1clb Citations

Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy.

J Mol Biol 249 441-62 (1995)
Cited: 96 times
EuropePMC logo PMID: 7783203

Abstract

The three-dimensional structure of apo calbindin D9k has been determined using constraints generated from nuclear magnetic resonance spectroscopy. The family of solution structures was calculated using a combination of distance geometry, restrained molecular dynamics, and hybrid relaxation matrix analysis of the nuclear Overhauser effect (NOE) cross-peak intensities. Errors and inconsistencies in the input constraints were identified using complete relaxation matrix analyses based on the results of preliminary structure calculations. The final input data consisted of 994 NOE distance constraints and 122 dihedral constraints, aided by the stereospecific assignment of the resonances from 21 beta-methylene groups and seven isopropyl groups of leucine and valine residues. The resulting family of 33 structures contain no violation of the distance constraints greater than 0.17 A or of the dihedral angle constraints greater than 10 degrees. The structures consist of a well-defined, antiparallel four-helix bundle, with a short anti-parallel beta-interaction between the two unoccupied calcium-binding loops. The root-mean-square deviation from the mean structure of the backbone heavy-atoms for the well-defined helical residues is 0.55 A. The remainder of the ion-binding loops, the linker loop connecting the two sub-domains of the protein, and the N and C termini exhibit considerable disorder between different structures in the ensemble. A comparison with the structure of the (Ca2+)2 state indicates that the largest changes associated with ion-binding occur in the middle of helix IV and in the packing of helix III onto the remainder of the protein. The change in conformation of these helices is associated with a subtle reorganization of many residues in the hydrophobic core, including some side-chains that are up to 15 A from the ion-binding site.

Reviews - 1clb mentioned but not cited (1)

  1. Predicting data quality in biological X-ray solution scattering. Wang C, Lin Y, Bougie D, Gillilan RE. Acta Crystallogr D Struct Biol 74 727-738 (2018)

Articles - 1clb mentioned but not cited (18)

  1. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Liwo A, Khalili M, Scheraga HA. Proc Natl Acad Sci U S A 102 2362-2367 (2005)
  2. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. Liwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, Scheraga HA. J Phys Chem B 111 260-285 (2007)
  3. Energy-based de novo protein folding by conformational space annealing and an off-lattice united-residue force field: application to the 10-55 fragment of staphylococcal protein A and to apo calbindin D9K. Lee J, Liwo A, Scheraga HA. Proc Natl Acad Sci U S A 96 2025-2030 (1999)
  4. Exploring the parameter space of the coarse-grained UNRES force field by random search: selecting a transferable medium-resolution force field. He Y, Xiao Y, Liwo A, Scheraga HA. J Comput Chem 30 2127-2135 (2009)
  5. An improved functional form for the temperature scaling factors of the components of the mesoscopic UNRES force field for simulations of protein structure and dynamics. Shen H, Liwo A, Scheraga HA. J Phys Chem B 113 8738-8744 (2009)
  6. Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics. Sterpone F, Derreumaux P, Melchionna S. J Chem Theory Comput 11 1843-1853 (2015)
  7. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. II. Results, comparison with statistical potentials, and implementation in the UNRES force field. Kozłowska U, Maisuradze GG, Liwo A, Scheraga HA. J Comput Chem 31 1154-1167 (2010)
  8. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the UNited RESidue (UNRES) force field for protein simulations. Sieradzan AK, Krupa P, Scheraga HA, Liwo A, Czaplewski C. J Chem Theory Comput 11 817-831 (2015)
  9. Importance of the ion-pair interactions in the OPEP coarse-grained force field: parametrization and validation. Sterpone F, Nguyen PH, Kalimeri M, Derreumaux P. J Chem Theory Comput 9 4574-4584 (2013)
  10. Improvement of the treatment of loop structures in the UNRES force field by inclusion of coupling between backbone- and side-chain-local conformational states. Krupa P, Sieradzan AK, Rackovsky S, Baranowski M, Ołldziej S, Scheraga HA, Liwo A, Czaplewski C. J Chem Theory Comput 9 (2013)
  11. A united residue force-field for calcium-protein interactions. Khalili M, Saunders JA, Liwo A, Ołdziej S, Scheraga HA. Protein Sci 13 2725-2735 (2004)
  12. Protein conformational flexibility prediction using machine learning. Trott O, Siggers K, Rost B, Palmer AG. J Magn Reson 192 37-47 (2008)
  13. Conservation of Specificity in Two Low-Specificity Proteins. Wheeler LC, Anderson JA, Morrison AJ, Wong CE, Harms MJ. Biochemistry 57 684-695 (2018)
  14. Structure of the small Dictyostelium discoideum myosin light chain MlcB provides insights into MyoB IQ motif recognition. Liburd J, Chitayat S, Crawley SW, Munro K, Miller E, Denis CM, Spencer HL, Côté GP, Smith SP. J Biol Chem 289 17030-17042 (2014)
  15. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules. Zuk PJ, Cichocki B, Szymczak P. Biophys J 115 782-800 (2018)
  16. Accurately Predicting Protein pKa Values Using Nonequilibrium Alchemy. Wilson CJ, Karttunen M, de Groot BL, Gapsys V. J Chem Theory Comput 19 7833-7845 (2023)
  17. Effect of monovalent ion binding on molecular dynamics of the S100-family calcium-binding protein calbindin D9k. Thapa M, Johnson E, Rance M. J Comput Chem 40 1936-1945 (2019)
  18. Integrated bio-metal science: New frontiers of bio-metal science opened with cutting-edge techniques. Sawai H, Ishimori K. Biophys Physicobiol 17 94-97 (2020)


Reviews citing this publication (8)

  1. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J Mol Biol 359 509-525 (2006)
  2. Diversity of conformational states and changes within the EF-hand protein superfamily. Yap KL, Ames JB, Swindells MB, Ikura M. Proteins 37 499-507 (1999)
  3. Protein conformational switches: from nature to design. Ha JH, Loh SN. Chemistry 18 7984-7999 (2012)
  4. Converting a protein into a switch for biosensing and functional regulation. Stratton MM, Loh SN. Protein Sci 20 19-29 (2011)
  5. Engineering and design of ligand-induced conformational change in proteins. Mizoue LS, Chazin WJ. Curr Opin Struct Biol 12 459-463 (2002)
  6. Small molecular ion adsorption on proteins and DNAs revealed by separation techniques. Rabiller-Baudry M, Chaufer B. J Chromatogr B Analyt Technol Biomed Life Sci 797 331-345 (2003)
  7. Two novel mitochondrial and chloroplastic targeting-peptide-degrading peptidasomes in A. thaliana, AtPreP1 and AtPreP2. Glaser E, Nilsson S, Bhushan S. Biol Chem 387 1441-1447 (2006)
  8. Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. Weisz J, Uversky VN. Int J Mol Sci 21 (2020)

Articles citing this publication (69)

  1. Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. Georgescu RE, Alexov EG, Gunner MR. Biophys J 83 1731-1748 (2002)
  2. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins. Potts BC, Smith J, Akke M, Macke TJ, Okazaki K, Hidaka H, Case DA, Chazin WJ. Nat Struct Biol 2 790-796 (1995)
  3. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. Malmendal A, Evenäs J, Forsén S, Akke M. J Mol Biol 293 883-899 (1999)
  4. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Nelson MR, Chazin WJ. Protein Sci 7 270-282 (1998)
  5. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. Fant F, Vranken W, Broekaert W, Borremans F. J Mol Biol 279 257-270 (1998)
  6. The solution structure of the bovine S100B protein dimer in the calcium-free state. Kilby PM, Van Eldik LJ, Roberts GC. Structure 4 1041-1052 (1996)
  7. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Smith SP, Shaw GS. Structure 6 211-222 (1998)
  8. The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins. Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, Chazin WJ. Structure 6 223-231 (1998)
  9. A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Matsumura H, Shiba T, Inoue T, Harada S, Kai Y. Structure 6 233-241 (1998)
  10. EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thøgersen HC, Nyborg J, Kjeldgaard M. Structure 6 477-489 (1998)
  11. Relating form and function of EF-hand calcium binding proteins. Chazin WJ. Acc Chem Res 44 171-179 (2011)
  12. The EF-hand domain: a globally cooperative structural unit. Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ. Protein Sci 11 198-205 (2002)
  13. Modern protein force fields behave comparably in molecular dynamics simulations. Price DJ, Brooks CL. J Comput Chem 23 1045-1057 (2002)
  14. Structural basis for the negative allostery between Ca(2+)- and Mg(2+)-binding in the intracellular Ca(2+)-receptor calbindin D9k. Andersson M, Malmendal A, Linse S, Ivarsson I, Forsén S, Svensson LA. Protein Sci 6 1139-1147 (1997)
  15. Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different. Ståhl A, Nilsson S, Lundberg P, Bhushan S, Biverståhl H, Moberg P, Morisset M, Vener A, Mäler L, Langel U, Glaser E. J Mol Biol 349 847-860 (2005)
  16. Simulation studies of the protein-water interface. I. Properties at the molecular resolution. Schröder C, Rudas T, Boresch S, Steinhauser O. J Chem Phys 124 234907 (2006)
  17. Affinity of S100A1 protein for calcium increases dramatically upon glutathionylation. Goch G, Vdovenko S, Kozłowska H, Bierzyñski A. FEBS J 272 2557-2565 (2005)
  18. Oligomerization and divalent ion binding properties of the S100P protein: a Ca2+/Mg2+-switch model. Gribenko AV, Makhatadze GI. J Mol Biol 283 679-694 (1998)
  19. Molecular dynamics study of calbindin D9k in the apo and singly and doubly calcium-loaded states. Marchand S, Roux B. Proteins 33 265-284 (1998)
  20. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin. Mäler L, Sastry M, Chazin WJ. J Mol Biol 317 279-290 (2002)
  21. Unmasking the annexin I interaction from the structure of Apo-S100A11. Dempsey AC, Walsh MP, Shaw GS. Structure 11 887-897 (2003)
  22. A Ca2+-sensing molecular switch based on alternate frame protein folding. Stratton MM, Mitrea DM, Loh SN. ACS Chem Biol 3 723-732 (2008)
  23. The heterodimeric complex of MRP-8 (S100A8) and MRP-14 (S100A9). Antibody recognition, epitope definition and the implications for structure. Hessian PA, Fisher L. Eur J Biochem 268 353-363 (2001)
  24. Solvation energetics and conformational change in EF-hand proteins. Ababou A, Desjarlais JR. Protein Sci 10 301-312 (2001)
  25. The crystal structure of metal-free human EF-hand protein S100A3 at 1.7-A resolution. Fritz G, Mittl PR, Vasak M, Grutter MG, Heizmann CW. J Biol Chem 277 33092-33098 (2002)
  26. Simulation studies of the protein-water interface. II. Properties at the mesoscopic resolution. Rudas T, Schröder C, Boresch S, Steinhauser O. J Chem Phys 124 234908 (2006)
  27. Multiscale characterization of protein conformational ensembles. Shehu A, Kavraki LE, Clementi C. Proteins 76 837-851 (2009)
  28. An extended hydrophobic core induces EF-hand swapping. Håkansson M, Svensson A, Fast J, Linse S. Protein Sci 10 927-933 (2001)
  29. Biochemical characterization of S100A2 in human keratinocytes: subcellular localization, dimerization, and oxidative cross-linking. Deshpande R, Woods TL, Fu J, Zhang T, Stoll SW, Elder JT. J Invest Dermatol 115 477-485 (2000)
  30. Evidence for the involvement of the unique C-tail of S100A9 in the binding of arachidonic acid to the heterocomplex S100A8/A9. Sopalla C, Leukert N, Sorg C, Kerkhoff C. Biol Chem 383 1895-1905 (2002)
  31. 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta. Potts BC, Carlström G, Okazaki K, Hidaka H, Chazin WJ. Protein Sci 5 2162-2174 (1996)
  32. High resolution solution structure of a DNA duplex alkylated by the antitumor agent duocarmycin SA. Eis PS, Smith JA, Rydzewski JM, Case DA, Boger DL, Chazin WJ. J Mol Biol 272 237-252 (1997)
  33. Identification of the binding site on S100B protein for the actin capping protein CapZ. Kilby PM, Van Eldik LJ, Roberts GC. Protein Sci 6 2494-2503 (1997)
  34. Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. Johnson E, Bruschweiler-Li L, Showalter SA, Vuister GW, Zhang F, Brüschweiler R. J Mol Biol 377 945-955 (2008)
  35. Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant. Wimberly B, Thulin E, Chazin WJ. Protein Sci 4 1045-1055 (1995)
  36. Focusing of the electrostatic potential at EF-hands of calbindin D(9k): titration of acidic residues. Kesvatera T, Jönsson B, Thulin E, Linse S. Proteins 45 129-135 (2001)
  37. Crystal structure of Ca2+ -free S100A2 at 1.6-A resolution. Koch M, Diez J, Fritz G. J Mol Biol 378 933-942 (2008)
  38. Solution structure of the Eps15 homology domain of a human POB1 (partner of RalBP1). Koshiba S, Kigawa T, Iwahara J, Kikuchi A, Yokoyama S. FEBS Lett 442 138-142 (1999)
  39. Ionization behavior of acidic residues in calbindin D(9k). Kesvatera T, Jönsson B, Thulin E, Linse S. Proteins 37 106-115 (1999)
  40. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB. J Biol Chem 291 4429-4441 (2016)
  41. TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. Zawadzka-Kazimierczuk A, Koźmiński W, Billeter M. J Biomol NMR 54 81-95 (2012)
  42. Intrinsic disorder in S100 proteins. Permyakov SE, Ismailov RG, Xue B, Denesyuk AI, Uversky VN, Permyakov EA. Mol Biosyst 7 2164-2180 (2011)
  43. Effects of calcium binding on the side-chain methyl dynamics of calbindin D9k: a 2H NMR relaxation study. Johnson E, Chazin WJ, Rance M. J Mol Biol 357 1237-1252 (2006)
  44. Molecular modeling of single polypeptide chain of calcium-binding protein p26olf from dimeric S100B(betabeta). Tanaka T, Miwa N, Kawamura S, Sohma H, Nitta K, Matsushima N. Protein Eng 12 395-405 (1999)
  45. Assignment and secondary structure of calcium-bound human S100B. Smith SP, Shaw GS. J Biomol NMR 10 77-88 (1997)
  46. Coupling of ligand binding and dimerization of helix-loop-helix peptides: spectroscopic and sedimentation analyses of calbindin D9k EF-hands. Julenius K, Robblee J, Thulin E, Finn BE, Fairman R, Linse S. Proteins 47 323-333 (2002)
  47. Global and local Voronoi analysis of solvation shells of proteins. Neumayr G, Rudas T, Steinhauser O. J Chem Phys 133 084108 (2010)
  48. Protein structure prediction with the UNRES force-field using Replica-Exchange Monte Carlo-with-Minimization; Comparison with MCM, CSA, and CFMC. Nanias M, Chinchio M, Ołdziej S, Czaplewski C, Scheraga HA. J Comput Chem 26 1472-1486 (2005)
  49. A model for target protein binding to calcium-activated S100 dimers. Groves P, Finn BE, Kuźnicki J, Forsén S. FEBS Lett 421 175-179 (1998)
  50. News Dance of the dimers. Krebs J, Quadroni M, Van Eldik LJ. Nat Struct Biol 2 711-714 (1995)
  51. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca2+ concentration in HeLa cells. Hembram DS, Haremaki T, Hamatsu J, Inoue J, Kamoshida H, Ikeya T, Mishima M, Mikawa T, Hayashi N, Shirakawa M, Ito Y. Biochem Biophys Res Commun 438 653-659 (2013)
  52. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs. Kazakov AS, Sokolov AS, Vologzhannikova AA, Permyakova ME, Khorn PA, Ismailov RG, Denessiouk KA, Denesyuk AI, Rastrygina VA, Baksheeva VE, Zernii EY, Zinchenko DV, Glazatov VV, Uversky VN, Mirzabekov TA, Permyakov EA, Permyakov SE. J Biomol Struct Dyn 35 78-91 (2017)
  53. Protein dynamics from a NMR perspective: networks of coupled rotators and fractional Brownian dynamics. Calandrini V, Abergel D, Kneller GR. J Chem Phys 128 145102 (2008)
  54. pK(a) calculations of calbindin D(9k): effects of Ca(2+) binding, protein dielectric constant, and ionic strength. Juffer AH, Vogel HJ. Proteins 41 554-567 (2000)
  55. Solution structure of the Apo C-terminal domain of the Lethocerus F1 troponin C isoform. De Nicola GF, Martin S, Bullard B, Pastore A. Biochemistry 49 1719-1726 (2010)
  56. Chemically accurate protein structures: validation of protein NMR structures by comparison of measured and predicted pKa values. Powers N, Jensen JH. J Biomol NMR 35 39-51 (2006)
  57. NMR investigation and secondary structure of domains I and II of rat brain calbindin D28k (1-93). Klaus W, Grzesiek S, Labhardt AM, Buchwald P, Hunziker W, Gross MD, Kallick DA. Eur J Biochem 262 933-938 (1999)
  58. Predicting conformational entropy of bond vectors in proteins by networks of coupled rotators. Dhulesia A, Bodenhausen G, Abergel D. J Chem Phys 129 095107 (2008)
  59. Recognition of native structure from complete enumeration of low-resolution models with constraints. Ozkan B, Bahar I. Proteins 32 211-222 (1998)
  60. Correlation between normal modes in the 20-200 cm-1 frequency range and localized torsion motions related to certain collective motions in proteins. Cao ZW, Chen X, Chen YZ. J Mol Graph Model 21 309-319 (2003)
  61. Determination of the metal-binding cooperativity of wild-type and mutant calbindin D9K by electrospray ionization mass spectrometry. Chazin W, Veenstra TD. Rapid Commun Mass Spectrom 13 548-555 (1999)
  62. A calbindin D9k mutant containing a novel structural extension: 1H nuclear magnetic resonance studies. Groves P, Linse S, Thulin E, Forsén S. Protein Sci 6 323-330 (1997)
  63. NMR order parameters calculated in an expanding reference frame: identifying sites of short- and long-range motion. Johnson E. J Biomol NMR 50 59-70 (2011)
  64. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum. Dixit AK, Jayabaskaran C. J Plant Physiol 179 106-112 (2015)
  65. Chemical shift assignments of the C-terminal Eps15 homology domain-3 EH domain. Spagnol G, Reiling C, Kieken F, Caplan S, Sorgen PL. Biomol NMR Assign 8 263-267 (2014)
  66. Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels. Elverson K, Freeman S, Manson F, Warwicker J. Molecules 28 5753 (2023)
  67. NMR and EPR-DEER Structure of a Dimeric Guanylate Cyclase Activator Protein-5 from Zebrafish Photoreceptors. Cudia D, Roseman GP, Assafa TE, Shahu MK, Scholten A, Menke-Sell SK, Yamada H, Koch KW, Milhauser G, Ames JB. Biochemistry 60 3058-3070 (2021)
  68. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins. Reddy JG, Kumar D, Hosur RV. Magn Reson Chem 53 79-87 (2015)
  69. Solution NMR structures of the C-domain of Tetrahymena cytoskeletal protein Tcb2 reveal distinct calcium-induced structural rearrangements. Kilpatrick AM, Honts JE, Sleister HM, Fowler CA. Proteins 84 1748-1756 (2016)


Related citations provided by authors (3)

  1. Signal Transduction Versus Buffering Activity in Ca2+-Binding Proteins. Skelton NJ, Koerdel J, Chazin WJ Nat. Struct. Biol. 1 239- (1994)
  2. High Resolution Solution Structure of Calcium-Loaded Calbindin D9K. Koerdel J, Skelton NJ, Akke M, Chazin WJ J. Mol. Biol. 231 711- (1993)
  3. 1H NMR Resonance Assignments, Secondary Structure and Global Fold of Apo Calbindin D9K. Skelton NJ, Forsen S, Chazin WJ Biochemistry 29 5752- (1990)