1czp Citations

Refined X-ray structures of the oxidized, at 1.3 A, and reduced, at 1.17 A, [2Fe-2S] ferredoxin from the cyanobacterium Anabaena PCC7119 show redox-linked conformational changes.

Biochemistry 38 15764-73 (1999)
Cited: 75 times
EuropePMC logo PMID: 10625442

Abstract

The chemical sequence of the [2Fe-2S] ferredoxin from the cyanobacterium AnabaenaPCC7119 (Fd7119) and its high-resolution X-ray structures in the oxidized and reduced states have been determined. The Fd7119 sequence is identical to that of the ferredoxin from the PCC7120 strain (Fd7120). X-ray diffraction data were collected at 100 K with an oxidized trigonal Fd7119 crystal, at 1.3 A resolution, and with an orthorhombic crystal, previously reduced with dithionite and flash frozen under anaerobic conditions, at 1.17 A resolution. The two molecular models were determined by molecular replacement with the [2Fe-2S] ferredoxin from the strain PCC7120 (Rypniewski, W. R., Breiter, D. R., Benning, M. M., Wesenberg, G., Oh, B.-H., Markley, J. L., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 4126-4131.) The final R-factors are 0. 140 (for the reduced crystal) and 0.138 (for the oxidized crystal). The [2Fe-2S] cluster appears as a significantly distorted lozenge in the reduced and oxidized redox states. The major conformational difference between the two redox forms concerns the peptide bond linking Cys46 and Ser47 which points its carbonyl oxygen away from the [2Fe-2S] cluster ("CO out") in the reduced molecule and toward it ("CO in") in the oxidized one. The "CO out" conformation could be the signature of the reduction of the iron atom Fe1, which is close to the molecular surface. Superposition of the three crystallographically independent molecules shows that the putative recognition site with the physiological partner (FNR) involves charged, hydrophobic residues and invariant water molecules.

Articles - 1czp mentioned but not cited (14)

  1. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  2. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library. Peterson RW, Dutton PL, Wand AJ. Protein Sci 13 735-751 (2004)
  3. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Groysman S, Holm RH. Biochemistry 48 2310-2320 (2009)
  4. Binding interface prediction by combining protein-protein docking results. Hwang H, Vreven T, Weng Z. Proteins 82 57-66 (2014)
  5. Systematic optimization model and algorithm for binding sequence selection in computational enzyme design. Huang X, Han K, Zhu Y. Protein Sci 22 929-941 (2013)
  6. Computational protein design quantifies structural constraints on amino acid covariation. Ollikainen N, Kortemme T. PLoS Comput Biol 9 e1003313 (2013)
  7. Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii. Chang CH, King PW, Ghirardi ML, Kim K. Biophys J 93 3034-3045 (2007)
  8. Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. Campbell IJ, Bennett GN, Silberg JJ. Front Energy Res 7 (2019)
  9. EPR-Derived Structure of a Paramagnetic Intermediate Generated by Biotin Synthase BioB. Tao L, Stich TA, Fugate CJ, Jarrett JT, Britt RD. J Am Chem Soc 140 12947-12963 (2018)
  10. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  11. Specificity of broad protein interaction surfaces for proteins with multiple binding partners. Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y. Biophys Physicobiol 13 105-115 (2016)
  12. A Coarse-Grained Methodology Identifies Intrinsic Mechanisms That Dissociate Interacting Protein Pairs. Abdizadeh H, Jalalypour F, Atilgan AR, Atilgan C. Front Mol Biosci 7 210 (2020)
  13. Effects of Active-Center Reduction of Plant-Type Ferredoxin on Its Structure and Dynamics: Computational Analysis Using Molecular Dynamics Simulations. Nakayoshi T, Ohnishi Y, Tanaka H, Kurisu G, Kondo HX, Takano Y. Int J Mol Sci 23 15913 (2022)
  14. Forty years of the structure of plant-type ferredoxin. Kurisu G, Tsukihara T. J Biochem 171 19-21 (2022)


Reviews citing this publication (13)

  1. Classification and phylogeny of hydrogenases. Vignais PM, Billoud B, Meyer J. FEMS Microbiol Rev 25 455-501 (2001)
  2. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem Rev 114 4366-4469 (2014)
  3. Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. Meyer J. J Biol Inorg Chem 13 157-170 (2008)
  4. Structural and functional diversity of ferredoxin-NADP(+) reductases. Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G. Arch Biochem Biophys 474 283-291 (2008)
  5. Ferredoxins of the third kind. Meyer J. FEBS Lett 509 1-5 (2001)
  6. Insights into properties and energetics of iron-sulfur proteins from simple clusters to nitrogenase. Noodleman L, Lovell T, Liu T, Himo F, Torres RA. Curr Opin Chem Biol 6 259-273 (2002)
  7. Redox control of protein conformation in flavoproteins. Senda T, Senda M, Kimura S, Ishida T. Antioxid Redox Signal 11 1741-1766 (2009)
  8. Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. Kobayashi K, Fujikawa M, Kozawa T. J Inorg Biochem 133 87-91 (2014)
  9. Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases. Sawyer A, Winkler M. Photosynth Res 134 307-316 (2017)
  10. Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications. Mulo P, Medina M. Photosynth Res 134 265-280 (2017)
  11. Iron-sulphur cluster biogenesis via the SUF pathway. Bai Y, Chen T, Happe T, Lu Y, Sawyer A. Metallomics 10 1038-1052 (2018)
  12. How Bacterial Redox Sensors Transmit Redox Signals via Structural Changes. Lee IG, Lee BJ. Antioxidants (Basel) 10 502 (2021)
  13. Radical SAM Enzymes and Metallocofactor Assembly: A Structural Point of View. Nicolet Y, Cherrier MV, Amara P. ACS Bio Med Chem Au 2 36-52 (2022)

Articles citing this publication (48)

  1. Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3. Pendergraft WF, Preston GA, Shah RR, Tropsha A, Carter CW, Jennette JC, Falk RJ. Nat Med 10 72-79 (2004)
  2. The generation of new protein functions by the combination of domains. Bashton M, Chothia C. Structure 15 85-99 (2007)
  3. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Watanabe S, Kita A, Kobayashi K, Miki K. Proc Natl Acad Sci U S A 105 4121-4126 (2008)
  4. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gómez-Moreno C, Frey M. EMBO Rep 1 271-276 (2000)
  5. Structure and function of plant-type ferredoxins. Fukuyama K. Photosynth Res 81 289-301 (2004)
  6. Characterization of the key step for light-driven hydrogen evolution in green algae. Winkler M, Kuhlgert S, Hippler M, Happe T. J Biol Chem 284 36620-36627 (2009)
  7. Crystal structure of putidaredoxin, the [2Fe-2S] component of the P450cam monooxygenase system from Pseudomonas putida. Sevrioukova IF, Garcia C, Li H, Bhaskar B, Poulos TL. J Mol Biol 333 377-392 (2003)
  8. The active conformation of glutamate synthase and its binding to ferredoxin. van den Heuvel RH, Svergun DI, Petoukhov MV, Coda A, Curti B, Ravasio S, Vanoni MA, Mattevi A. J Mol Biol 330 113-128 (2003)
  9. Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin. Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T. J Mol Biol 373 382-400 (2007)
  10. Interaction of Ferredoxin-NADP(+) Reductase with its Substrates: Optimal Interaction for Efficient Electron Transfer. Medina M, Gómez-Moreno C. Photosynth Res 79 113-131 (2004)
  11. Structure, redox, pKa, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways. Noodleman L, Han WG. J Biol Inorg Chem 11 674-694 (2006)
  12. Redox-dependent structural reorganization in putidaredoxin, a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida. Sevrioukova IF. J Mol Biol 347 607-621 (2005)
  13. Browsing gene banks for Fe2S2 ferredoxins and structural modeling of 88 plant-type sequences: an analysis of fold and function. Bertini I, Luchinat C, Provenzani A, Rosato A, Vasos PR. Proteins 46 110-127 (2002)
  14. Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. Yeh AP, Chatelet C, Soltis SM, Kuhn P, Meyer J, Rees DC. J Mol Biol 300 587-595 (2000)
  15. Fd : FNR Electron Transfer Complexes: Evolutionary Refinement of Structural Interactions. Hanke GT, Kurisu G, Kusunoki M, Hase T. Photosynth Res 81 317-327 (2004)
  16. Binding thermodynamics of ferredoxin:NADP+ reductase: two different protein substrates and one energetics. Martínez-Júlvez M, Medina M, Velázquez-Campoy A. Biophys J 96 4966-4975 (2009)
  17. The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity. Lemak S, Nocek B, Beloglazova N, Skarina T, Flick R, Brown G, Joachimiak A, Savchenko A, Yakunin AF. Nucleic Acids Res 42 11144-11155 (2014)
  18. Structural basis for the thermostability of ferredoxin from the cyanobacterium Mastigocladus laminosus. Fish A, Danieli T, Ohad I, Nechushtai R, Livnah O. J Mol Biol 350 599-608 (2005)
  19. Dynamical magnetostructural properties of Anabaena ferredoxin. Schreiner E, Nair NN, Pollet R, Staemmler V, Marx D. Proc Natl Acad Sci U S A 104 20725-20730 (2007)
  20. Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. Long H, Chang CH, King PW, Ghirardi ML, Kim K. Biophys J 95 3753-3766 (2008)
  21. Docking analysis of transient complexes: interaction of ferredoxin-NADP+ reductase with ferredoxin and flavodoxin. Medina M, Abagyan R, Gómez-Moreno C, Fernandez-Recio J. Proteins 72 848-862 (2008)
  22. The interaction of spinach nitrite reductase with ferredoxin: a site-directed mutation study. Hirasawa M, Tripathy JN, Somasundaram R, Johnson MK, Bhalla M, Allen JP, Knaff DB. Mol Plant 2 407-415 (2009)
  23. Tolerance of the Rieske-type [2Fe-2S] cluster in recombinant ferredoxin BphA3 from Pseudomonas sp. KKS102 to histidine ligand mutations. Kimura S, Kikuchi A, Senda T, Shiro Y, Fukuda M. Biochem J 388 869-878 (2005)
  24. Redox-dependent structural changes in archaeal and bacterial Rieske-type [2Fe-2S] clusters. Cosper NJ, Eby DM, Kounosu A, Kurosawa N, Neidle EL, Kurtz DM, Iwasaki T, Scott RA. Protein Sci 11 2969-2973 (2002)
  25. Structural analysis of interactions for complex formation between Ferredoxin-NADP+ reductase and its protein partners. Mayoral T, Martínez-Júlvez M, Pérez-Dorado I, Sanz-Aparicio J, Gómez-Moreno C, Medina M, Hermoso JA. Proteins 59 592-602 (2005)
  26. Structure of a [2Fe-2S] ferredoxin from Rhodobacter capsulatus likely involved in Fe-S cluster biogenesis and conformational changes observed upon reduction. Sainz G, Jakoncic J, Sieker LC, Stojanoff V, Sanishvili N, Asso M, Bertrand P, Armengaud J, Jouanneau Y. J Biol Inorg Chem 11 235-246 (2006)
  27. Spectroscopic and redox studies of valence-delocalized [Fe2S2](+) centers in thioredoxin-like ferredoxins. Subramanian S, Duin EC, Fawcett SE, Armstrong FA, Meyer J, Johnson MK. J Am Chem Soc 137 4567-4580 (2015)
  28. The metal core structures in the recombinant Escherichia coli transcriptional factor SoxR. Lo FC, Lee JF, Liaw WF, Hsu IJ, Tsai YF, Chan SI, Yu SS. Chemistry 18 2565-2577 (2012)
  29. High resolution crystal structures of the wild type and Cys-55-->Ser and Cys-59-->Ser variants of the thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. Yeh AP, Ambroggio XI, Andrade SL, Einsle O, Chatelet C, Meyer J, Rees DC. J Biol Chem 277 34499-34507 (2002)
  30. Magnetic coupling constants and vibrational frequencies by extended broken symmetry approach with hybrid functionals. Bovi D, Guidoni L. J Chem Phys 137 114107 (2012)
  31. Constrained spin-density dynamics of an iron-sulfur complex: ferredoxin cofactor. Ali ME, Nair NN, Staemmler V, Marx D. J Chem Phys 136 224101 (2012)
  32. Roles of four conserved basic amino acids in a ferredoxin-dependent cyanobacterial nitrate reductase. Srivastava AP, Hirasawa M, Bhalla M, Chung JS, Allen JP, Johnson MK, Tripathy JN, Rubio LM, Vaccaro B, Subramanian S, Flores E, Zabet-Moghaddam M, Stitle K, Knaff DB. Biochemistry 52 4343-4353 (2013)
  33. The reduced [2Fe-2S] clusters in adrenodoxin and Arthrospira platensis ferredoxin share spin density with protein nitrogens, probed using 2D ESEEM. Dikanov SA, Samoilova RI, Kappl R, Crofts AR, Hüttermann J. Phys Chem Chem Phys 11 6807-6819 (2009)
  34. EPR and (57)Fe ENDOR investigation of 2Fe ferredoxins from Aquifex aeolicus. Cutsail GE, Doan PE, Hoffman BM, Meyer J, Telser J. J Biol Inorg Chem 17 1137-1150 (2012)
  35. The location of plastocyanin in vascular plant photosystem I. Ruffle SV, Mustafa AO, Kitmitto A, Holzenburg A, Ford RC. J Biol Chem 277 25692-25696 (2002)
  36. Temperature dependence of the formal reduction potential of putidaredoxin. Reipa V, Holden MJ, Mayhew MP, Vilker VL. Biochim Biophys Acta 1459 1-9 (2000)
  37. Bridging of partially negative atoms by hydrogen bonds from main-chain NH groups in proteins: The crown motif. Leader DP, Milner-White EJ. Proteins 83 2067-2076 (2015)
  38. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group. Sayfutyarova ER, Chan GK. J Chem Phys 148 184103 (2018)
  39. Cyanidioschyzon merolae ferredoxin: a high resolution crystal structure analysis and its thermal stability. Yamaoka A, Ozawa Y, Ueno Y, Endo T, Morimoto Y, Urushiyama A, Ohmori D, Imai T. FEBS Lett 585 1299-1302 (2011)
  40. Solution structure for an Encephalitozoon cuniculi adrenodoxin-like protein in the oxidized state. Shaheen S, Barrett KF, Subramanian S, Arnold SLM, Laureanti JA, Myler PJ, Van Voorhis WC, Buchko GW. Protein Sci 29 809-817 (2020)
  41. Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming. Era I, Kitagawa Y, Yasuda N, Kamimura T, Amamizu N, Sato H, Cho K, Okumura M, Nakano M. Molecules 26 6129 (2021)
  42. Prochlorococcus phage ferredoxin: structural characterization and electron transfer to cyanobacterial sulfite reductases. Campbell IJ, Olmos JL, Xu W, Kahanda D, Atkinson JT, Sparks ON, Miller MD, Phillips GN, Bennett GN, Silberg JJ. J Biol Chem 295 10610-10623 (2020)
  43. Benchmark Study of Redox Potential Calculations for Iron-Sulfur Clusters in Proteins. Jafari S, Tavares Santos YA, Bergmann J, Irani M, Ryde U. Inorg Chem 61 5991-6007 (2022)
  44. Molecular dynamics simulations of Trichomonas vaginalis ferredoxin show a loop-cap transition. Weksberg TE, Lynch GC, Krause KL, Pettitt BM. Biophys J 92 3337-3345 (2007)
  45. Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution. Li J, Hamaoka N, Makino F, Kawamoto A, Lin Y, Rögner M, Nowaczyk MM, Lee YH, Namba K, Gerle C, Kurisu G. Commun Biol 5 951 (2022)
  46. Fine-tuning of FeS proteins monitored via pulsed EPR redox potentiometry at Q-band. Heghmanns M, Günzel A, Brandis D, Kutin Y, Engelbrecht V, Winkler M, Happe T, Kasanmascheff M. Biophys Rep (N Y) 1 100016 (2021)
  47. Magnetostructural dynamics of Rieske versus ferredoxin iron-sulfur cofactors. Ali ME, Staemmler V, Marx D. Phys Chem Chem Phys 17 6289-6296 (2015)
  48. Two local minima for structures of [4Fe-4S] clusters obtained with density functional theory methods. Jafari S, Ryde U, Irani M. Sci Rep 13 10832 (2023)