1cp0 Citations

Waterproofing the heme pocket. Role of proximal amino acid side chains in preventing hemin loss from myoglobin.

J Biol Chem 276 9093-100 (2001)
Related entries: 1ch1, 1ch2, 1ch3, 1ch5, 1ch7, 1ch9, 1cik, 1cio, 1co8, 1co9, 1cp5, 1cpw, 1dti

Cited: 49 times
EuropePMC logo PMID: 11084036

Abstract

The ability of myoglobin to bind oxygen reversibly depends critically on retention of the heme prosthetic group. Globin side chains at the Leu(89)(F4), His(97)(FG3), Ile(99)(FG5), and Leu(104)(G5) positions on the proximal side of the heme pocket strongly influence heme affinity. The roles of these amino acids in preventing heme loss have been examined by determining high resolution structures of 14 different mutants at these positions using x-ray crystallography. Leu(89) and His(97) are important surface amino acids that interact either sterically or electrostatically with the edges of the porphyrin ring. Ile(99) and Leu(104) are located in the interior region of the proximal pocket beneath ring C of the heme prosthetic group. The apolar amino acids Leu(89), Ile(99), and Leu(104) "waterproof" the heme pocket by forming a barrier to solvent penetration, minimizing the size of the proximal cavity, and maintaining a hydrophobic environment. Substitutions with smaller or polar side chains at these positions result in exposure of the heme to solvent, the appearance of crystallographically defined water molecules in or near the proximal pocket, and large increases in the rate of hemin loss. Thus, the naturally occurring amino acid side chains at these positions serve to prevent hydration of the His(93)-Fe(III) bond and are highly conserved in all known myoglobins and hemoglobins.

Articles - 1cp0 mentioned but not cited (2)

  1. Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. Baldassi C, Zamparo M, Feinauer C, Procaccini A, Zecchina R, Weigt M, Pagnani A. PLoS One 9 e92721 (2014)
  2. Water stabilizes an alternate turn conformation in horse heart myoglobin. Bronstein A, Marx A. Sci Rep 13 6094 (2023)


Reviews citing this publication (4)

  1. Structure and reactivity of hexacoordinate hemoglobins. Kakar S, Hoffman FG, Storz JF, Fabian M, Hargrove MS. Biophys Chem 152 1-14 (2010)
  2. Diversity and conservation of interactions for binding heme in b-type heme proteins. Schneider S, Marles-Wright J, Sharp KH, Paoli M. Nat Prod Rep 24 621-630 (2007)
  3. Role of atomic contacts in vibrational energy transfer in myoglobin. Mizuno M, Mizutani Y. Biophys Rev 12 511-518 (2020)
  4. Carbon monoxide separation: past, present and future. Ma X, Albertsma J, Gabriels D, Horst R, Polat S, Snoeks C, Kapteijn F, Eral HB, Vermaas DA, Mei B, de Beer S, van der Veen MA. Chem Soc Rev 52 3741-3777 (2023)

Articles citing this publication (43)

  1. Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Cohen J, Arkhipov A, Braun R, Schulten K. Biophys J 91 1844-1857 (2006)
  2. The structure of murine neuroglobin: Novel pathways for ligand migration and binding. Vallone B, Nienhaus K, Brunori M, Nienhaus GU. Proteins 56 85-92 (2004)
  3. A dry ligand-binding cavity in a solvated protein. Qvist J, Davidovic M, Hamelberg D, Halle B. Proc Natl Acad Sci U S A 105 6296-6301 (2008)
  4. Controlling ligand binding in myoglobin by mutagenesis. Draghi F, Miele AE, Travaglini-Allocatelli C, Vallone B, Brunori M, Gibson QH, Olson JS. J Biol Chem 277 7509-7519 (2002)
  5. O2 migration pathways are not conserved across proteins of a similar fold. Cohen J, Schulten K. Biophys J 93 3591-3600 (2007)
  6. Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss. Aranda R, Cai H, Worley CE, Levin EJ, Li R, Olson JS, Phillips GN, Richards MP. Proteins 75 217-230 (2009)
  7. Differential heme release from various hemoglobin redox states and the upregulation of cellular heme oxygenase-1. Kassa T, Jana S, Meng F, Alayash AI. FEBS Open Bio 6 876-884 (2016)
  8. Role of heme in the unfolding and assembly of myoglobin. Culbertson DS, Olson JS. Biochemistry 49 6052-6063 (2010)
  9. Crystallographic analysis of synechocystis cyanoglobin reveals the structural changes accompanying ligand binding in a hexacoordinate hemoglobin. Trent JT, Kundu S, Hoy JA, Hargrove MS. J Mol Biol 341 1097-1108 (2004)
  10. Very high resolution structure of a trematode hemoglobin displaying a TyrB10-TyrE7 heme distal residue pair and high oxygen affinity. Pesce A, Dewilde S, Kiger L, Milani M, Ascenzi P, Marden MC, Van Hauwaert ML, Vanfleteren J, Moens L, Bolognesi M. J Mol Biol 309 1153-1164 (2001)
  11. The leghemoglobin proximal heme pocket directs oxygen dissociation and stabilizes bound heme. Kundu S, Snyder B, Das K, Chowdhury P, Park J, Petrich JW, Hargrove MS. Proteins 46 268-277 (2002)
  12. Determination of ligand pathways in globins: apolar tunnels versus polar gates. Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS. J Biol Chem 287 33163-33178 (2012)
  13. Modulation of the structural integrity of helix F in apomyoglobin by single amino acid replacements. Picotti P, Marabotti A, Negro A, Musi V, Spolaore B, Zambonin M, Fontana A. Protein Sci 13 1572-1585 (2004)
  14. Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase. Tinoco A, Wei Y, Bacik JP, Carminati DM, Moore EJ, Ando N, Zhang Y, Fasan R. ACS Catal 9 1514-1524 (2019)
  15. Insights into hemoglobin assembly through in vivo mutagenesis of α-hemoglobin stabilizing protein. Khandros E, Mollan TL, Yu X, Wang X, Yao Y, D'Souza J, Gell DA, Olson JS, Weiss MJ. J Biol Chem 287 11325-11337 (2012)
  16. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin. Ito S, Itoga K, Yamato M, Akamatsu H, Okano T. Toxicology 267 27-38 (2010)
  17. The structure of haemoglobin bound to the haemoglobin receptor IsdH from Staphylococcus aureus shows disruption of the native α-globin haem pocket. Dickson CF, Jacques DA, Clubb RT, Guss JM, Gell DA. Acta Crystallogr D Biol Crystallogr 71 1295-1306 (2015)
  18. Energetics underlying hemin extraction from human hemoglobin by Staphylococcus aureus. Sjodt M, Macdonald R, Marshall JD, Clayton J, Olson JS, Phillips M, Gell DA, Wereszczynski J, Clubb RT. J Biol Chem 293 6942-6957 (2018)
  19. A membrane-bound hemoglobin from gills of the green shore crab Carcinus maenas. Ertas B, Kiger L, Blank M, Marden MC, Burmester T. J Biol Chem 286 3185-3193 (2011)
  20. Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design. Silkstone GG, Silkstone RS, Wilson MT, Simons M, Bülow L, Kallberg K, Ratanasopa K, Ronda L, Mozzarelli A, Reeder BJ, Cooper CE. Biochem J 473 3371-3383 (2016)
  21. Covalent heme attachment in Synechocystis hemoglobin is required to prevent ferrous heme dissociation. Hoy JA, Smagghe BJ, Halder P, Hargrove MS. Protein Sci 16 250-260 (2007)
  22. Unusual stability of human neuroglobin at low pH--molecular mechanisms and biological significance. Picotti P, Dewilde S, Fago A, Hundahl C, De Filippis V, Moens L, Fontana A. FEBS J 276 7027-7039 (2009)
  23. Faster heme loss from hemoglobin E than HbS, in acidic pH: effect of aminophospholipids. Banerjee M, Pramanik M, Bhattacharya D, Lahiry M, Chakrabarti A. J Biosci 36 809-816 (2011)
  24. Folding myoglobin within a sol-gel glass: protein folding constrained to a small volume. Peterson ES, Leonard EF, Foulke JA, Oliff MC, Salisbury RD, Kim DY. Biophys J 95 322-332 (2008)
  25. Molecular dynamics simulation of a carboxy murine neuroglobin mutated on the proximal side: heme displacement and concomitant rearrangement in loop regions. Xu J, Yin G, Huang F, Wang B, Du W. J Mol Model 16 759-770 (2010)
  26. Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Olivé M, Engvall M, Ravenscroft G, Cabrera-Serrano M, Jiao H, Bortolotti CA, Pignataro M, Lambrughi M, Jiang H, Forrest ARR, Benseny-Cases N, Hofbauer S, Obinger C, Battistuzzi G, Bellei M, Borsari M, Di Rocco G, Viola HM, Hool LC, Cladera J, Lagerstedt-Robinson K, Xiang F, Wredenberg A, Miralles F, Baiges JJ, Malfatti E, Romero NB, Streichenberger N, Vial C, Claeys KG, Straathof CSM, Goris A, Freyer C, Lammens M, Bassez G, Kere J, Clemente P, Sejersen T, Udd B, Vidal N, Ferrer I, Edström L, Wedell A, Laing NG. Nat Commun 10 1396 (2019)
  27. Understanding the Thermal Denaturation of Myoglobin with IMS-MS: Evidence for Multiple Stable Structures and Trapped Pre-equilibrium States. Woodall DW, Henderson LW, Raab SA, Honma K, Clemmer DE. J Am Soc Mass Spectrom 32 64-72 (2021)
  28. Binding of hemin, hematoporphyrin, and protoporphyrin with erythroid spectrin: fluorescence and molecular docking studies. Das D, Patra M, Chakrabarti A. Eur Biophys J 44 171-182 (2015)
  29. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH. Droghetti E, Sumithran S, Sono M, Antalík M, Fedurco M, Dawson JH, Smulevich G. Arch Biochem Biophys 489 68-75 (2009)
  30. Significantly enhanced heme retention ability of myoglobin engineered to mimic the third covalent linkage by nonaxial histidine to heme (vinyl) in synechocystis hemoglobin. Uppal S, Salhotra S, Mukhi N, Zaidi FK, Seal M, Dey SG, Bhat R, Kundu S. J Biol Chem 290 1979-1993 (2015)
  31. The thermal and storage stability of bovine haemoglobin by ultraviolet-visible and circular dichroism spectroscopies. Bhomia R, Trivedi V, Coleman NJ, Mitchell JC. J Pharm Anal 6 242-248 (2016)
  32. Albumin-quercetin combination offers a therapeutic advantage in the prevention of reduced survival of erythrocytes in visceral leishmaniasis. Sen G, Biswas D, Ray M, Biswas T. Blood Cells Mol Dis 39 245-254 (2007)
  33. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Samuel PP, Case DA. Biochemistry 59 4093-4107 (2020)
  34. Proximal influences in two-on-two globins: effect of the Ala69Ser replacement on Synechocystis sp. PCC 6803 hemoglobin. Knappenberger JA, Kuriakose SA, Vu BC, Nothnagel HJ, Vuletich DA, Lecomte JT. Biochemistry 45 11401-11413 (2006)
  35. Isolation of heat-tolerant myoglobin from Asian swamp eel Monopterus albus. Chotichayapong C, Wiengsamut K, Chanthai S, Sattayasai N, Tamiya T, Kanzawa N, Tsuchiya T. Fish Physiol Biochem 38 1533-1543 (2012)
  36. Pseudoperoxidase activity, conformational stability, and aggregation propensity of the His98Tyr myoglobin variant: implications for the onset of myoglobinopathy. Hofbauer S, Pignataro M, Borsari M, Bortolotti CA, Di Rocco G, Ravenscroft G, Furtmüller PG, Obinger C, Sola M, Battistuzzi G. FEBS J 289 1105-1117 (2022)
  37. Redox control and autoxidation of class 1, 2 and 3 phytoglobins from Arabidopsis thaliana. Mot AC, Puscas C, Miclea P, Naumova-Letia G, Dorneanu S, Podar D, Dissmeyer N, Silaghi-Dumitrescu R. Sci Rep 8 13714 (2018)
  38. A Novel Molecular Approach for Enhancing the Safety of Ozone in Autohemotherapy and Insights into Heme Pocket Autoxidation of Hemoglobin. Naderi Beni R, Hassani-Nejad Pirkouhi Z, Mehraban F, Seyedarabi A. ACS Omega 8 20714-20729 (2023)
  39. Bioinformatic Characterization and Molecular Evolution of the Lucina pectinata Hemoglobins. Montes-Rodríguez IM, Cadilla CL, López-Garriga J, González-Méndez R. Genes (Basel) 13 2041 (2022)
  40. Induced-orientation of nitrogen monoxide and azide ion vibrations in human hemoglobin in bidistilled water solution under a static magnetic field. Calabrò E, Magazù S. Bioelectromagnetics 38 447-455 (2017)
  41. Molecular dynamics simulations indicate that tyrosineB10 limits motions of distal histidine to regulate CO binding in soybean leghemoglobin. Sharma S, Kumar A, Kundu S, Bandyopadhyay P. Proteins 83 1836-1848 (2015)
  42. Protective role of selenium on structural change of human hemoglobin in the presence of vinyl chloride. Oushani NH, Valipour M, Maghami P. Toxicol Res 38 557-566 (2022)
  43. The Effect of Piperidine Nitroxides on the Properties of Metalloproteins in Human Red Blood Cells. Bujak-Pietrek S, Pieniazek A, Gwozdzinski K, Gwozdzinski L. Molecules 28 6174 (2023)