1c5o Citations

Structural basis for selectivity of a small molecule, S1-binding, submicromolar inhibitor of urokinase-type plasminogen activator.

Chem Biol 7 299-312 (2000)
Related entries: 1c5l, 1c5m, 1c5n, 1c5p, 1c5q, 1c5r, 1c5s, 1c5t, 1c5u, 1c5v, 1c5w, 1c5x, 1c5y, 1c5z

Cited: 45 times
EuropePMC logo PMID: 10779411

Abstract

Background

Urokinase-type plasminogen activator (uPA) is a protease associated with tumor metastasis and invasion. Inhibitors of uPA may have potential as drugs for prostate, breast and other cancers. Therapeutically useful inhibitors must be selective for uPA and not appreciably inhibit the related, and structurally and functionally similar enzyme, tissue-type plasminogen activator (tPA), involved in the vital blood-clotting cascade.

Results

We produced mutagenically deglycosylated low molecular weight uPA and determined the crystal structure of its complex with 4-iodobenzo[b]thiophene 2-carboxamidine (K(i) = 0.21 +/- 0.02 microM). To probe the structural determinants of the affinity and selectivity of this inhibitor for uPA we also determined the structures of its trypsin and thrombin complexes, of apo-trypsin, apo-thrombin and apo-factor Xa, and of uPA, trypsin and thrombin bound by compounds that are less effective uPA inhibitors, benzo[b]thiophene-2-carboxamidine, thieno[2,3-b]-pyridine-2-carboxamidine and benzamidine. The K(i) values of each inhibitor toward uPA, tPA, trypsin, tryptase, thrombin and factor Xa were determined and compared. One selectivity determinant of the benzo[b]thiophene-2-carboxamidines for uPA involves a hydrogen bond at the S1 site to Ogamma(Ser190) that is absent in the Ala190 proteases, tPA, thrombin and factor Xa. Other subtle differences in the architecture of the S1 site also influence inhibitor affinity and enzyme-bound structure.

Conclusion

Subtle structural differences in the S1 site of uPA compared with that of related proteases, which result in part from the presence of a serine residue at position 190, account for the selectivity of small thiophene-2-carboxamidines for uPA, and afford a framework for structure-based design of small, potent, selective uPA inhibitors.

Articles - 1c5o mentioned but not cited (2)

  1. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  2. Antithrombotic properties of JJ1, a potent and novel thrombin inhibitor. Lee W, Lee S, Choi J, Park JH, Kim KM, Jee JG, Bae JS. Sci Rep 7 14862 (2017)


Reviews citing this publication (2)

  1. Accurate determination of protein:ligand standard binding free energies from molecular dynamics simulations. Fu H, Chen H, Blazhynska M, Goulard Coderc de Lacam E, Szczepaniak F, Pavlova A, Shao X, Gumbart JC, Dehez F, Roux B, Cai W, Chipot C. Nat Protoc 17 1114-1141 (2022)
  2. Urokinase plasminogen activator as an anti-metastasis target: inhibitor design principles, recent amiloride derivatives, and issues with human/mouse species selectivity. El Salamouni NS, Buckley BJ, Ranson M, Kelso MJ, Yu H. Biophys Rev 14 277-301 (2022)

Articles citing this publication (41)

  1. Calculation of protein-ligand binding free energy by using a polarizable potential. Jiao D, Golubkov PA, Darden TA, Ren P. Proc Natl Acad Sci U S A 105 6290-6295 (2008)
  2. High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M. PLoS Comput Biol 5 e1000528 (2009)
  3. A fluorine scan of the phenylamidinium needle of tricyclic thrombin inhibitors: effects of fluorine substitution on pKa and binding affinity and evidence for intermolecular C-F...CN interactions. Olsen J, Seiler P, Wagner B, Fischer H, Tschopp T, Obst-Sander U, Banner DW, Kansy M, Müller K, Diederich F. Org Biomol Chem 2 1339-1352 (2004)
  4. The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Somoza JR, Ho JD, Luong C, Ghate M, Sprengeler PA, Mortara K, Shrader WD, Sperandio D, Chan H, McGrath ME, Katz BA. Structure 11 1123-1131 (2003)
  5. Expression, crystallization, and three-dimensional structure of the catalytic domain of human plasma kallikrein. Tang J, Yu CL, Williams SR, Springman E, Jeffery D, Sprengeler PA, Estevez A, Sampang J, Shrader W, Spencer J, Young W, McGrath M, Katz BA. J Biol Chem 280 41077-41089 (2005)
  6. Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Katz BA, Sprengeler PA, Luong C, Verner E, Elrod K, Kirtley M, Janc J, Spencer JR, Breitenbucher JG, Hui H, McGee D, Allen D, Martelli A, Mackman RL. Chem Biol 8 1107-1121 (2001)
  7. Crystal structures of the FXIa catalytic domain in complex with ecotin mutants reveal substrate-like interactions. Jin L, Pandey P, Babine RE, Gorga JC, Seidl KJ, Gelfand E, Weaver DT, Abdel-Meguid SS, Strickler JE. J Biol Chem 280 4704-4712 (2005)
  8. Assessing the similarity of ligand binding conformations with the Contact Mode Score. Ding Y, Fang Y, Moreno J, Ramanujam J, Jarrell M, Brylinski M. Comput Biol Chem 64 403-413 (2016)
  9. Selectivity of neutral/weakly basic P1 group inhibitors of thrombin and trypsin by a molecular dynamics study. Wu EL, Han K, Zhang JZ. Chemistry 14 8704-8714 (2008)
  10. Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors. Katz BA, Elrod K, Verner E, Mackman RL, Luong C, Shrader WD, Sendzik M, Spencer JR, Sprengeler PA, Kolesnikov A, Tai VW, Hui HC, Breitenbucher JG, Allen D, Janc JW. J Mol Biol 329 93-120 (2003)
  11. Solvation Free Energy as a Measure of Hydrophobicity: Application to Serine Protease Binding Interfaces. Kraml J, Kamenik AS, Waibl F, Schauperl M, Liedl KR. J Chem Theory Comput 15 5872-5882 (2019)
  12. Dissecting and designing inhibitor selectivity determinants at the S1 site using an artificial Ala190 protease (Ala190 uPA). Katz BA, Luong C, Ho JD, Somoza JR, Gjerstad E, Tang J, Williams SR, Verner E, Mackman RL, Young WB, Sprengeler PA, Chan H, Mortara K, Janc JW, McGrath ME. J Mol Biol 344 527-547 (2004)
  13. Neutral inhibitors of the serine protease factor Xa. Shrader WD, Young WB, Sprengeler PA, Sangalang JC, Elrod K, Carr G. Bioorg Med Chem Lett 11 1801-1804 (2001)
  14. Comparative binding energy analysis for binding affinity and target selectivity prediction. Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC. Proteins 78 135-153 (2010)
  15. 5-Amidinobenzo[b]thiophenes as dual inhibitors of factors IXa and Xa. Qiao JX, Cheng X, Modi DP, Rossi KA, Luettgen JM, Knabb RM, Jadhav PK, Wexler RR. Bioorg Med Chem Lett 15 29-35 (2005)
  16. A novel approach to local similarity of protein binding sites substantially improves computational drug design results. Ramensky V, Sobol A, Zaitseva N, Rubinov A, Zosimov V. Proteins 69 349-357 (2007)
  17. 3D-QSAR CoMFA studies on trypsin-like serine protease inhibitors: a comparative selectivity analysis. Bhongade BA, Gouripur VV, Gadad AK. Bioorg Med Chem 13 2773-2782 (2005)
  18. Addressing protein flexibility and ligand selectivity by "in situ cross-docking". Zentgraf M, Fokkens J, Sotriffer CA. ChemMedChem 1 1355-1359 (2006)
  19. Protein promiscuity: drug resistance and native functions--HIV-1 case. Fernández A, Tawfik DS, Berkhout B, Sanders R, Kloczkowski A, Sen T, Jernigan B. J Biomol Struct Dyn 22 615-624 (2005)
  20. Incomplete protein packing as a selectivity filter in drug design. Fernández A. Structure 13 1829-1836 (2005)
  21. Very long half-life plasminogen activator inhibitor type 1 reduces bleeding in a mouse model. Jankun J, Selman SH, Keck RW, Łysiak-Szydłowska W, Skrzypczak-Jankun E. BJU Int 105 1469-1476 (2010)
  22. Electrostatic recognition in substrate binding to serine proteases. Waldner BJ, Kraml J, Kahler U, Spinn A, Schauperl M, Podewitz M, Fuchs JE, Cruciani G, Liedl KR. J Mol Recognit 31 e2727 (2018)
  23. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores. Benson ML, Faver JC, Ucisik MN, Dashti DS, Zheng Z, Merz KM. J Comput Aided Mol Des 26 647-659 (2012)
  24. 2-Amidino analogs of glycine-amiloride conjugates: inhibitors of urokinase-type plasminogen activator. Massey AP, Harley WR, Pasupuleti N, Gorin FA, Nantz MH. Bioorg Med Chem Lett 22 2635-2639 (2012)
  25. Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations. King E, Qi R, Li H, Luo R, Aitchison E. J Chem Theory Comput 17 2541-2555 (2021)
  26. Mass Spectrometry Reveals a Multifaceted Role of Glycosaminoglycan Chains in Factor Xa Inactivation by Antithrombin. Minsky BB, Abzalimov RR, Niu C, Zhao Y, Kirsch Z, Dubin PL, Savinov SN, Kaltashov IA. Biochemistry 57 4880-4890 (2018)
  27. The crystal structures of 3-TAPAP in complexes with the urokinase-type plasminogen activator and picrate. Zesławska E, Jacob U, Stürzebecher J, Oleksyn BJ. Bioorg Med Chem Lett 16 228-234 (2006)
  28. Computationally characterizing and comprehensive analysis of zinc-binding sites in proteins. Liu Z, Wang Y, Zhou C, Xue Y, Zhao W, Liu H. Biochim Biophys Acta 1844 171-180 (2014)
  29. Exploration of conformational transition in the aryl-binding site of human FXa using molecular dynamics simulations. Wang JF, Hao P, Li YX, Dai JL, Li X. J Mol Model 18 2717-2725 (2012)
  30. Geometry of GPPE binding to picrate and to the urokinase type plasminogen activator. Zesławska E, Stürzebecher J, Oleksyn BJ. Bioorg Med Chem Lett 17 6212-6215 (2007)
  31. Thrombin-thrombomodulin inhibits prourokinase-mediated pleural mesothelial cell-dependent fibrinolysis. Iakhiaev AV, Nalian A, Koenig K, Idell S. Thromb Res 120 715-725 (2007)
  32. N,N'-Diphenyldithiomalonodiamide: Structural Features, Acidic Properties, and In Silico Estimation of Biological Activity. Sinotsko AE, Bespalov AV, Pashchevskaya NV, Dotsenko VV, Aksenov NA, Aksenova IV. Russ J Gen Chem 91 2136-2150 (2021)
  33. Application of Relaxation Dispersion of Hyperpolarized 13 C Spins to Protein-Ligand Binding. Qi C, Wang Y, Hilty C. Angew Chem Int Ed Engl 60 24018-24021 (2021)
  34. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases. Waldner BJ, Fuchs JE, Huber RG, von Grafenstein S, Schauperl M, Kramer C, Liedl KR. J Phys Chem B 120 299-308 (2016)
  35. Discovery of novel hydroxy pyrazole based factor IXa inhibitor. Vijaykumar D, Sprengeler PA, Shaghafi M, Spencer JR, Katz BA, Yu C, Rai R, Young WB, Schultz B, Janc J. Bioorg Med Chem Lett 16 2796-2799 (2006)
  36. Molecular dynamics simulations of Factor Xa: insight into conformational transition of its binding subsites. Singh N, Briggs JM. Biopolymers 89 1104-1113 (2008)
  37. Synthesis and activity of amides of tripeptides as potential urokinase inhibitors. Markowska A, Bruzgo I, Midura-Nowaczek K. J Enzyme Inhib Med Chem 25 139-142 (2010)
  38. Packing defects as selectivity switches for drug-based protein inhibitors. Fernández A, Scott R, Berry RS. Proc Natl Acad Sci U S A 103 323-328 (2006)
  39. Application of long-acting VLHL PAI-1 during sutureless partial nephrectomy in mice reduces bleeding. Shahrour K, Keck R, Jankun J. Biomed Res Int 2015 392862 (2015)
  40. Development of a Mammalian suspension culture for expression of active recombinant human urokinase-type plasminogen activator. Atkins E, Zamora S, Candia BJ, Baca A, Orlando RA. Cytotechnology 49 25-37 (2005)
  41. Unexpected Dynamic Binding May Rescue the Binding Affinity of Rivaroxaban in a Mutant of Coagulation Factor X. Zhang ZL, Chen C, Qu SY, Ding Q, Xu Q. Front Mol Biosci 9 877170 (2022)