1c83 Citations

2-(oxalylamino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases.

J Biol Chem 275 7101-8 (2000)
Related entries: 1c84, 1c85, 1ecv

Cited: 72 times
EuropePMC logo PMID: 10702277

Abstract

Protein-tyrosine phosphatases (PTPs) are critically involved in regulation of signal transduction processes. Members of this class of enzymes are considered attractive therapeutic targets in several disease states, e.g. diabetes, cancer, and inflammation. However, most reported PTP inhibitors have been phosphorus-containing compounds, tight binding inhibitors, and/or inhibitors that covalently modify the enzymes. We therefore embarked on identifying a general, reversible, competitive PTP inhibitor that could be used as a common scaffold for lead optimization for specific PTPs. We here report the identification of 2-(oxalylamino)-benzoic acid (OBA) as a classical competitive inhibitor of several PTPs. X-ray crystallography of PTP1B complexed with OBA and related non-phosphate low molecular weight derivatives reveals that the binding mode of these molecules to a large extent mimics that of the natural substrate including hydrogen bonding to the PTP signature motif. In addition, binding of OBA to the active site of PTP1B creates a unique arrangement involving Asp(181), Lys(120), and Tyr(46). PTP inhibitors are essential tools in elucidating the biological function of specific PTPs and they may eventually be developed into selective drug candidates. The unique enzyme kinetic features and the low molecular weight of OBA makes it an ideal starting point for further optimization.

Reviews - 1c83 mentioned but not cited (3)

Articles - 1c83 mentioned but not cited (14)

  1. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  2. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. Elife 7 e36307 (2018)
  3. Predicting the accuracy of protein-ligand docking on homology models. Bordogna A, Pandini A, Bonati L. J Comput Chem 32 81-98 (2011)
  4. Allele-specific inhibition of divergent protein tyrosine phosphatases with a single small molecule. Zhang XY, Chen VL, Rosen MS, Blair ER, Lone AM, Bishop AC. Bioorg Med Chem 16 8090-8097 (2008)
  5. Synthesis and evaluation of thiazolidine-2,4-dione/benzazole derivatives as inhibitors of protein tyrosine phosphatase 1B (PTP-1B): Antihyperglycemic activity with molecular docking study. Hidalgo-Figueroa S, Estrada-Soto S, Ramírez-Espinosa JJ, Paoli P, Lori G, León-Rivera I, Navarrete-Vázquez G. Biomed Pharmacother 107 1302-1310 (2018)
  6. In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves. Mechchate H, Es-Safi I, Bourhia M, Kyrylchuk A, El Moussaoui A, Conte R, Ullah R, Ezzeldin E, Mostafa GA, Grafov A, Bekkari H, Bousta D. Molecules 25 E5073 (2020)
  7. Indole- and Pyrazole-Glycyrrhetinic Acid Derivatives as PTP1B Inhibitors: Synthesis, In Vitro and In Silico Studies. De-la-Cruz-Martínez L, Duran-Becerra C, González-Andrade M, Páez-Franco JC, Germán-Acacio JM, Espinosa-Chávez J, Torres-Valencia JM, Pérez-Villanueva J, Palacios-Espinosa JF, Soria-Arteche O, Cortés-Benítez F. Molecules 26 4375 (2021)
  8. Knowledge-based characterization of similarity relationships in the human protein-tyrosine phosphatase family for rational inhibitor design. Vidović D, Schürer SC. J Med Chem 52 6649-6659 (2009)
  9. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)
  10. Evaluation of AlphaFold2 structures as docking targets. Holcomb M, Chang YT, Goodsell DS, Forli S. Protein Sci 32 e4530 (2023)
  11. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B. Scior T, Guevara-García JA, Melendez FJ, Abdallah HH, Do QT, Bernard P. Drug Des Devel Ther 4 231-242 (2010)
  12. In Silico Analysis of PTP1B Inhibitors and TLC-MS Bioautography-Based Identification of Free Radical Scavenging and α-Amylase Inhibitory Compounds from Heartwood Extract of Pterocarpus marsupium. Irfan Dar M, Qureshi MI, Zahiruddin S, Abass S, Jan B, Sultan A, Ahmad S. ACS Omega 7 46156-46173 (2022)
  13. Investigation of the mechanism of Shen Qi Wan prescription in the treatment of T2DM via network pharmacology and molecular docking. Zhao P, Zhang X, Gong Y, Li W, Wu Z, Tang Y, Liu G. In Silico Pharmacol 10 9 (2022)
  14. research-article Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. Woods VA, Abzalimov RR, Keedy DA. bioRxiv 2023.07.12.548582 (2023)


Reviews citing this publication (10)

  1. Protein tyrosine phosphatase 1B inhibitors for diabetes. Johnson TO, Ermolieff J, Jirousek MR. Nat Rev Drug Discov 1 696-709 (2002)
  2. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Zhang ZY. Annu Rev Pharmacol Toxicol 42 209-234 (2002)
  3. PTP1B: from the sidelines to the front lines! Tonks NK. FEBS Lett 546 140-148 (2003)
  4. Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Lee S, Wang Q. Med Res Rev 27 553-573 (2007)
  5. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Med Res Rev 32 459-517 (2012)
  6. Recent advances in protein tyrosine phosphatase 1B inhibitors. Taylor SD, Hill B. Expert Opin Investig Drugs 13 199-214 (2004)
  7. Phosphotyrosine isosteres: past, present and future. Cerulli RA, Kritzer JA. Org Biomol Chem 18 583-605 (2020)
  8. Pulling strings below the surface: hormone receptor signaling through inhibition of protein tyrosine phosphatases. Espanel X, Wälchli S, Gobert RP, El Alama M, Curchod ML, Gullu-Isler N, Hooft van Huijsduijnen R. Endocrine 15 19-28 (2001)
  9. Orally active insulin mimics: where do we stand now? Balasubramanyam M, Mohan V. J Biosci 26 383-390 (2001)
  10. The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes. Zhang Y, Du Y. Future Med Chem 10 2345-2367 (2018)

Articles citing this publication (45)

  1. Allosteric inhibition of protein tyrosine phosphatase 1B. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M, McDowell RS, Hansen SK. Nat Struct Mol Biol 11 730-737 (2004)
  2. Ligand efficiency indices for effective drug discovery. Abad-Zapatero C. Expert Opin Drug Discov 2 469-488 (2007)
  3. Structure determination of T cell protein-tyrosine phosphatase. Iversen LF, Moller KB, Pedersen AK, Peters GH, Petersen AS, Andersen HS, Branner S, Mortensen SB, Moller NP. J Biol Chem 277 19982-19990 (2002)
  4. Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. Brandão TA, Hengge AC, Johnson SJ. J Biol Chem 285 15874-15883 (2010)
  5. Ligand efficiency indices for an effective mapping of chemico-biological space: the concept of an atlas-like representation. Abad-Zapatero C, Perišić O, Wass J, Bento AP, Overington J, Al-Lazikani B, Johnson ME. Drug Discov Today 15 804-811 (2010)
  6. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Willis MS, Hogan JK, Prabhakar P, Liu X, Tsai K, Wei Y, Fox T. Protein Sci 14 1818-1826 (2005)
  7. Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB. Grundner C, Perrin D, Hooft van Huijsduijnen R, Swinnen D, Gonzalez J, Gee CL, Wells TN, Alber T. Structure 15 499-509 (2007)
  8. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors. Moretto AF, Kirincich SJ, Xu WX, Smith MJ, Wan ZK, Wilson DP, Follows BC, Binnun E, Joseph-McCarthy D, Foreman K, Erbe DV, Zhang YL, Tam SK, Tam SY, Lee J. Bioorg Med Chem 14 2162-2177 (2006)
  9. A two stage click-based library of protein tyrosine phosphatase inhibitors. Xie J, Seto CT. Bioorg Med Chem 15 458-473 (2007)
  10. The development of potent non-peptidic PTP-1B inhibitors. Dufresne C, Roy P, Wang Z, Asante-Appiah E, Cromlish W, Boie Y, Forghani F, Desmarais S, Wang Q, Skorey K, Waddleton D, Ramachandran C, Kennedy BP, Xu L, Gordon R, Chan CC, Leblanc Y. Bioorg Med Chem Lett 14 1039-1042 (2004)
  11. Identification of a monoacid-based, cell permeable, selective inhibitor of protein tyrosine phosphatase 1B. Xin Z, Liu G, Abad-Zapatero C, Pei Z, Szczepankiewicz BG, Li X, Zhang T, Hutchins CW, Hajduk PJ, Ballaron SJ, Stashko MA, Lubben TH, Trevillyan JM, Jirousek MR. Bioorg Med Chem Lett 13 3947-3950 (2003)
  12. Ligand-induced conformational changes: improved predictions of ligand binding conformations and affinities. Frimurer TM, Peters GH, Iversen LF, Andersen HS, Møller NP, Olsen OH. Biophys J 84 2273-2281 (2003)
  13. Structure-based design and discovery of novel inhibitors of protein tyrosine phosphatases. Huang P, Ramphal J, Wei J, Liang C, Jallal B, McMahon G, Tang C. Bioorg Med Chem 11 1835-1849 (2003)
  14. Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent anti-diabetic agents. Ahn JH, Cho SY, Ha JD, Chu SY, Jung SH, Jung YS, Baek JY, Choi IK, Shin EY, Kang SK, Kim SS, Cheon HG, Yang SD, Choi JK. Bioorg Med Chem Lett 12 1941-1946 (2002)
  15. Alpha,alpha-difluoro-beta-ketophosphonates as potent inhibitors of protein tyrosine phosphatase 1B. Li X, Bhandari A, Holmes CP, Szardenings AK. Bioorg Med Chem Lett 14 4301-4306 (2004)
  16. Discovery of a novel protein tyrosine phosphatase-1B inhibitor, KR61639: potential development as an antihyperglycemic agent. Cheon HG, Kim SM, Yang SD, Ha JD, Choi JK. Eur J Pharmacol 485 333-339 (2004)
  17. Discovery of potent, selective and orally bioavailable triaryl-sulfonamide based PTP1B inhibitors. Patel D, Jain M, Shah SR, Bahekar R, Jadav P, Joharapurkar A, Dhanesha N, Shaikh M, Sairam KV, Kapadnis P. Bioorg Med Chem Lett 22 1111-1117 (2012)
  18. Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives. Stuible M, Zhao L, Aubry I, Schmidt-Arras D, Böhmer FD, Li CJ, Tremblay ML. Chembiochem 8 179-186 (2007)
  19. The structure of apo protein-tyrosine phosphatase 1B C215S mutant: more than just an S --> O change. Scapin G, Patel S, Patel V, Kennedy B, Asante-Appiah E. Protein Sci 10 1596-1605 (2001)
  20. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis. Pedersen AK, Guo XL, Møller KB, Peters GH, Andersen HS, Kastrup JS, Mortensen SB, Iversen LF, Zhang ZY, Møller NP. Biochem J 378 421-433 (2004)
  21. Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Na B, Nguyen PH, Zhao BT, Vo QH, Min BS, Woo MH. Pharm Biol 54 474-480 (2016)
  22. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta). Drake PG, Peters GH, Andersen HS, Hendriks W, Møller NP. Biochem J 373 393-401 (2003)
  23. Discovery and structure-activity relationships of novel sulfonamides as potent PTP1B inhibitors. Holmes CP, Li X, Pan Y, Xu C, Bhandari A, Moody CM, Miguel JA, Ferla SW, De Francisco MN, Frederick BT, Zhou S, Macher N, Jang L, Irvine JD, Grove JR. Bioorg Med Chem Lett 15 4336-4341 (2005)
  24. Druggability analysis and classification of protein tyrosine phosphatase active sites. Ghattas MA, Raslan N, Sadeq A, Al Sorkhy M, Atatreh N. Drug Des Devel Ther 10 3197-3209 (2016)
  25. How much NMR data is required to determine a protein-ligand complex structure? Schieborr U, Vogtherr M, Elshorst B, Betz M, Grimme S, Pescatore B, Langer T, Saxena K, Schwalbe H. Chembiochem 6 1891-1898 (2005)
  26. Probing acid replacements of thiophene PTP1B inhibitors. Wan ZK, Follows B, Kirincich S, Wilson D, Binnun E, Xu W, Joseph-McCarthy D, Wu J, Smith M, Zhang YL, Tam M, Erbe D, Tam S, Saiah E, Lee J. Bioorg Med Chem Lett 17 2913-2920 (2007)
  27. Chemical Constituents of Euonymus alatus (Thunb.) Sieb. and Their PTP1B and α-Glucosidase Inhibitory Activities. Jeong SY, Nguyen PH, Zhao BT, Ali MY, Choi JS, Min BS, Woo MH. Phytother Res 29 1540-1548 (2015)
  28. Engineering non-natural inhibitor sensitivity in protein tyrosine phosphatase H1. Blair ER, Hoffman HE, Bishop AC. Bioorg Med Chem 14 464-471 (2006)
  29. alpha-Ketocarboxylic acid-based inhibitors of protein tyrosine phosphatases. Chen YT, Onaran MB, Doss CJ, Seto CT. Bioorg Med Chem Lett 11 1935-1938 (2001)
  30. Discovery of orally active, potent, and selective benzotriazole-based PTP1B inhibitors. Patel D, Jain M, Shah SR, Bahekar R, Jadav P, Darji B, Siriki Y, Bandyopadhyay D, Joharapurkar A, Kshirsagar S, Patel H, Shaikh M, Sairam KV, Patel P. ChemMedChem 6 1011-1016 (2011)
  31. PTP1B inhibitors: synthesis and evaluation of difluoro-methylenephosphonate bioisosteres on a sulfonamide scaffold. Holmes CP, Li X, Pan Y, Xu C, Bhandari A, Moody CM, Miguel JA, Ferla SW, De Francisco MN, Frederick BT, Zhou S, Macher N, Jang L, Irvine JD, Grove JR. Bioorg Med Chem Lett 18 2719-2724 (2008)
  32. Design and synthesis of 2-substituted benzoxazoles as novel PTP1B inhibitors. Chandrasekharappa AP, Badiger SE, Dubey PK, Panigrahi SK, Manukonda SR. Bioorg Med Chem Lett 23 2579-2584 (2013)
  33. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening. Ghattas MA, Atatreh N, Bichenkova EV, Bryce RA. J Mol Graph Model 52 114-123 (2014)
  34. Molecular docking and 3D-QSAR on 2-(oxalylamino) benzoic acid and its analogues as protein tyrosine phosphatase 1B inhibitors. Zhou M, Ji M. Bioorg Med Chem Lett 15 5521-5525 (2005)
  35. An assessment of protein-ligand binding site polarizability. Nayeem A, Krystek S, Stouch T. Biopolymers 70 201-211 (2003)
  36. Arylstibonic acids are potent and isoform-selective inhibitors of Cdc25a and Cdc25b phosphatases. Mak LH, Knott J, Scott KA, Scott C, Whyte GF, Ye Y, Mann DJ, Ces O, Stivers J, Woscholski R. Bioorg Med Chem 20 4371-4376 (2012)
  37. Beta-C-glycosiduronic acids and beta-C-glycosyl compounds: new PTP1B inhibitors. Lin L, Shen Q, Chen GR, Xie J. Bioorg Med Chem Lett 18 6348-6351 (2008)
  38. Synthesis of tripeptides as potent Yersinia protein tyrosine phosphatase inhibitors. Lee K, Boovanahalli SK, Nam KY, Kang SU, Lee M, Phan J, Wu L, Waugh DS, Zhang ZY, No KT, Lee JJ, Burke TR. Bioorg Med Chem Lett 15 4037-4042 (2005)
  39. Highly Potent and Selective N-Aryl Oxamic Acid-Based Inhibitors for Mycobacterium tuberculosis Protein Tyrosine Phosphatase B. Ruddraraju KV, Aggarwal D, Niu C, Baker EA, Zhang RY, Wu L, Zhang ZY. J Med Chem 63 9212-9227 (2020)
  40. Rational design, synthesis, and structure-activity relationships of 5-amino-1H-pyrazole-4-carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors. Basu S, Prathipati P, Thorat S, Ansari S, Patel M, Jain V, Jinugu RR, Niranjan S, De S, Reddy S. Bioorg Med Chem 25 67-74 (2017)
  41. Screening a library of household substances for inhibitors of phosphatases: An introduction to high-throughput screening. Taylor AT. Biochem Mol Biol Educ 33 16-21 (2005)
  42. Structure-based prediction of free energy changes of binding of PTP1B inhibitors. Wang J, Chan SL, Ramnarayan K. J Comput Aided Mol Des 17 495-513 (2003)
  43. The importance of including the C-terminal domain of PTP1B1-400 to identify potential antidiabetic inhibitors. Coronell-Tovar A, Cortés-Benítez F, González-Andrade M. J Enzyme Inhib Med Chem 38 2170369 (2023)
  44. Inhibitors of Fumarylacetoacetate Hydrolase Domain Containing Protein 1 (FAHD1). Weiss AKH, Wurzer R, Klapec P, Eder MP, Loeffler JR, von Grafenstein S, Monteleone S, Liedl KR, Jansen-Dürr P, Gstach H. Molecules 26 5009 (2021)
  45. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Chembiochem 24 e202200706 (2023)