1bks Citations

Exchange of K+ or Cs+ for Na+ induces local and long-range changes in the three-dimensional structure of the tryptophan synthase alpha2beta2 complex.

Biochemistry 35 4211-21 (1996)
Related entries: 1ttp, 1ttq, 1ubs, 2trs, 2tsy, 2tys

Cited: 71 times
EuropePMC logo PMID: 8672457

Abstract

Monovalent cations activate the pyridoxal phosphate-dependent reactions of tryptophan synthase and affect intersubunit communication in the alpha2beta2 complex. We report refined crystal structures of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium in the presence of K+ at 2.0 angstrom and of Cs+ at 2.3 angstrom. Comparison of these structures with the recently refined structure in the presence of Na+ shows that each monovalent cation binds at approximately the same position about 8 angstrom from the phosphate of pyridoxal phosphate. Na+ and K+ are coordinated to the carbonyl oxygens of beta Phe-306, beta Ser-308, and beta Gly-232 and to two or one water molecule, respectively. Cs+ is coordinated to the carbonyl oxygens of beta Phe-306, beta Ser-308, beta Gly-232, beta Val-231, beta Gly-268 and beta Leu-304. A second binding site for Cs+ is located in the beta/beta interface on the 2-fold axis with four carbonyl oxygens in the coordination sphere. In addition to local changes in structure close to the cation binding site, a number of long-range changes are observed. The K+ and Cs+ structures differ from the Na+ structure with respect to the positions of beta Asp-305, beta Lys-167, and alpha Asp-56. One unexpected result of this investigation is the movement of the side chains of beta Phe-280 and beta Tyr-279 from a position partially blocking the tunnel in the Na+ structure to a position lining the surface of the tunnel in the K+ and Cs+ structures. The results provide a structural basis for understanding the effects of cations on activity and intersubunit communication.

Reviews - 1bks mentioned but not cited (2)

  1. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. Gohara DW, Di Cera E. J Biol Chem 291 20840-20848 (2016)
  2. Structural Basis for Allostery in PLP-dependent Enzymes. Tran JU, Brown BL. Front Mol Biosci 9 884281 (2022)

Articles - 1bks mentioned but not cited (17)

  1. Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. Buller AR, Brinkmann-Chen S, Romney DK, Herger M, Murciano-Calles J, Arnold FH. Proc Natl Acad Sci U S A 112 14599-14604 (2015)
  2. A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein. Wu Y, Vadrevu R, Kathuria S, Yang X, Matthews CR. J Mol Biol 366 1624-1638 (2007)
  3. Binding leverage as a molecular basis for allosteric regulation. Mitternacht S, Berezovsky IN. PLoS Comput Biol 7 e1002148 (2011)
  4. Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. Wu Y, Kondrashkina E, Kayatekin C, Matthews CR, Bilsel O. Proc Natl Acad Sci U S A 105 13367-13372 (2008)
  5. Role of hydrophobic clusters and long-range contact networks in the folding of (alpha/beta)8 barrel proteins. Selvaraj S, Gromiha MM. Biophys J 84 1919-1925 (2003)
  6. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability. Kathuria SV, Chan YH, Nobrega RP, Özen A, Matthews CR. Protein Sci 25 662-675 (2016)
  7. Identifying Allosteric Hotspots with Dynamics: Application to Inter- and Intra-species Conservation. Clarke D, Sethi A, Li S, Kumar S, Chang RWF, Chen J, Gerstein M. Structure 24 826-837 (2016)
  8. Equilibrium and kinetic folding pathways of a TIM barrel with a funneled energy landscape. Finke JM, Onuchic JN. Biophys J 89 488-505 (2005)
  9. NMR analysis of partially folded states and persistent structure in the alpha subunit of tryptophan synthase: implications for the equilibrium folding mechanism of a 29-kDa TIM barrel protein. Vadrevu R, Wu Y, Matthews CR. J Mol Biol 377 294-306 (2008)
  10. Tryptophan synthase: structure and function of the monovalent cation site. Dierkers AT, Niks D, Schlichting I, Dunn MF. Biochemistry 48 10997-11010 (2009)
  11. Interplay between drying and stability of a TIM barrel protein: a combined simulation-experimental study. Das P, Kapoor D, Halloran KT, Zhou R, Matthews CR. J Am Chem Soc 135 1882-1890 (2013)
  12. Long-range side-chain-main-chain interactions play crucial roles in stabilizing the (betaalpha)8 barrel motif of the alpha subunit of tryptophan synthase. Yang X, Vadrevu R, Wu Y, Matthews CR. Protein Sci 16 1398-1409 (2007)
  13. Catalytically impaired TrpA subunit of tryptophan synthase from Chlamydia trachomatis is an allosteric regulator of TrpB. Michalska K, Wellington S, Maltseva N, Jedrzejczak R, Selem-Mojica N, Rosas-Becerra LR, Barona-Gómez F, Hung DT, Joachimiak A. Protein Sci 30 1904-1918 (2021)
  14. Conservation of the structure and function of bacterial tryptophan synthases. Michalska K, Gale J, Joachimiak G, Chang C, Hatzos-Skintges C, Nocek B, Johnston SE, Bigelow L, Bajrami B, Jedrzejczak RP, Wellington S, Hung DT, Nag PP, Fisher SL, Endres M, Joachimiak A. IUCrJ 6 649-664 (2019)
  15. Towards Photochromic Azobenzene-Based Inhibitors for Tryptophan Synthase. Simeth NA, Kinateder T, Rajendran C, Nazet J, Merkl R, Sterner R, König B, Kneuttinger AC. Chemistry 27 2439-2451 (2021)
  16. Microgravity crystallization of perdeuterated tryptophan synthase for neutron diffraction. Drago VN, Devos JM, Blakeley MP, Forsyth VT, Kovalevsky AY, Schall CA, Mueser TC. NPJ Microgravity 8 13 (2022)
  17. Statistical approach for lysosomal membrane proteins (LMPs) identification. Tripathi V, Tripathi P, Gupta D. Syst Synth Biol 8 313-319 (2014)


Reviews citing this publication (14)

  1. Structure, evolution and action of vitamin B6-dependent enzymes. Jansonius JN. Curr Opin Struct Biol 8 759-769 (1998)
  2. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Huang X, Holden HM, Raushel FM. Annu Rev Biochem 70 149-180 (2001)
  3. Role of Na+ and K+ in enzyme function. Page MJ, Di Cera E. Physiol Rev 86 1049-1092 (2006)
  4. Fucosyltransferases: structure/function studies. de Vries T, Knegtel RM, Holmes EH, Macher BA. Glycobiology 11 119R-128R (2001)
  5. Gates of enzymes. Gora A, Brezovsky J, Damborsky J. Chem Rev 113 5871-5923 (2013)
  6. Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Dunn MF. Arch Biochem Biophys 519 154-166 (2012)
  7. Conformational changes in ammonia-channeling glutamine amidotransferases. Mouilleron S, Golinelli-Pimpaneau B. Curr Opin Struct Biol 17 653-664 (2007)
  8. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel. Miles EW. Chem Rec 1 140-151 (2001)
  9. Tryptophan synthase: a mine for enzymologists. Raboni S, Bettati S, Mozzarelli A. Cell Mol Life Sci 66 2391-2403 (2009)
  10. Protein architecture, dynamics and allostery in tryptophan synthase channeling. Pan P, Woehl E, Dunn MF. Trends Biochem Sci 22 22-27 (1997)
  11. Glutamine PRPP amidotransferase: snapshots of an enzyme in action. Smith JL. Curr Opin Struct Biol 8 686-694 (1998)
  12. Thrombin: a paradigm for enzymes allosterically activated by monovalent cations. Di Cera E. C R Biol 327 1065-1076 (2004)
  13. Metabolic channeling: predictions, deductions, and evidence. Pareek V, Sha Z, He J, Wingreen NS, Benkovic SJ. Mol Cell 81 3775-3785 (2021)
  14. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Ghosh RK, Hilario E, Chang CA, Mueller LJ, Dunn MF. Front Mol Biosci 9 923042 (2022)

Articles citing this publication (38)

  1. Molecular dissection of Na+ binding to thrombin. Pineda AO, Carrell CJ, Bush LA, Prasad S, Caccia S, Chen ZW, Mathews FS, Di Cera E. J Biol Chem 279 31842-31853 (2004)
  2. Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E. Structure 6 465-475 (1998)
  3. Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium. Burkhard P, Tai CH, Ristroph CM, Cook PF, Jansonius JN. J Mol Biol 291 941-953 (1999)
  4. Channeling of ammonia in glucosamine-6-phosphate synthase. Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA. J Mol Biol 313 1093-1102 (2001)
  5. Crystal structure of tryptophanase. Isupov MN, Antson AA, Dodson EJ, Dodson GG, Dementieva IS, Zakomirdina LN, Wilson KS, Dauter Z, Lebedev AA, Harutyunyan EH. J Mol Biol 276 603-623 (1998)
  6. Redesigning the monovalent cation specificity of an enzyme. Prasad S, Wright KJ, Banerjee Roy D, Bush LA, Cantwell AM, Di Cera E. Proc Natl Acad Sci U S A 100 13785-13790 (2003)
  7. Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate. Barends TR, Domratcheva T, Kulik V, Blumenstein L, Niks D, Dunn MF, Schlichting I. Chembiochem 9 1024-1028 (2008)
  8. Identification of an allosteric anion-binding site on O-acetylserine sulfhydrylase: structure of the enzyme with chloride bound. Burkhard P, Tai CH, Jansonius JN, Cook PF. J Mol Biol 303 279-286 (2000)
  9. On the role of alphaThr183 in the allosteric regulation and catalytic mechanism of tryptophan synthase. Kulik V, Weyand M, Seidel R, Niks D, Arac D, Dunn MF, Schlichting I. J Mol Biol 324 677-690 (2002)
  10. Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Niks D, Hilario E, Dierkers A, Ngo H, Borchardt D, Neubauer TJ, Fan L, Mueller LJ, Dunn MF. Biochemistry 52 6396-6411 (2013)
  11. Exploring the pyridoxal 5'-phosphate-dependent enzymes. Mozzarelli A, Bettati S. Chem Rec 6 275-287 (2006)
  12. Developing an energy landscape for the novel function of a (beta/alpha)8 barrel: ammonia conduction through HisF. Amaro R, Tajkhorshid E, Luthey-Schulten Z. Proc Natl Acad Sci U S A 100 7599-7604 (2003)
  13. Long-range interactions in the α subunit of tryptophan synthase help to coordinate ligand binding, catalysis, and substrate channeling. Axe JM, Boehr DD. J Mol Biol 425 1527-1545 (2013)
  14. Stabilisation of halophilic malate dehydrogenase from Haloarcula marismortui by divalent cations -- effects of temperature, water isotope, cofactor and pH. Madern D, Zaccai G. Eur J Biochem 249 607-611 (1997)
  15. A novel main chain motif in proteins bridged by cationic groups: the niche. Torrance GM, Leader DP, Gilbert DR, Milner-White EJ. J Mol Biol 385 1076-1086 (2009)
  16. Elucidating factors important for monovalent cation selectivity in enzymes: E. coli β-galactosidase as a model. Wheatley RW, Juers DH, Lev BB, Huber RE, Noskov SY. Phys Chem Chem Phys 17 10899-10909 (2015)
  17. High resolution crystal structures of free thrombin in the presence of K(+) reveal the molecular basis of monovalent cation selectivity and an inactive slow form. Carrell CJ, Bush LA, Mathews FS, Di Cera E. Biophys Chem 121 177-184 (2006)
  18. The crystal structure of the formiminotransferase domain of formiminotransferase-cyclodeaminase: implications for substrate channeling in a bifunctional enzyme. Kohls D, Sulea T, Purisima EO, MacKenzie RE, Vrielink A. Structure 8 35-46 (2000)
  19. Allosteric communication of tryptophan synthase. Functional and regulatory properties of the beta S178P mutant. Marabotti A, De Biase D, Tramonti A, Bettati S, Mozzarelli A. J Biol Chem 276 17747-17753 (2001)
  20. Allosteric inhibitors of Mycobacterium tuberculosis tryptophan synthase. Michalska K, Chang C, Maltseva NI, Jedrzejczak R, Robertson GT, Gusovsky F, McCarren P, Schreiber SL, Nag PP, Joachimiak A. Protein Sci 29 779-788 (2020)
  21. Investigating the molecular determinants for substrate channeling in BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls degradation pathway. Carere J, Baker P, Seah SY. Biochemistry 50 8407-8416 (2011)
  22. Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase. Axe JM, O'Rourke KF, Kerstetter NE, Yezdimer EM, Chan YM, Chasin A, Boehr DD. Protein Sci 24 484-494 (2015)
  23. Detection of open and closed conformations of tryptophan synthase by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-15N-L-tryptophan. Osborne A, Teng Q, Miles EW, Phillips RS. J Biol Chem 278 44083-44090 (2003)
  24. The crystal structure of the tryptophan synthase beta subunit from the hyperthermophile Pyrococcus furiosus. Investigation of stabilization factors. Hioki Y, Ogasahara K, Lee SJ, Ma J, Ishida M, Yamagata Y, Matsuura Y, Ota M, Ikeguchi M, Kuramitsu S, Yutani K. Eur J Biochem 271 2624-2635 (2004)
  25. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. J Exp Bot 71 2172-2185 (2020)
  26. Quantitative effects of allosteric ligands and mutations on conformational equilibria in Salmonella typhimurium tryptophan synthase. Phillips RS, McPhie P, Miles EW, Marchal S, Lange R. Arch Biochem Biophys 470 8-19 (2008)
  27. Influence of Chloroplast Defects on Formation of Jasmonic Acid and Characteristic Aroma Compounds in Tea (Camellia sinensis) Leaves Exposed to Postharvest Stresses. Li J, Zeng L, Liao Y, Gu D, Tang J, Yang Z. Int J Mol Sci 20 E1044 (2019)
  28. H2rs: deducing evolutionary and functionally important residue positions by means of an entropy and similarity based analysis of multiple sequence alignments. Janda JO, Popal A, Bauer J, Busch M, Klocke M, Spitzer W, Keller J, Merkl R. BMC Bioinformatics 15 118 (2014)
  29. Plasticity of the tryptophan synthase active site probed by 31P NMR spectroscopy. Schnackerz KD, Mozzarelli A. J Biol Chem 273 33247-33253 (1998)
  30. Large conformational changes in the Escherichia coli tryptophan synthase beta(2) subunit upon pyridoxal 5'-phosphate binding. Nishio K, Ogasahara K, Morimoto Y, Tsukihara T, Lee SJ, Yutani K. FEBS J 277 2157-2170 (2010)
  31. Roles of hydrogen bonding residues in the interaction between the alpha and beta subunits in the tryptophan synthase complex. Asn-104 of the alpha subunit is especially important. Hiraga K, Yutani K. J Biol Chem 272 4935-4940 (1997)
  32. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole. Cash MT, Miles EW, Phillips RS. Arch Biochem Biophys 432 233-243 (2004)
  33. Effects of salts on the conformation and catalytic properties of d-amino acid aminotransferase. Ro HS. J Biochem Mol Biol 35 306-312 (2002)
  34. The contribution of water to the selectivity of pyruvate kinase for Na+ and K+. Ramírez-Silva L, Oria J, Gómez-Puyou A, Tuena de Gómez-Puyou M. Eur J Biochem 250 583-589 (1997)
  35. A quiet life with proteins. Davies D. Annu Rev Biophys Biomol Struct 34 1-20 (2005)
  36. Mutational scanning of a hairpin loop in the tryptophan synthase beta-subunit implicated in allostery and substrate channeling. Rondard P, Bedouelle H. Biol Chem 381 1185-1193 (2000)
  37. Light-Regulation of Tryptophan Synthase by Combining Protein Design and Enzymology. Kneuttinger AC, Zwisele S, Straub K, Bruckmann A, Busch F, Kinateder T, Gaim B, Wysocki VH, Merkl R, Sterner R. Int J Mol Sci 20 E5106 (2019)
  38. PCR Mutagenesis, Cloning, Expression, Fast Protein Purification Protocols and Crystallization of the Wild Type and Mutant Forms of Tryptophan Synthase. Hilario E, Fan L, Mueller LJ, Dunn MF. J Vis Exp (2020)


Related citations provided by authors (4)