paclíková P, Kumari A, Tripsianes K, Bryja V, Vácha R. Sci Rep 11 1484 (2021)


Related citations provided by authors (1)