1bhl Citations

Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases.

J. Mol. Biol. 282 359-68 (1998)
Related entries: 1bi4, 1bl3, 1itg

Cited: 157 times
EuropePMC logo PMID: 9735293

Abstract

Human immunodeficiency virus (HIV) integrase is the enzyme responsible for insertion of a DNA copy of the viral genome into host DNA, an essential step in the replication cycle of HIV. HIV-1 integrase comprises three functional and structural domains: an N-terminal zinc-binding domain, a catalytic core domain and a C-terminal DNA-binding domain. The catalytic core domain with the F185H mutation has been crystallized without sodium cacodylate in a new crystal form, free and complexed with the catalytic metal Mg2+. The structures have been determined and refined to about 2.2 A. Unlike the previously reported structures, the three active-site carboxylate residues (D,D-35-E motif) are well ordered and both aspartate residues delineate a proper metal-binding site. Comparison of the active binding site of this domain with that of other members from the polynucleotidyl transferases superfamily shows a high level of similarity, providing a confident template for the design of antiviral agents.

Articles - 1bhl mentioned but not cited (3)

  1. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Le Rouzic E, Bonnard D, Chasset S, Bruneau JM, Chevreuil F, Le Strat F, Nguyen J, Beauvoir R, Amadori C, Brias J, Vomscheid S, Eiler S, Lévy N, Delelis O, Deprez E, Saïb A, Zamborlini A, Emiliani S, Ruff M, Ledoussal B, Moreau F, Benarous R. Retrovirology 10 144 (2013)
  2. Presence of a characteristic D-D-E motif in IS1 transposase. Ohta S, Tsuchida K, Choi S, Sekine Y, Shiga Y, Ohtsubo E. J. Bacteriol. 184 6146-6154 (2002)
  3. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study. Balasubramanian S, Rajagopalan M, Bojja RS, Skalka AM, Andrake MD, Ramaswamy A. J. Biomol. Struct. Dyn. 35 3469-3485 (2017)


Reviews citing this publication (23)

  1. Retroviral integrase protein and intasome nucleoprotein complex structures. Grawenhoff J, Engelman AN. World J Biol Chem 8 32-44 (2017)
  2. Different Pathways Leading to Integrase Inhibitors Resistance. Thierry E, Deprez E, Delelis O. Front Microbiol 7 2165 (2016)
  3. HIV-1 integrase multimerization as a therapeutic target. Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M. Curr. Top. Microbiol. Immunol. 389 93-119 (2015)
  4. DNA bending in the synaptic complex in V(D)J recombination: turning an ancestral transpososome upside down. Ciubotaru M, Surleac M, Musat MG, Rusu AM, Ionita E, Albu PCC. Discoveries (Craiova) 2 e13 (2014)
  5. Arsenic binding to proteins. Shen S, Li XF, Cullen WR, Weinfeld M, Le XC. Chem. Rev. 113 7769-7792 (2013)
  6. The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. Christ F, Debyser Z. Virology 435 102-109 (2013)
  7. HIV-1 antiretroviral drug therapy. Arts EJ, Hazuda DJ. Cold Spring Harb Perspect Med 2 a007161 (2012)
  8. Allosteric inhibitor development targeting HIV-1 integrase. Al-Mawsawi LQ, Neamati N. ChemMedChem 6 228-241 (2011)
  9. HIV-1 integrase inhibitors: a review of their chemical development. Ingale KB, Bhatia MS. Antivir. Chem. Chemother. 22 95-105 (2011)
  10. Structural biology of retroviral DNA integration. Li X, Krishnan L, Cherepanov P, Engelman A. Virology 411 194-205 (2011)
  11. Computer tools in the discovery of HIV-1 integrase inhibitors. Liao C, Nicklaus MC. Future Med Chem 2 1123-1140 (2010)
  12. Resistance to inhibitors of the human immunodeficiency virus type 1 integration. Hazuda DJ. Braz J Infect Dis 14 513-518 (2010)
  13. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A. FEBS J. 276 2926-2946 (2009)
  14. Raltegravir: molecular basis of its mechanism of action. Mouscadet JF, Tchertanov L. Eur. J. Med. Res. 14 Suppl 3 5-16 (2009)
  15. Integrase and integration: biochemical activities of HIV-1 integrase. Delelis O, Carayon K, Saïb A, Deprez E, Mouscadet JF. Retrovirology 5 114 (2008)
  16. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. Wlodawer A, Minor W, Dauter Z, Jaskolski M. FEBS J. 275 1-21 (2008)
  17. HIV integrase inhibitors as therapeutic agents in AIDS. Nair V, Chi G. Rev. Med. Virol. 17 277-295 (2007)
  18. Correlation of biological activity with active site binding modes of geminal disulfone HIV-1 integrase inhibitors. Meadows DC, Tantillo DJ, Gervay-Hague J. ChemMedChem 1 959-964 (2006)
  19. Design, synthesis and biological evaluation of heteroaryl diketohexenoic and diketobutanoic acids as HIV-1 integrase inhibitors endowed with antiretroviral activity. Di Santo R, Costi R, Artico M, Ragno R, Greco G, Novellino E, Marchand C, Pommier Y. Farmaco 60 409-417 (2005)
  20. V(D)J recombination: how to tame a transposase. Brandt VL, Roth DB. Immunol. Rev. 200 249-260 (2004)
  21. Structure-based design of AIDS drugs and the development of resistance. Wlodawer A. Vox Sang. 83 Suppl 1 23-26 (2002)
  22. Structure-based HIV-1 integrase inhibitor design: a future perspective. Neamati N. Expert Opin Investig Drugs 10 281-296 (2001)
  23. Retroviral DNA integration. Hindmarsh P, Leis J. Microbiol. Mol. Biol. Rev. 63 836-43, table of contents (1999)

Articles citing this publication (131)

  1. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM. Proc. Natl. Acad. Sci. U.S.A. 97 8233-8238 (2000)
  2. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, Fujishita T, Sugimoto H, Endo T, Murai H, Davies DR. Proc. Natl. Acad. Sci. U.S.A. 96 13040-13043 (1999)
  3. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A. Proc. Natl. Acad. Sci. U.S.A. 102 17308-17313 (2005)
  4. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z. Nat. Chem. Biol. 6 442-448 (2010)
  5. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SD. Proc. Natl. Acad. Sci. U.S.A. 101 11233-11238 (2004)
  6. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. Thompson AA, Peersen OB. EMBO J. 23 3462-3471 (2004)
  7. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. Quashie PK, Mesplède T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA. J. Virol. 86 2696-2705 (2012)
  8. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Landree MA, Wibbenmeyer JA, Roth DB. Genes Dev. 13 3059-3069 (1999)
  9. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA. Genes Dev. 13 3070-3080 (1999)
  10. Functional and structural characterization of the integrase from the prototype foamy virus. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P. Nucleic Acids Res. 37 243-255 (2009)
  11. Comparison of raltegravir and elvitegravir on HIV-1 integrase catalytic reactions and on a series of drug-resistant integrase mutants. Marinello J, Marchand C, Mott BT, Bain A, Thomas CJ, Pommier Y. Biochemistry 47 9345-9354 (2008)
  12. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. Gao K, Butler SL, Bushman F. EMBO J. 20 3565-3576 (2001)
  13. Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BF. Structure 9 1071-1081 (2001)
  14. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. Yang ZN, Mueser TC, Bushman FD, Hyde CC. J. Mol. Biol. 296 535-548 (2000)
  15. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform. Chen Z, Yan Y, Munshi S, Li Y, Zugay-Murphy J, Xu B, Witmer M, Felock P, Wolfe A, Sardana V, Emini EA, Hazuda D, Kuo LC. J. Mol. Biol. 296 521-533 (2000)
  16. Resistance to integrase inhibitors. Métifiot M, Marchand C, Maddali K, Pommier Y. Viruses 2 1347-1366 (2010)
  17. Rational approach to AIDS drug design through structural biology. Wlodawer A. Annu. Rev. Med. 53 595-614 (2002)
  18. Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. Michel F, Crucifix C, Granger F, Eiler S, Mouscadet JF, Korolev S, Agapkina J, Ziganshin R, Gottikh M, Nazabal A, Emiliani S, Benarous R, Moras D, Schultz P, Ruff M. EMBO J. 28 980-991 (2009)
  19. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Al-Mawsawi LQ, Fikkert V, Dayam R, Witvrouw M, Burke TR, Borchers CH, Neamati N. Proc. Natl. Acad. Sci. U.S.A. 103 10080-10085 (2006)
  20. Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Nadal M, Mas PJ, Blanco AG, Arnan C, Solà M, Hart DJ, Coll M. Proc. Natl. Acad. Sci. U.S.A. 107 16078-16083 (2010)
  21. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Neumann P, Koblízková A, Navrátilová A, Macas J. Genetics 173 1047-1056 (2006)
  22. Fabs enable single particle cryoEM studies of small proteins. Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL, Juge N, Yu Y, Mergel CM, Chaparro-Riggers J, Strop P, Tampé R, Edwards RH, Stroud RM, Craik CS, Cheng Y. Structure 20 582-592 (2012)
  23. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Williams TL, Jackson EL, Carritte A, Baker TA. Genes Dev. 13 2725-2737 (1999)
  24. Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 A resolution. Tête-Favier F, Cobessi D, Boschi-Muller S, Azza S, Branlant G, Aubry A. Structure 8 1167-1178 (2000)
  25. DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study. Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Hawkins ME, Brochon JC. Proc. Natl. Acad. Sci. U.S.A. 98 10090-10095 (2001)
  26. In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Savarino A. Retrovirology 4 21 (2007)
  27. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. Chen X, Tsiang M, Yu F, Hung M, Jones GS, Zeynalzadegan A, Qi X, Jin H, Kim CU, Swaminathan S, Chen JM. J. Mol. Biol. 380 504-519 (2008)
  28. Biochemical and pharmacological analyses of HIV-1 integrase flexible loop mutants resistant to raltegravir. Métifiot M, Maddali K, Naumova A, Zhang X, Marchand C, Pommier Y. Biochemistry 49 3715-3722 (2010)
  29. Refined solution structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase. Eijkelenboom AP, Sprangers R, Hård K, Puras Lutzke RA, Plasterk RH, Boelens R, Kaptein R. Proteins 36 556-564 (1999)
  30. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M, Mouscadet JF. Mol Pharmacol 65 85-98 (2004)
  31. Molecular dynamics studies on the HIV-1 integrase catalytic domain. Lins RD, Briggs JM, Straatsma TP, Carlson HA, Greenwald J, Choe S, McCammon JA. Biophys. J. 76 2999-3011 (1999)
  32. Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Podtelezhnikov AA, Gao K, Bushman FD, McCammon JA. Biopolymers 68 110-120 (2003)
  33. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance. Barreca ML, Lee KW, Chimirri A, Briggs JM. Biophys. J. 84 1450-1463 (2003)
  34. Peptides derived from the reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase. Oz Gleenberg I, Avidan O, Goldgur Y, Herschhorn A, Hizi A. J. Biol. Chem. 280 21987-21996 (2005)
  35. Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones. Didierjean J, Isel C, Querré F, Mouscadet JF, Aubertin AM, Valnot JY, Piettre SR, Marquet R. Antimicrob. Agents Chemother. 49 4884-4894 (2005)
  36. Analysis of the full-length integrase-DNA complex by a modified approach for DNA docking. De Luca L, Pedretti A, Vistoli G, Barreca ML, Villa L, Monforte P, Chimirri A. Biochem. Biophys. Res. Commun. 310 1083-1088 (2003)
  37. The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. Michel G, Chantalat L, Fanchon E, Henrissat B, Kloareg B, Dideberg O. J Biol Chem 276 40202-40209 (2001)
  38. Disease-associated substitutions in the filamin B actin binding domain confer enhanced actin binding affinity in the absence of major structural disturbance: Insights from the crystal structures of filamin B actin binding domains. Sawyer GM, Clark AR, Robertson SP, Sutherland-Smith AJ. J. Mol. Biol. 390 1030-1047 (2009)
  39. A three-dimensional model of the human immunodeficiency virus type 1 integration complex. Wielens J, Crosby IT, Chalmers DK. J. Comput. Aided Mol. Des. 19 301-317 (2005)
  40. Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design. Karki RG, Tang Y, Burke TR, Nicklaus MC. J. Comput. Aided Mol. Des. 18 739-760 (2004)
  41. Use of patient-derived human immunodeficiency virus type 1 integrases to identify a protein residue that affects target site selection. Harper AL, Skinner LM, Sudol M, Katzman M. J. Virol. 75 7756-7762 (2001)
  42. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs. Alian A, Griner SL, Chiang V, Tsiang M, Jones G, Birkus G, Geleziunas R, Leavitt AD, Stroud RM. Proc. Natl. Acad. Sci. U.S.A. 106 8192-8197 (2009)
  43. A dynamic model of HIV integrase inhibition and drug resistance. Perryman AL, Forli S, Morris GM, Burt C, Cheng Y, Palmer MJ, Whitby K, McCammon JA, Phillips C, Olson AJ. J. Mol. Biol. 397 600-615 (2010)
  44. An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA. Harper AL, Sudol M, Katzman M. J. Virol. 77 3838-3845 (2003)
  45. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. Barreca ML, Iraci N, De Luca L, Chimirri A. ChemMedChem 4 1446-1456 (2009)
  46. All three residues of the Tn 10 transposase DDE catalytic triad function in divalent metal ion binding. Allingham JS, Pribil PA, Haniford DB. J. Mol. Biol. 289 1195-1206 (1999)
  47. A homology model of HIV-1 integrase and analysis of mutations designed to test the model. Johnson BC, Métifiot M, Ferris A, Pommier Y, Hughes SH. J. Mol. Biol. 425 2133-2146 (2013)
  48. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus. Nørager S, Legrand P, Pieulle L, Hatchikian C, Roth M. J. Mol. Biol. 290 881-902 (1999)
  49. Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification? Wielens J, Headey SJ, Rhodes DI, Mulder RJ, Dolezal O, Deadman JJ, Newman J, Chalmers DK, Parker MW, Peat TS, Scanlon MJ. J Biomol Screen 18 147-159 (2013)
  50. Active site binding modes of the beta-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Dayam R, Neamati N. Bioorg. Med. Chem. 12 6371-6381 (2004)
  51. Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity. Roman Y, Oshige M, Lee YJ, Goodwin K, Georgiadis MM, Hromas RA, Lee SH. Biochemistry 46 11369-11376 (2007)
  52. Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS. Savarino A, Pistello M, D'Ostilio D, Zabogli E, Taglia F, Mancini F, Ferro S, Matteucci D, De Luca L, Barreca ML, Ciervo A, Chimirri A, Ciccozzi M, Bendinelli M. Retrovirology 4 79 (2007)
  53. Molecular dynamics approaches estimate the binding energy of HIV-1 integrase inhibitors and correlate with in vitro activity. Johnson BC, Métifiot M, Pommier Y, Hughes SH. Antimicrob. Agents Chemother. 56 411-419 (2012)
  54. Molecular dynamics studies of the full-length integrase-DNA complex. De Luca L, Vistoli G, Pedretti A, Barreca ML, Chimirri A. Biochem. Biophys. Res. Commun. 336 1010-1016 (2005)
  55. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. Keith JH, Schaeper CA, Fraser TS, Fraser MJ. BMC Mol. Biol. 9 73 (2008)
  56. Pnicogen-π complexes: theoretical study and biological implications. Bauzá A, Quiñonero D, Deyà PM, Frontera A. Phys Chem Chem Phys 14 14061-14066 (2012)
  57. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site. Wielens J, Headey SJ, Jeevarajah D, Rhodes DI, Deadman J, Chalmers DK, Scanlon MJ, Parker MW. FEBS Lett. 584 1455-1462 (2010)
  58. Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. Bojja RS, Andrake MD, Weigand S, Merkel G, Yarychkivska O, Henderson A, Kummerling M, Skalka AM. J. Biol. Chem. 286 17047-17059 (2011)
  59. Mapping DNA-binding sites of HIV-1 integrase by protein footprinting. Dirac AM, Kjems J. Eur. J. Biochem. 268 743-751 (2001)
  60. Human immunodeficiency virus type-1 integrase containing a glycine to serine mutation at position 140 is attenuated for catalysis and resistant to integrase inhibitors. King PJ, Lee DJ, Reinke RA, Victoria JG, Beale K, Robinson WE. Virology 306 147-161 (2003)
  61. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. Tsunaka Y, Takano K, Matsumura H, Yamagata Y, Kanaya S. J. Mol. Biol. 345 1171-1183 (2005)
  62. Solution conformation and dynamics of the HIV-1 integrase core domain. Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A. J. Biol. Chem. 285 18072-18084 (2010)
  63. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor. Brigo A, Lee KW, Fogolari F, Mustata GI, Briggs JM. Proteins 59 723-741 (2005)
  64. Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain. Fitzkee NC, Torchia DA, Bax A. Protein Sci. 20 500-512 (2011)
  65. Structure-function analysis of the 3' phosphatase component of T4 polynucleotide kinase/phosphatase. Zhu H, Smith P, Wang LK, Shuman S. Virology 366 126-136 (2007)
  66. Cellular cofactors of lentiviral integrase: from target validation to drug discovery. Taltynov O, Desimmie BA, Demeulemeester J, Christ F, Debyser Z. Mol Biol Int 2012 863405 (2012)
  67. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase. Purohit R, Weichsel A, Montfort WR. Protein Sci. 22 1439-1444 (2013)
  68. Mapping the epitope of an inhibitory monoclonal antibody to the C-terminal DNA-binding domain of HIV-1 integrase. Yi J, Cheng H, Andrake MD, Dunbrack RL, Roder H, Skalka AM. J. Biol. Chem. 277 12164-12174 (2002)
  69. Refined solution structure of the dimeric N-terminal HHCC domain of HIV-2 integrase. Eijkelenboom AP, van den Ent FM, Wechselberger R, Plasterk RH, Kaptein R, Boelens R. J. Biomol. NMR 18 119-128 (2000)
  70. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. Costi R, Métifiot M, Chung S, Cuzzucoli Crucitti G, Maddali K, Pescatori L, Messore A, Madia VN, Pupo G, Scipione L, Tortorella S, Di Leva FS, Cosconati S, Marinelli L, Novellino E, Le Grice SF, Corona A, Pommier Y, Marchand C, Di Santo R. J. Med. Chem. 57 3223-3234 (2014)
  71. Binding modes of diketo-acid inhibitors of HIV-1 integrase: a comparative molecular dynamics simulation study. Huang M, Grant GH, Richards WG. J. Mol. Graph. Model. 29 956-964 (2011)
  72. HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays. Laboulais C, Deprez E, Leh H, Mouscadet JF, Brochon JC, Le Bret M. Biophys. J. 81 473-489 (2001)
  73. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Jiang F, Chen W, Yi K, Wu Z, Si Y, Han W, Zhao Y. Clin. Immunol. 137 347-356 (2010)
  74. Identification of HIV-1 integrase inhibitors via three-dimensional database searching using ASV and HIV-1 integrases as targets. Chen IJ, Neamati N, Nicklaus MC, Orr A, Anderson L, Barchi JJ, Kelley JA, Pommier Y, MacKerell AD. Bioorg. Med. Chem. 8 2385-2398 (2000)
  75. Integrase of Mason-Pfizer monkey virus. Snásel J, Krejcík Z, Jencová V, Rosenberg I, Ruml T, Alexandratos J, Gustchina A, Pichová I. FEBS J. 272 203-216 (2005)
  76. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay. Diamond TL, Bushman FD. Nucleic Acids Res. 34 6116-6125 (2006)
  77. Computational studies of the interaction between the HIV-1 integrase tetramer and the cofactor LEDGF/p75: insights from molecular dynamics simulations and the informational spectrum method. Tintori C, Veljkovic N, Veljkovic V, Botta M. Proteins 78 3396-3408 (2010)
  78. HIV-1 IN alternative molecular recognition of DNA induced by raltegravir resistance mutations. Mouscadet JF, Arora R, André J, Lambry JC, Delelis O, Malet I, Marcelin AG, Calvez V, Tchertanov L. J. Mol. Recognit. 22 480-494 (2009)
  79. Similarities in the HIV-1 and ASV integrase active sites upon metal cofactor binding. Lins RD, Straatsma TP, Briggs JM. Biopolymers 53 308-315 (2000)
  80. A critical role of the C-terminal segment for allosteric inhibitor-induced aberrant multimerization of HIV-1 integrase. Shkriabai N, Dharmarajan V, Slaughter A, Kessl JJ, Larue RC, Feng L, Fuchs JR, Griffin PR, Kvaratskhelia M. J. Biol. Chem. 289 26430-26440 (2014)
  81. Communications: Electron polarization critically stabilizes the Mg2+ complex in the catalytic core domain of HIV-1 integrase. Lu Y, Mei Y, Zhang JZ, Zhang D. J Chem Phys 132 131101 (2010)
  82. Crystal structures of a poxviral glutaredoxin in the oxidized and reduced states show redox-correlated structural changes. Bacik JP, Hazes B. J. Mol. Biol. 365 1545-1558 (2007)
  83. Get phases from arsenic anomalous scattering: de novo SAD phasing of two protein structures crystallized in cacodylate buffer. Liu X, Zhang H, Wang XJ, Li LF, Su XD. PLoS ONE 6 e24227 (2011)
  84. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody. Ramcharan J, Colleluori DM, Merkel G, Andrake MD, Skalka AM. Retrovirology 3 34 (2006)
  85. Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM, Reznikoff WS. Antimicrob. Agents Chemother. 49 2035-2043 (2005)
  86. Mapping epitopes of monoclonal antibodies against HIV-1 integrase with limited proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Yi J, Skalka AM. Biopolymers 55 308-318 (2000)
  87. The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights. Hare S, Cherepanov P. Viruses 1 780-801 (2009)
  88. Analysis of binding parameters of HIV-1 integrase inhibitors: correlates of drug inhibition and resistance. Loizidou EZ, Zeinalipour-Yazdi CD, Christofides T, Kostrikis LG. Bioorg. Med. Chem. 17 4806-4818 (2009)
  89. Crystal structure of a complex of NOD1 CARD and ubiquitin. Ver Heul AM, Gakhar L, Piper RC, Subramanian R. PLoS ONE 9 e104017 (2014)
  90. Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants. Gavin DK, Young SM, Xiao W, Temple B, Abernathy CR, Pereira DJ, Muzyczka N, Samulski RJ. J. Virol. 73 9433-9445 (1999)
  91. Identifying amino acid residues that contribute to the cellular-DNA binding site on retroviral integrase. Nowak MG, Sudol M, Lee NE, Konsavage WM, Katzman M. Virology 389 141-148 (2009)
  92. Novel HIV integrase inhibitors with anti-HIV activity: insights into integrase inhibition from docking studies. Cox AG, Nair V. Antivir. Chem. Chemother. 17 343-353 (2006)
  93. A versatile and practical synthesis toward the development of novel HIV-1 integrase inhibitors. Rinaldi M, Tintori C, Franchi L, Vignaroli G, Innitzer A, Massa S, Esté JA, Gonzalo E, Christ F, Debyser Z, Botta M. ChemMedChem 6 343-352 (2011)
  94. An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF. Merad H, Porumb H, Zargarian L, René B, Hobaika Z, Maroun RG, Mauffret O, Fermandjian S. PLoS ONE 4 e4081 (2009)
  95. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors. Gupta P, Garg P, Roy N, Roy N. Mol. Divers. 15 733-750 (2011)
  96. Dihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore. Kehlenbeck S, Betz U, Birkmann A, Fast B, Göller AH, Henninger K, Lowinger T, Marrero D, Paessens A, Paulsen D, Pevzner V, Schohe-Loop R, Tsujishita H, Welker R, Kreuter J, Rübsamen-Waigmann H, Dittmer F. J. Virol. 80 6883-6894 (2006)
  97. Hamming distance geometry of a protein conformational space: application to the clustering of a 4-ns molecular dynamics trajectory of the HIV-1 integrase catalytic core. Laboulais C, Ouali M, Le Bret M, Gabarro-Arpa J. Proteins 47 169-179 (2002)
  98. Inhibitors of human immunodeficiency virus type I integration. Hazuda DJ. Curr Opin HIV AIDS 1 212-217 (2006)
  99. The Baylis-Hillman approach to quinoline derivatives. Familoni OB, Klaas PJ, Lobb KA, Pakade VE, Kaye PT. Org. Biomol. Chem. 4 3960-3965 (2006)
  100. Design, synthesis, and antiviral evaluation of some 3'-carboxymethyl-3'-deoxyadenosine derivatives. Peterson MA, Ke P, Shi H, Jones C, McDougall BR, Robinson WE. Nucleosides Nucleotides Nucleic Acids 26 499-519 (2007)
  101. Effects of varying the spacing within the D,D-35-E motif in the catalytic region of retroviral integrase. Konsavage WM, Sudol M, Katzman M. Virology 379 223-233 (2008)
  102. HIV-1 integrase can process a 3'-end crosslinked substrate. Agapkina J, Smolov M, Zubin E, Mouscadet JF, Gottikh M. Eur. J. Biochem. 271 205-211 (2004)
  103. Serendipitous SAD Solution for DMSO-Soaked SOCS2-ElonginC-ElonginB Crystals Using Covalently Incorporated Dimethylarsenic: Insights into Substrate Receptor Conformational Flexibility in Cullin RING Ligases. Gadd MS, Bulatov E, Ciulli A. PLoS ONE 10 e0131218 (2015)
  104. Study on the inhibitory mechanism and binding mode of the hydroxycoumarin compound NSC158393 to HIV-1 integrase by molecular modeling. Liu M, Cong XJ, Li P, Tan JJ, Chen WZ, Wang CX. Biopolymers 91 700-709 (2009)
  105. In Silico and In Vitro Comparison of HIV-1 Subtypes B and CRF02_AG Integrases Susceptibility to Integrase Strand Transfer Inhibitors. Ni X, Abdel-Azeim S, Laine E, Arora R, Osemwota O, Marcelin AG, Calvez V, Mouscadet JF, Tchertanov L. Adv Virol 2012 548657 (2012)
  106. Molecular dynamics of HIV1-integrase in complex with 93del - a structural perspective on the mechanism of inhibition. Sgobba M, Olubiyi O, Ke S, Haider S. J. Biomol. Struct. Dyn. 29 863-877 (2012)
  107. Structural dynamics of native and V260E mutant C-terminal domain of HIV-1 integrase. Sangeetha B, Muthukumaran R, Amutha R. J. Comput. Aided Mol. Des. 29 371-385 (2015)
  108. Tautomerism and magnesium chelation of HIV-1 integrase inhibitors: a theoretical study. Liao C, Nicklaus MC. ChemMedChem 5 1053-1066 (2010)
  109. The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element. Azzi S, Parissi V, Maroun RG, Eid P, Mauffret O, Fermandjian S. PLoS ONE 5 e16001 (2010)
  110. Computational and synthetic approaches for developing Lavendustin B derivatives as allosteric inhibitors of HIV-1 integrase. Agharbaoui FE, Hoyte AC, Ferro S, Gitto R, Buemi MR, Fuchs JR, Kvaratskhelia M, De Luca L. Eur J Med Chem 123 673-683 (2016)
  111. Stabilization of the integrase-DNA complex by Mg2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors. Miri L, Bouvier G, Kettani A, Mikou A, Wakrim L, Nilges M, Malliavin TE. Proteins 82 466-478 (2014)
  112. Structural and theoretical studies of [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid as HIV-1 integrase inhibitor. Vandurm P, Cauvin C, Guiguen A, Georges B, Le Van K, Martinelli V, Cardona C, Mbemba G, Mouscadet JF, Hevesi L, Van Lint C, Wouters J. Bioorg. Med. Chem. Lett. 19 4806-4809 (2009)
  113. Targeting HIV-1 integrase. Sayasith K, Sauvé G, Yelle J. Expert Opin Ther Targets 5 443-464 (2001)
  114. Soluble expression, purification and characterization of the full length IS2 Transposase. Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Mob DNA 2 14 (2011)
  115. Structural and dynamical properties of a full-length HIV-1 integrase: molecular dynamics simulations. Wijitkosoom A, Tonmunphean S, Truong TN, Hannongbua S. J. Biomol. Struct. Dyn. 23 613-624 (2006)
  116. A targeted DNA substrate mechanism for the inhibition of HIV-1 integrase by inhibitors with antiretroviral activity. Ammar FF, Hobaika Z, Abdel-Azeim S, Zargarian L, Maroun RG, Fermandjian S. FEBS Open Bio 6 234-250 (2016)
  117. C-Terminal Domain of Integrase Binds between the Two Active Sites. Roberts VA. J Chem Theory Comput 11 4500-4511 (2015)
  118. Examining structural analogs of elvitegravir as potential inhibitors of HIV-1 integrase. Shah K, Gupta S, Mishra H, Sharma PK, Jayaswal A. Arch. Virol. 159 2069-2080 (2014)
  119. Rapid activity prediction of HIV-1 integrase inhibitors: harnessing docking energetic components for empirical scoring by chemometric and artificial neural network approaches. Thangsunan P, Kittiwachana S, Meepowpan P, Kungwan N, Prangkio P, Hannongbua S, Suree N. J. Comput. Aided Mol. Des. 30 471-488 (2016)
  120. Reduced HIV-1 integrase flexibility as a mechanism for raltegravir resistance. Dewdney TG, Wang Y, Kovari IA, Reiter SJ, Kovari LC. J. Struct. Biol. 184 245-250 (2013)
  121. Structural studies of the catalytic core of the primate foamy virus (PFV-1) integrase. Réty S, Reaeábková L, Dubanchet B, Silhán J, Legrand P, Lewit-Bentley A. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 881-886 (2010)
  122. Structure-based predictors of resistance to the HIV-1 integrase inhibitor Elvitegravir. Masso M, Chuang G, Hao K, Jain S, Vaisman II. Antiviral Res. 106 5-12 (2014)
  123. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). Panwar U, Singh SK. J. Biomol. Struct. Dyn. 36 3199-3217 (2018)
  124. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Neumann P, Novák P, Hoštáková N, Macas J. Mob DNA 10 1 (2019)
  125. 1,2,3,4-Tetrahydroisoquinolines as inhibitors of HIV-1 integrase and human LEDGF/p75 interaction. George A, Gopi Krishna Reddy A, Satyanarayana G, Raghavendra NK. Chem Biol Drug Des 91 1133-1140 (2018)
  126. A central partition of molecular conformational space. I. Basic structures. Gabarro-Arpa J. Comput Biol Chem 27 153-159 (2003)
  127. Computational design of a full-length model of HIV-1 integrase: modeling of new inhibitors and comparison of their calculated binding energies with those previously studied. Ercan S, Pirinccioglu N. J Mol Model 19 4349-4368 (2013)
  128. Computer aided study of ligand binding with catalytic domain of Avian sarcoma virus integrase and its ligand binding loops. Kumar A, Shankar S, Kothekar V. J. Biomol. Struct. Dyn. 19 449-458 (2001)
  129. HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Nishana M, Nilavar NM, Kumari R, Pandey M, Raghavan SC. Cell Death Dis 8 e2852 (2017)
  130. Raltegravir flexibility and its impact on recognition by the HIV-1 IN targets. Arora R, de Beauchene IC, Polanski J, Laine E, Tchertanov L. J. Mol. Recognit. 26 383-401 (2013)
  131. Rational Design, Synthesis and Evaluation of Coumarin Derivatives as Protein-protein Interaction Inhibitors. De Luca L, Agharbaoui FE, Gitto R, Buemi MR, Christ F, Debyser Z, Ferro S. Mol Inform 35 460-473 (2016)


Related citations provided by authors (1)

  1. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases.. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR Science 266 1981-6 (1994)