1bcy Citations

Mutational and crystallographic analyses of interfacial residues in annexin V suggest direct interactions with phospholipid membrane components.

Biochemistry 37 8004-10 (1998)
Related entries: 1bc0, 1bc1, 1bc3, 1bcw, 1bcz

Cited: 25 times
EuropePMC logo PMID: 9609693

Abstract

Annexin V belongs to a family of eukaryotic calcium-dependent membrane-binding proteins. The calcium-binding sites at the annexin-membrane interface have been investigated in some detail; however, little is known about the functional roles of highly conserved interfacial residues that do not coordinate calcium themselves. In the present study, the importance of tryptophan 185, and threonine or serine at positions 72, 144, 228, and 303, in rat annexin V is investigated by site-directed mutagenesis, X-ray crystallography, and functional assays. The high-resolution crystal structures of the mutants show that the mutations do not cause structural perturbations of the annexin molecule itself or disappearance of bound calcium ions from calcium-binding sites. The assays indicate that relative to wild-type annexin V, loss of the methyl substituent at position 72 (Thr72-->Ser) has no effect while loss of the hydroxyl group (Thr72-->Ala or Thr72-->Lys) causes reduction of membrane binding. Multiple lysine substitutions (e.g., Thr72,Ser144,Ser228,Ser303-->Lys) have a greater adverse effect than the single lysine mutation, suggesting that in annexin V the introduction of potentially favorable electrostatic interactions between the lysine side chains and the net negatively charged membrane surface is not sufficient to overcome the loss of the hydroxyl side chains. Replacement of the unique tryptophan, Trp185, by alanine similarly decreases membrane binding affinity. Taken together, the data suggest that the side chains mutated in this study contribute to phospholipid binding and participate directly in intermolecular contacts with phospholipid membrane components.

Reviews citing this publication (1)

  1. Annexins: from structure to function. Gerke V, Moss SE. Physiol Rev 82 331-371 (2002)

Articles citing this publication (24)

  1. Annexin A2 heterotetramer: structure and function. Bharadwaj A, Bydoun M, Holloway R, Waisman D. Int J Mol Sci 14 6259-6305 (2013)
  2. Crystal structure of the vinculin tail suggests a pathway for activation. Bakolitsa C, de Pereda JM, Bagshaw CR, Critchley DR, Liddington RC. Cell 99 603-613 (1999)
  3. TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. Baillie GS, Huston E, Scotland G, Hodgkin M, Gall I, Peden AH, MacKenzie C, Houslay ES, Currie R, Pettitt TR, Walmsley AR, Wakelam MJ, Warwicker J, Houslay MD. J Biol Chem 277 28298-28309 (2002)
  4. Annexin V is critical in the maintenance of murine placental integrity. Wang X, Campos B, Kaetzel MA, Dedman JR. Am J Obstet Gynecol 180 1008-1016 (1999)
  5. Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Vicogne J, Vollenweider D, Smith JR, Huang P, Frohman MA, Pessin JE. Proc Natl Acad Sci U S A 103 14761-14766 (2006)
  6. Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells--existence of a threshold. Borisenko GG, Matsura T, Liu SX, Tyurin VA, Jianfei J, Serinkan FB, Kagan VE. Arch Biochem Biophys 413 41-52 (2003)
  7. Annexin V--heparin oligosaccharide complex suggests heparan sulfate--mediated assembly on cell surfaces. Capila I, Hernáiz MJ, Mo YD, Mealy TR, Campos B, Dedman JR, Linhardt RJ, Seaton BA. Structure 9 57-64 (2001)
  8. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct Biol 7 44 (2007)
  9. Interaction of heparin with annexin V. Capila I, VanderNoot VA, Mealy TR, Seaton BA, Linhardt RJ. FEBS Lett 446 327-330 (1999)
  10. Diannexin, a novel annexin V homodimer, protects rat liver transplants against cold ischemia-reperfusion injury. Shen XD, Ke B, Zhai Y, Tsuchihashi SI, Gao F, Duarte S, Coito A, Busuttil RW, Allison AC, Kupiec-Weglinski JW. Am J Transplant 7 2463-2471 (2007)
  11. Cholesterol enhances phospholipid binding and aggregation of annexins by their core domain. Ayala-Sanmartin J. Biochem Biophys Res Commun 283 72-79 (2001)
  12. Mechanism for HIV-1 Tat insertion into the endosome membrane. Yezid H, Konate K, Debaisieux S, Bonhoure A, Beaumelle B. J Biol Chem 284 22736-22746 (2009)
  13. Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints. Morgan RO, Martin-Almedina S, Garcia M, Jhoncon-Kooyip J, Fernandez MP. Biochim Biophys Acta 1763 1238-1249 (2006)
  14. Membrane Anchoring by a C-terminal Tryptophan Enables HIV-1 Vpu to Displace Bone Marrow Stromal Antigen 2 (BST2) from Sites of Viral Assembly. Lewinski MK, Jafari M, Zhang H, Opella SJ, Guatelli J. J Biol Chem 290 10919-10933 (2015)
  15. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Lu D, Shang G, Zhang H, Yu Q, Cong X, Yuan J, He F, Zhu C, Zhao Y, Yin K, Chen Y, Hu J, Zhang X, Yuan Z, Xu S, Hu W, Cang H, Gu L. Mol Microbiol 92 1092-1112 (2014)
  16. Ca(2+) and membrane binding to annexin 3 modulate the structure and dynamics of its N terminus and domain III. Sopkova J, Raguenes-Nicol C, Vincent M, Chevalier A, Lewit-Bentley A, Russo-Marie F, Gallay J. Protein Sci 11 1613-1625 (2002)
  17. A model for hydrophobic protrusions on peripheral membrane proteins. Fuglebakk E, Reuter N. PLoS Comput Biol 14 e1006325 (2018)
  18. Structure-function relationship in annexin A13, the founder member of the vertebrate family of annexins. Turnay J, Lecona E, Fernández-Lizarbe S, Guzmán-Aránguez A, Fernández MP, Olmo N, Lizarbe MA. Biochem J 389 899-911 (2005)
  19. Membrane modulates affinity for calcium ion to create an apparent cooperative binding response by annexin a5. Gauer JW, Knutson KJ, Jaworski SR, Rice AM, Rannikko AM, Lentz BR, Hinderliter A. Biophys J 104 2437-2447 (2013)
  20. Comment Protein-lipid interactions on the surfaces of cell membranes. Glomset JA. Curr Opin Struct Biol 9 425-427 (1999)
  21. Characterizing the binding of annexin V to a lipid bilayer using molecular dynamics simulations. Chen Z, Mao Y, Yang J, Zhang T, Zhao L, Yu K, Zheng M, Jiang H, Yang H. Proteins 82 312-322 (2014)
  22. Bisecting GlcNAc mediates the binding of annexin V to Hsp47. Gao CX, Miyoshi E, Uozumi N, Takamiya R, Wang X, Noda K, Gu J, Honke K, Wada Y, Taniguchi N. Glycobiology 15 1067-1075 (2005)
  23. Refined models for the preferential interactions of tryptophan with phosphocholines. Sanderson JM. Org Biomol Chem 5 3276-3286 (2007)
  24. Role of Trp-187 in the annexin V-membrane interaction: a molecular mechanics analysis. Pigault C, Follenius-Wund A, Chabbert M. Biochem Biophys Res Commun 254 484-489 (1999)