1ba4 Citations

Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is?

Biochemistry 37 11064-77 (1998)
Cited: 270 times
EuropePMC logo PMID: 9693002

Abstract

The three-dimensional solution structure of the 40 residue amyloid beta-peptide, Abeta(1-40), has been determined using NMR spectroscopy at pH 5.1, in aqueous sodium dodecyl sulfate (SDS) micelles. In this environment, which simulates to some extent a water-membrane medium, the peptide is unstructured between residues 1 and 14 which are mainly polar and likely solvated by water. However, the rest of the protein adopts an alpha-helical conformation between residues 15 and 36 with a kink or hinge at 25-27. This largely hydrophobic region is likely solvated by SDS. Based on the derived structures, evidence is provided in support of a possible new location for the transmembrane domain of Abeta within the amyloid precursor protein (APP). Studies between pH 4.2 and 7.9 reveal a pH-dependent helix-coil conformational switch. At the lower pH values, where the carboxylate residues are protonated, the helix is uncharged, intact, and lipid-soluble. As the pH increases above 6. 0, part of the helical region (15-24) becomes less structured, particularly near residues E22 and D23 where deprotonation appears to facilitate unwinding of the helix. This pH-dependent unfolding to a random coil conformation precedes any tendency of this peptide to aggregate to a beta-sheet as the pH increases. The structural biology described herein for Abeta(1-40) suggests that (i) the C-terminal two-thirds of the peptide is an alpha-helix in membrane-like environments, (ii) deprotonation of two acidic amino acids in the helix promotes a helix-coil conformational transition that precedes aggregation, (iii) a mobile hinge exists in the helical region of Abeta(1-40) and this may be relevant to its membrane-inserting properties and conformational rearrangements, and (iv) the location of the transmembrane domain of amyloid precursor proteins may be different from that accepted in the literature. These results may provide new insight to the structural properties of amyloid beta-peptides of relevance to Alzheimer's disease.

Reviews - 1ba4 mentioned but not cited (8)

  1. Amyloid beta: structure, biology and structure-based therapeutic development. Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Acta Pharmacol Sin 38 1205-1235 (2017)
  2. Implications of peptide assemblies in amyloid diseases. Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Chem Soc Rev 46 6492-6531 (2017)
  3. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Fantini J, Yahi N. Expert Rev Mol Med 12 e27 (2010)
  4. Alzheimer's disease--a panorama glimpse. Zhao LN, Lu L, Chew LY, Mu Y. Int J Mol Sci 15 12631-12650 (2014)
  5. Mamma Mia, P-glycoprotein binds again. Callaghan R, Gelissen IC, George AM, Hartz AMS. FEBS Lett 594 4076-4084 (2020)
  6. Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer's Disease. de Sousa NF, Scotti L, de Moura ÉP, Dos Santos Maia M, Rodrigues GCS, de Medeiros HIR, Lopes SM, Scotti MT. Curr Neuropharmacol 20 857-885 (2022)
  7. Cross interactions between Apolipoprotein E and amyloid proteins in neurodegenerative diseases. Loch RA, Wang H, Perálvarez-Marín A, Berger P, Nielsen H, Chroni A, Luo J. Comput Struct Biotechnol J 21 1189-1204 (2023)
  8. Unnatural helical peptidic foldamers as protein segment mimics. Sang P, Cai J. Chem Soc Rev 52 4843-4877 (2023)

Articles - 1ba4 mentioned but not cited (47)

  1. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Shen Y, Joachimiak A, Rosner MR, Tang WJ. Nature 443 870-874 (2006)
  2. Conformational transition of amyloid beta-peptide. Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, Jiang H. Proc Natl Acad Sci U S A 102 5403-5407 (2005)
  3. Design of small molecules that target metal-A{beta} species and regulate metal-induced A{beta} aggregation and neurotoxicity. Choi JS, Braymer JJ, Nanga RP, Ramamoorthy A, Lim MH. Proc Natl Acad Sci U S A 107 21990-21995 (2010)
  4. Molecular dynamics simulation of amyloid beta dimer formation. Urbanc B, Cruz L, Ding F, Sammond D, Khare S, Buldyrev SV, Stanley HE, Dokholyan NV. Biophys J 87 2310-2321 (2004)
  5. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's beta amyloid peptide (Abeta1-40). Yahi N, Aulas A, Fantini J. PLoS One 5 e9079 (2010)
  6. Lipid composition influences the release of Alzheimer's amyloid β-peptide from membranes. Lemkul JA, Bevan DR. Protein Sci 20 1530-1545 (2011)
  7. Structures of beta-amyloid peptide 1-40, 1-42, and 1-55-the 672-726 fragment of APP-in a membrane environment with implications for interactions with gamma-secretase. Miyashita N, Straub JE, Thirumalai D. J Am Chem Soc 131 17843-17852 (2009)
  8. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Fantini J, Yahi N, Garmy N. Front Physiol 4 120 (2013)
  9. Effect of the Tottori familial disease mutation (D7N) on the monomers and dimers of Aβ40 and Aβ42. Viet MH, Nguyen PH, Ngo ST, Li MS, Derreumaux P. ACS Chem Neurosci 4 1446-1457 (2013)
  10. Amyloid-β peptide binds to cytochrome C oxidase subunit 1. Hernandez-Zimbron LF, Luna-Muñoz J, Mena R, Vazquez-Ramirez R, Kubli-Garfias C, Cribbs DH, Manoutcharian K, Gevorkian G. PLoS One 7 e42344 (2012)
  11. Development of bifunctional stilbene derivatives for targeting and modulating metal-amyloid-β species. Braymer JJ, Choi JS, DeToma AS, Wang C, Nam K, Kampf JW, Ramamoorthy A, Lim MH. Inorg Chem 50 10724-10734 (2011)
  12. Alzheimer Aβ peptide interactions with lipid membranes: fibrils, oligomers and polymorphic amyloid channels. Tofoleanu F, Buchete NV. Prion 6 339-345 (2012)
  13. Biochemical identification of a linear cholesterol-binding domain within Alzheimer's β amyloid peptide. Di Scala C, Yahi N, Lelièvre C, Garmy N, Chahinian H, Fantini J. ACS Chem Neurosci 4 509-517 (2013)
  14. Cellular polyamines promote amyloid-beta (Aβ) peptide fibrillation and modulate the aggregation pathways. Luo J, Yu CH, Yu H, Borstnar R, Kamerlin SC, Gräslund A, Abrahams JP, Wärmländer SK. ACS Chem Neurosci 4 454-462 (2013)
  15. Distance matrix-based approach to protein structure prediction. Kloczkowski A, Jernigan RL, Wu Z, Song G, Yang L, Kolinski A, Pokarowski P. J Struct Funct Genomics 10 67-81 (2009)
  16. Protein aggregation/folding: the role of deterministic singularities of sequence hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and Abeta(1-40). Zbilut JP, Colosimo A, Conti F, Colafranceschi M, Manetti C, Valerio M, Webber CL, Giuliani A. Biophys J 85 3544-3557 (2003)
  17. Aqua-soluble DDQ reduces the levels of Drp1 and Aβ and inhibits abnormal interactions between Aβ and Drp1 and protects Alzheimer's disease neurons from Aβ- and Drp1-induced mitochondrial and synaptic toxicities. Kuruva CS, Manczak M, Yin X, Ogunmokun G, Reddy AP, Reddy PH. Hum Mol Genet 26 3375-3395 (2017)
  18. A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms. Derrick JS, Kerr RA, Nam Y, Oh SB, Lee HJ, Earnest KG, Suh N, Peck KL, Ozbil M, Korshavn KJ, Ramamoorthy A, Prabhakar R, Merino EJ, Shearer J, Lee JY, Ruotolo BT, Lim MH. J Am Chem Soc 137 14785-14797 (2015)
  19. Effect of the English familial disease mutation (H6R) on the monomers and dimers of Aβ40 and Aβ42. Viet MH, Nguyen PH, Derreumaux P, Li MS. ACS Chem Neurosci 5 646-657 (2014)
  20. In silico analysis of the apolipoprotein E and the amyloid beta peptide interaction: misfolding induced by frustration of the salt bridge network. Luo J, Maréchal JD, Wärmländer S, Gräslund A, Perálvarez-Marín A. PLoS Comput Biol 6 e1000663 (2010)
  21. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Kumar R, Nordberg A, Darreh-Shori T. Brain 139 174-192 (2016)
  22. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation. Radic S, Davis TP, Ke PC, Ding F. RSC Adv 5 105498 (2015)
  23. Effects of ligands on unfolding of the amyloid β-peptide central helix: mechanistic insights from molecular dynamics simulations. Ito M, Johansson J, Strömberg R, Nilsson L. PLoS One 7 e30510 (2012)
  24. Dynamic properties of pH-dependent structural organization of the amyloidogenic beta-protein (1-40). Rubinstein A, Lyubchenko YL, Sherman S. Prion 3 31-43 (2009)
  25. Fibronectin type III domain-containing protein 5 interacts with APP and decreases amyloid β production in Alzheimer's disease. Noda Y, Kuzuya A, Tanigawa K, Araki M, Kawai R, Ma B, Sasakura Y, Maesako M, Tashiro Y, Miyamoto M, Uemura K, Okuno Y, Kinoshita A. Mol Brain 11 61 (2018)
  26. Structural and Mechanistic Insights into Development of Chemical Tools to Control Individual and Inter-Related Pathological Features in Alzheimer's Disease. Lee HJ, Korshavn KJ, Nam Y, Kang J, Paul TJ, Kerr RA, Youn IS, Ozbil M, Kim KS, Ruotolo BT, Prabhakar R, Ramamoorthy A, Lim MH. Chemistry 23 2706-2715 (2017)
  27. Varied Probability of Staying Collapsed/Extended at the Conformational Equilibrium of Monomeric Aβ40 and Aβ42. Song W, Wang Y, Colletier JP, Yang H, Xu Y. Sci Rep 5 11024 (2015)
  28. Analysis of conformational variation in macromolecular structural models. Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. PLoS One 7 e39993 (2012)
  29. Microsecond molecular dynamics simulation of Aβ42 and identification of a novel dual inhibitor of Aβ42 aggregation and BACE1 activity. Wang YY, Li L, Chen TT, Chen WY, Xu YC. Acta Pharmacol Sin 34 1243-1250 (2013)
  30. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface. Cheng SY, Chou G, Buie C, Vaughn MW, Compton C, Cheng KH. Chem Phys Lipids 196 33-51 (2016)
  31. Methionine Oxidation Changes the Mechanism of Aβ Peptide Binding to the DMPC Bilayer. Lockhart C, Smith AK, Klimov DK. Sci Rep 9 5947 (2019)
  32. Design, synthesis, and evaluation of chalcone-Vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer's disease. Sang Z, Song Q, Cao Z, Deng Y, Zhang L. J Enzyme Inhib Med Chem 37 69-85 (2022)
  33. Embelin, a Potent Molecule for Alzheimer's Disease: A Proof of Concept From Blood-Brain Barrier Permeability, Acetylcholinesterase Inhibition and Molecular Docking Studies. Bhuvanendran S, Hanapi NA, Ahemad N, Othman I, Yusof SR, Shaikh MF. Front Neurosci 13 495 (2019)
  34. Mimosine functionalized gold nanoparticles (Mimo-AuNPs) suppress β-amyloid aggregation and neuronal toxicity. Anand BG, Wu Q, Karthivashan G, Shejale KP, Amidian S, Wille H, Kar S. Bioact Mater 6 4491-4505 (2021)
  35. Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution. Mirza Z, Pillai VG, Zhong WZ. Int J Mol Sci 15 4221-4236 (2014)
  36. Click-designed vanilloid-triazole conjugates as dual inhibitors of AChE and Aβ aggregation. Elsbaey M, Igarashi Y, Ibrahim MAA, Elattar E. RSC Adv 13 2871-2883 (2023)
  37. Data supporting beta-amyloid dimer structural transitions and protein-lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures. Cheng SY, Chou G, Buie C, Vaughn MW, Compton C, Cheng KH. Data Brief 7 658-672 (2016)
  38. Envisaging the Structural Elevation in the Early Event of Oligomerization of Disordered Amyloid β Peptide. Roy A, Chandra K, Dolui S, Maiti NC. ACS Omega 2 4316-4327 (2017)
  39. Tautomeric Effect of Histidine on β-Sheet Formation of Amyloid Beta 1-40: 2D-IR Simulations. Nam Y, Kalathingal M, Saito S, Lee JY. Biophys J 119 831-842 (2020)
  40. Allosteric Binding Sites of Aβ Peptides on the Acetylcholine Synthesizing Enzyme ChAT as Deduced by In Silico Molecular Modeling. Baidya AT, Kumar A, Kumar R, Darreh-Shori T. Int J Mol Sci 23 6073 (2022)
  41. Big dynorphin is a neuroprotector scaffold against amyloid β-peptide aggregation and cell toxicity. Gallego-Villarejo L, Wallin C, Król S, Enrich-Bengoa J, Suades A, Aguilella-Arzo M, Gomara MJ, Haro I, Wärmlander S, Muñoz FJ, Gräslund A, Perálvarez-Marín A. Comput Struct Biotechnol J 20 5672-5679 (2022)
  42. Computational Evaluation of Interaction Between Curcumin Derivatives and Amyloid-β Monomers and Fibrils: Relevance to Alzheimer's Disease. Orjuela A, Lakey-Beitia J, Mojica-Flores R, Hegde ML, Lans I, Alí-Torres J, Rao KS. J Alzheimers Dis 82 S321-S333 (2021)
  43. Impact of Mutations on the Conformational Transition from α-Helix to β-Sheet Structures in Arctic-Type Aβ40: Insights from Molecular Dynamics Simulations. Saini RK, Shuaib S, Goyal D, Goyal B. ACS Omega 5 23219-23228 (2020)
  44. Mechanistic Insights into the Polymorphic Associations and Cross-Seeding of Aβ and hIAPP in the Presence of Histidine Tautomerism: An All-Atom Molecular Dynamic Study. Salimi A, Chatterjee S, Lee JY. Int J Mol Sci 23 1930 (2022)
  45. Molecular mechanisms of amyloid-β peptide fibril and oligomer formation: NMR-based challenges. Hiroaki H. Biophys Physicobiol 20 e200007 (2023)
  46. Monitoring the Conformational Changes of the Aβ(25-35) Peptide in SDS Micelles: A Matter of Time. Santoro A, Buonocore M, Grimaldi M, Napolitano E, D'Ursi AM. Int J Mol Sci 24 971 (2023)
  47. Preferential binding of fullerene and fullerenol with the N-terminal and middle regions of amyloid beta peptide: an in silico investigation. Pandya V, Baweja L, Dhawan A. Int J Nanomedicine 13 71-73 (2018)


Reviews citing this publication (38)

  1. Alzheimer's amyloid fibrils: structure and assembly. Serpell LC. Biochim Biophys Acta 1502 16-30 (2000)
  2. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Butterfield SM, Lashuel HA. Angew Chem Int Ed Engl 49 5628-5654 (2010)
  3. Peptide fibrillization. Hamley IW. Angew Chem Int Ed Engl 46 8128-8147 (2007)
  4. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Zhang T, Wang C, Derreumaux P. Chem Rev 115 3518-3563 (2015)
  5. The chemistry of Alzheimer's disease. Rauk A. Chem Soc Rev 38 2698-2715 (2009)
  6. Amyloid-beta aggregation. Finder VH, Glockshuber R. Neurodegener Dis 4 13-27 (2007)
  7. The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Hebda JA, Miranker AD. Annu Rev Biophys 38 125-152 (2009)
  8. From Alzheimer to Huntington: why is a structural understanding so difficult? Temussi PA, Masino L, Pastore A. EMBO J 22 355-361 (2003)
  9. Structure and function of amyloid in Alzheimer's disease. Morgan C, Colombres M, Nuñez MT, Inestrosa NC. Prog Neurobiol 74 323-349 (2004)
  10. Alpha-synuclein structure and Parkinson's disease - lessons and emerging principles. Meade RM, Fairlie DP, Mason JM. Mol Neurodegener 14 29 (2019)
  11. Direct binding of cholesterol to the amyloid precursor protein: An important interaction in lipid-Alzheimer's disease relationships? Beel AJ, Sakakura M, Barrett PJ, Sanders CR. Biochim Biophys Acta 1801 975-982 (2010)
  12. Alzheimer's amyloid beta-peptide (1-42): involvement of methionine residue 35 in the oxidative stress and neurotoxicity properties of this peptide. Butterfield DA, Bush AI. Neurobiol Aging 25 563-568 (2004)
  13. Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42. Butterfield DA, Kanski J. Peptides 23 1299-1309 (2002)
  14. Oligomerizaiton and fibril asssembly of the amyloid-beta protein. Roher AE, Baudry J, Chaney MO, Kuo YM, Stine WB, Emmerling MR. Biochim Biophys Acta 1502 31-43 (2000)
  15. Redox processes of methionine relevant to beta-amyloid oxidation and Alzheimer's disease. Schöneich C. Arch Biochem Biophys 397 370-376 (2002)
  16. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Chem Rev 121 2545-2647 (2021)
  17. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A. Chembiochem 14 1692-1704 (2013)
  18. The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer's disease. Lemkul JA, Bevan DR. ACS Chem Neurosci 3 845-856 (2012)
  19. Antibody-based approaches in Alzheimer's research: safety, pharmacokinetics, metabolism, and analytical tools. Lichtlen P, Mohajeri MH. J Neurochem 104 859-874 (2008)
  20. beta-Amyloid protein aggregation: its implication in the physiopathology of Alzheimer's disease. Dumery L, Bourdel F, Soussan Y, Fialkowsky A, Viale S, Nicolas P, Reboud-Ravaux M. Pathol Biol (Paris) 49 72-85 (2001)
  21. What is the dominant Abeta species in human brain tissue? A review. Gregory GC, Halliday GM. Neurotox Res 7 29-41 (2005)
  22. Structural characterization of peptide hormone/receptor interactions by NMR spectroscopy. Pellegrini M, Mierke DF. Biopolymers 51 208-220 (1999)
  23. Disordered proteins: biological membranes as two-dimensional aggregation matrices. Byström R, Aisenbrey C, Borowik T, Bokvist M, Lindström F, Sani MA, Olofsson A, Gröbner G. Cell Biochem Biophys 52 175-189 (2008)
  24. From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & peptides using fibre diffraction. Morris K, Serpell L. Chem Soc Rev 39 3445-3453 (2010)
  25. Mechanisms of small-molecule binding to intrinsically disordered proteins. Cuchillo R, Michel J. Biochem Soc Trans 40 1004-1008 (2012)
  26. β-Amyloid aggregation and heterogeneous nucleation. Srivastava AK, Pittman JM, Zerweck J, Venkata BS, Moore PC, Sachleben JR, Meredith SC. Protein Sci 28 1567-1581 (2019)
  27. Diseases of protein aggregation and the hunt for potential pharmacological agents. Wang SS, Wu JW, Yamamoto S, Liu HS. Biotechnol J 3 165-192 (2008)
  28. Cause and consequence of Aβ - Lipid interactions in Alzheimer disease pathogenesis. Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Biochim Biophys Acta Biomembr 1860 1652-1662 (2018)
  29. Strategies for dealing with conformational sampling in structural calculations of flexible or kinked transmembrane peptides. Rainey JK, Fliegel L, Sykes BD. Biochem Cell Biol 84 918-929 (2006)
  30. Apolipoprotein Abeta: black sheep in a good family. Kontush A. Brain Pathol 14 433-447 (2004)
  31. Structural metamorphism and polymorphism in proteins on the brink of thermodynamic stability. Kulkarni P, Solomon TL, He Y, Chen Y, Bryan PN, Orban J. Protein Sci 27 1557-1567 (2018)
  32. Structure and Function of Alzheimer's Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Agrawal N, Skelton AA. Protein J 38 425-434 (2019)
  33. Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects. Schöneich C. Antioxid Redox Signal 26 388-405 (2017)
  34. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. J Mol Biol 429 1289-1304 (2017)
  35. Impact of a discordant helix on β-amyloid structure, aggregation ability and toxicity. Chen YC. Eur Biophys J 46 681-687 (2017)
  36. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Int J Mol Sci 22 (2021)
  37. Structural biology of cell surface receptors implicated in Alzheimer's disease. Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Biophys Rev 14 233-255 (2022)
  38. The Pursuit of the "Inside" of the Amyloid Hypothesis-Is C99 a Promising Therapeutic Target for Alzheimer's Disease? Takasugi N, Komai M, Kaneshiro N, Ikeda A, Kamikubo Y, Uehara T. Cells 12 454 (2023)

Articles citing this publication (177)

  1. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. Kirkitadze MD, Condron MM, Teplow DB. J Mol Biol 312 1103-1119 (2001)
  2. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI. J Neurochem 75 1219-1233 (2000)
  3. Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain. Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D'Ursi AM, Temussi PA, Picone D. Eur J Biochem 269 5642-5648 (2002)
  4. On the nucleation of amyloid beta-protein monomer folding. Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB. Protein Sci 14 1581-1596 (2005)
  5. Two types of Alzheimer's beta-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. Bokvist M, Lindström F, Watts A, Gröbner G. J Mol Biol 335 1039-1049 (2004)
  6. In silico study of amyloid beta-protein folding and oligomerization. Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, Teplow DB, Stanley HE. Proc Natl Acad Sci U S A 101 17345-17350 (2004)
  7. Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. Fezoui Y, Teplow DB. J Biol Chem 277 36948-36954 (2002)
  8. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. Shao H, Jao S, Ma K, Zagorski MG. J Mol Biol 285 755-773 (1999)
  9. NMR studies in aqueous solution fail to identify significant conformational differences between the monomeric forms of two Alzheimer peptides with widely different plaque-competence, A beta(1-40)(ox) and A beta(1-42)(ox). Riek R, Güntert P, Döbeli H, Wipf B, Wüthrich K. Eur J Biochem 268 5930-5936 (2001)
  10. Amyloid beta-protein monomer folding: free-energy surfaces reveal alloform-specific differences. Yang M, Teplow DB. J Mol Biol 384 450-464 (2008)
  11. CSF amyloid-beta-peptides in Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease dementia. Bibl M, Mollenhauer B, Esselmann H, Lewczuk P, Klafki HW, Sparbier K, Smirnov A, Cepek L, Trenkwalder C, Rüther E, Kornhuber J, Otto M, Wiltfang J. Brain 129 1177-1187 (2006)
  12. Metal ions, pH, and cholesterol regulate the interactions of Alzheimer's disease amyloid-beta peptide with membrane lipid. Curtain CC, Ali FE, Smith DG, Bush AI, Masters CL, Barnham KJ. J Biol Chem 278 2977-2982 (2003)
  13. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR. Biochemistry 47 9428-9446 (2008)
  14. Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Nanga RP, Brender JR, Vivekanandan S, Ramamoorthy A. Biochim Biophys Acta 1808 2337-2342 (2011)
  15. Dynamic alpha-helix structure of micelle-bound human amylin. Patil SM, Xu S, Sheftic SR, Alexandrescu AT. J Biol Chem 284 11982-11991 (2009)
  16. Linking folding with aggregation in Alzheimer's beta-amyloid peptides. Khandogin J, Brooks CL. Proc Natl Acad Sci U S A 104 16880-16885 (2007)
  17. Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy. Nanga RP, Brender JR, Xu J, Hartman K, Subramanian V, Ramamoorthy A. J Am Chem Soc 131 8252-8261 (2009)
  18. Structure and dynamics of the Abeta(21-30) peptide from the interplay of NMR experiments and molecular simulations. Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T. J Am Chem Soc 130 6145-6158 (2008)
  19. On the mechanism of SDS-induced protein denaturation. Bhuyan AK. Biopolymers 93 186-199 (2010)
  20. Antisense directed at the Abeta region of APP decreases brain oxidative markers in aged senescence accelerated mice. Poon HF, Joshi G, Sultana R, Farr SA, Banks WA, Morley JE, Calabrese V, Butterfield DA. Brain Res 1018 86-96 (2004)
  21. Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T. J Neurosci 23 8967-8977 (2003)
  22. An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Li L, Darden TA, Bartolotti L, Kominos D, Pedersen LG. Biophys J 76 2871-2878 (1999)
  23. Positioning of the Alzheimer Abeta(1-40) peptide in SDS micelles using NMR and paramagnetic probes. Jarvet J, Danielsson J, Damberg P, Oleszczuk M, Gräslund A. J Biomol NMR 39 63-72 (2007)
  24. Solvent and mutation effects on the nucleation of amyloid beta-protein folding. Cruz L, Urbanc B, Borreguero JM, Lazo ND, Teplow DB, Stanley HE. Proc Natl Acad Sci U S A 102 18258-18263 (2005)
  25. Molecular basis for the glycosphingolipid-binding specificity of α-synuclein: key role of tyrosine 39 in membrane insertion. Fantini J, Yahi N. J Mol Biol 408 654-669 (2011)
  26. Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide. Kanski J, Aksenova M, Schöneich C, Butterfield DA. Free Radic Biol Med 32 1205-1211 (2002)
  27. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces. Giacomelli CE, Norde W. Macromol Biosci 5 401-407 (2005)
  28. Amyloid beta(1-42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. Grassi F, Palma E, Tonini R, Amici M, Ballivet M, Eusebi F. J Physiol 547 147-157 (2003)
  29. Zinc binding to Alzheimer's Abeta(1-16) peptide results in stable soluble complex. Kozin SA, Zirah S, Rebuffat S, Hoa GH, Debey P. Biochem Biophys Res Commun 285 959-964 (2001)
  30. Insertion of Alzheimer's A beta 40 peptide into lipid monolayers. Ege C, Lee KY. Biophys J 87 1732-1740 (2004)
  31. Why is the amyloid beta peptide of Alzheimer's disease neurotoxic? Rauk A. Dalton Trans 1273-1282 (2008)
  32. Single-molecule atomic force microscopy force spectroscopy study of Aβ-40 interactions. Kim BH, Palermo NY, Lovas S, Zaikova T, Keana JF, Lyubchenko YL. Biochemistry 50 5154-5162 (2011)
  33. 15N relaxation study of the amyloid beta-peptide: structural propensities and persistence length. Danielsson J, Andersson A, Jarvet J, Gräslund A. Magn Reson Chem 44 Spec No S114-21 (2006)
  34. Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Rocha S, Thünemann AF, Pereira Mdo C, Coelho M, Möhwald H, Brezesinski G. Biophys Chem 137 35-42 (2008)
  35. Dimer formation enhances structural differences between amyloid β-protein (1-40) and (1-42): an explicit-solvent molecular dynamics study. Barz B, Urbanc B. PLoS One 7 e34345 (2012)
  36. Nicotine and amyloid formation. Zeng H, Zhang Y, Peng L, Shao H, Menon NK, Yang J, Salomon AR, Freidland RP, Zagorski MG. Biol Psychiatry 49 248-257 (2001)
  37. The intramembrane cleavage site of the amyloid precursor protein depends on the length of its transmembrane domain. Lichtenthaler SF, Beher D, Grimm HS, Wang R, Shearman MS, Masters CL, Beyreuther K. Proc Natl Acad Sci U S A 99 1365-1370 (2002)
  38. Stabilization of neurotoxic soluble beta-sheet-rich conformations of the Alzheimer's disease amyloid-beta peptide. Tew DJ, Bottomley SP, Smith DP, Ciccotosto GD, Babon J, Hinds MG, Masters CL, Cappai R, Barnham KJ. Biophys J 94 2752-2766 (2008)
  39. Discrete molecular dynamics simulations of peptide aggregation. Peng S, Ding F, Urbanc B, Buldyrev SV, Cruz L, Stanley HE, Dokholyan NV. Phys Rev E Stat Nonlin Soft Matter Phys 69 041908 (2004)
  40. Platelets contribute to amyloid-β aggregation in cerebral vessels through integrin αIIbβ3-induced outside-in signaling and clusterin release. Donner L, Fälker K, Gremer L, Klinker S, Pagani G, Ljungberg LU, Lothmann K, Rizzi F, Schaller M, Gohlke H, Willbold D, Grenegard M, Elvers M. Sci Signal 9 ra52 (2016)
  41. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field. Rojas A, Liwo A, Browne D, Scheraga HA. J Mol Biol 404 537-552 (2010)
  42. NMR structure in a membrane environment reveals putative amyloidogenic regions of the SEVI precursor peptide PAP(248-286). Nanga RP, Brender JR, Vivekanandan S, Popovych N, Ramamoorthy A. J Am Chem Soc 131 17972-17979 (2009)
  43. The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments. Granata D, Baftizadeh F, Habchi J, Galvagnion C, De Simone A, Camilloni C, Laio A, Vendruscolo M. Sci Rep 5 15449 (2015)
  44. Structures and free-energy landscapes of the wild type and mutants of the Abeta(21-30) peptide are determined by an interplay between intrapeptide electrostatic and hydrophobic interactions. Tarus B, Straub JE, Thirumalai D. J Mol Biol 379 815-829 (2008)
  45. Modeling amyloid beta-peptide insertion into lipid bilayers. Mobley DL, Cox DL, Singh RR, Maddox MW, Longo ML. Biophys J 86 3585-3597 (2004)
  46. β-Amyloid (1-40) peptide interactions with supported phospholipid membranes: a single-molecule study. Ding H, Schauerte JA, Steel DG, Gafni A. Biophys J 103 1500-1509 (2012)
  47. A comparative molecular dynamics analysis of the amyloid beta-peptide in a lipid bilayer. Lemkul JA, Bevan DR. Arch Biochem Biophys 470 54-63 (2008)
  48. Structure of amyloid beta fragments in aqueous environments. Takano K, Endo S, Mukaiyama A, Chon H, Matsumura H, Koga Y, Kanaya S. FEBS J 273 150-158 (2006)
  49. Assemblies of Alzheimer's peptides A beta 25-35 and A beta 31-35: reverse-turn conformation and side-chain interactions revealed by X-ray diffraction. Bond JP, Deverin SP, Inouye H, el-Agnaf OM, Teeter MM, Kirschner DA. J Struct Biol 141 156-170 (2003)
  50. Models of membrane-bound Alzheimer's Abeta peptide assemblies. Shafrir Y, Durell S, Arispe N, Guy HR. Proteins 78 3473-3487 (2010)
  51. Perturbation of membranes by the amyloid beta-peptide--a molecular dynamics study. Lemkul JA, Bevan DR. FEBS J 276 3060-3075 (2009)
  52. Stabilization of discordant helices in amyloid fibril-forming proteins. Päiviö A, Nordling E, Kallberg Y, Thyberg J, Johansson J. Protein Sci 13 1251-1259 (2004)
  53. Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures. Pellegrini-Calace M, Carotti A, Jones DT. Proteins 50 537-545 (2003)
  54. Quasihomogeneous nucleation of amyloid beta yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation. Garai K, Sahoo B, Sengupta P, Maiti S. J Chem Phys 128 045102 (2008)
  55. The transmembrane domain of the amyloid precursor protein in microsomal membranes is on both sides shorter than predicted. Grziwa B, Grimm MO, Masters CL, Beyreuther K, Hartmann T, Lichtenthaler SF. J Biol Chem 278 6803-6808 (2003)
  56. Dual-function triazole-pyridine derivatives as inhibitors of metal-induced amyloid-β aggregation. Jones MR, Service EL, Thompson JR, Wang MC, Kimsey IJ, DeToma AS, Ramamoorthy A, Lim MH, Storr T. Metallomics 4 910-920 (2012)
  57. A kinetic model for beta-amyloid adsorption at the air/solution interface and its implication to the beta-amyloid aggregation process. Jiang D, Dinh KL, Ruthenburg TC, Zhang Y, Su L, Land DP, Zhou F. J Phys Chem B 113 3160-3168 (2009)
  58. Interplay of histidine residues of the Alzheimer's disease Aβ peptide governs its Zn-induced oligomerization. Istrate AN, Kozin SA, Zhokhov SS, Mantsyzov AB, Kechko OI, Pastore A, Makarov AA, Polshakov VI. Sci Rep 6 21734 (2016)
  59. Structure and topology of the non-amyloid-beta component fragment of human alpha-synuclein bound to micelles: implications for the aggregation process. Bisaglia M, Trolio A, Bellanda M, Bergantino E, Bubacco L, Mammi S. Protein Sci 15 1408-1416 (2006)
  60. Alzheimer's disease: NMR studies of asialo (GM1) and trisialo (GT1b) ganglioside interactions with Abeta(1-40) peptide in a membrane mimic environment. Mandal PK, Pettegrew JW. Neurochem Res 29 447-453 (2004)
  61. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation. Caillon L, Lequin O, Khemtémourian L. Biochim Biophys Acta 1828 2091-2098 (2013)
  62. Solution NMR studies of recombinant Aβ(1-42): from the presence of a micellar entity to residual β-sheet structure in the soluble species. Wälti MA, Orts J, Vögeli B, Campioni S, Riek R. Chembiochem 16 659-669 (2015)
  63. Surfactant-induced conformational transition of amyloid beta-peptide. Sureshbabu N, Kirubagaran R, Jayakumar R. Eur Biophys J 38 355-367 (2009)
  64. Protein aging hypothesis of Alzheimer disease. Orpiszewski J, Schormann N, Kluve-Beckerman B, Liepnieks JJ, Benson MD. FASEB J 14 1255-1263 (2000)
  65. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. Sarkar B, Das AK, Maiti S. Front Physiol 4 84 (2013)
  66. Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer's amyloid β-peptide. Gerben SR, Lemkul JA, Brown AM, Bevan DR. J Biomol Struct Dyn 32 1817-1832 (2014)
  67. Effects of amyloid beta-peptides on the lysis tension of lipid bilayer vesicles containing oxysterols. Kim DH, Frangos JA. Biophys J 95 620-628 (2008)
  68. In silico and in vitro characterization of anti-amyloidogenic activity of vitamin K3 analogues for Alzheimer's disease. Huy PD, Yu YC, Ngo ST, Thao TV, Chen CP, Li MS, Chen YC. Biochim Biophys Acta 1830 2960-2969 (2013)
  69. Synthesis and characterization of IMPY derivatives that regulate metal-induced amyloid-β aggregation. Choi JS, Braymer JJ, Park SK, Mustafa S, Chae J, Lim MH. Metallomics 3 284-291 (2011)
  70. The Dependence of Amyloid-β Dynamics on Protein Force Fields and Water Models. Somavarapu AK, Kepp KP. Chemphyschem 16 3278-3289 (2015)
  71. A study of the α-helical intermediate preceding the aggregation of the amino-terminal fragment of the β amyloid peptide (Aβ(1-28)). Rojas AV, Liwo A, Scheraga HA. J Phys Chem B 115 12978-12983 (2011)
  72. Comparison of the structures of beta amyloid peptide (25-35) and substance P in trifluoroethanol/water solution. Lee S, Suh YH, Kim S, Kim Y. J Biomol Struct Dyn 17 381-391 (1999)
  73. Metal effects on the membrane interactions of amyloid-beta peptides. Gehman JD, O'Brien CC, Shabanpoor F, Wade JD, Separovic F. Eur Biophys J 37 333-344 (2008)
  74. The amyloidogenic SEVI precursor, PAP248-286, is highly unfolded in solution despite an underlying helical tendency. Brender JR, Nanga RP, Popovych N, Soong R, Macdonald PM, Ramamoorthy A. Biochim Biophys Acta 1808 1161-1169 (2011)
  75. Beta-barrel models of soluble amyloid beta oligomers and annular protofibrils. Shafrir Y, Durell SR, Anishkin A, Guy HR. Proteins 78 3458-3472 (2010)
  76. Solution structures in aqueous SDS micelles of two amyloid beta peptides of A beta(1-28) mutated at the alpha-secretase cleavage site (K16E, K16F). Poulsen SA, Watson AA, Fairlie DP, Craik DJ. J Struct Biol 130 142-152 (2000)
  77. A folding transition underlies the emergence of membrane affinity in amyloid-β. Nag S, Sarkar B, Chandrakesan M, Abhyanakar R, Bhowmik D, Kombrabail M, Dandekar S, Lerner E, Haas E, Maiti S. Phys Chem Chem Phys 15 19129-19133 (2013)
  78. Alzheimer's Abeta40 studied by NMR at low pH reveals that sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) binds and promotes beta-ball oligomerization. Laurents DV, Gorman PM, Guo M, Rico M, Chakrabartty A, Bruix M. J Biol Chem 280 3675-3685 (2005)
  79. Membrane destabilization induced by beta-amyloid peptide 29-42: importance of the amino-terminus. Mingeot-Leclercq MP, Lins L, Bensliman M, Van Bambeke F, Van Der Smissen P, Peuvot J, Schanck A, Brasseur R. Chem Phys Lipids 120 57-74 (2002)
  80. Oxidative and hydrolytic properties of beta-amyloid. Brzyska M, Bacia A, Elbaum D. Eur J Biochem 268 3443-3454 (2001)
  81. Amyloid peptide Aβ40 inhibits aggregation of Aβ42: evidence from molecular dynamics simulations. Viet MH, Li MS. J Chem Phys 136 245105 (2012)
  82. Exploring the reactivity of flavonoid compounds with metal-associated amyloid-β species. He X, Park HM, Hyung SJ, DeToma AS, Kim C, Ruotolo BT, Lim MH. Dalton Trans 41 6558-6566 (2012)
  83. Molecular determinants of the interaction between the C-terminal domain of Alzheimer's beta-amyloid peptide and apolipoprotein E alpha-helices. Lins L, Thomas-Soumarmon A, Pillot T, Vandekerchkhove J, Rosseneu M, Brasseur R. J Neurochem 73 758-769 (1999)
  84. Mutational analysis of designed peptides that undergo structural transition from alpha helix to beta sheet and amyloid fibril formation. Takahashi Y, Ueno A, Mihara H. Structure 8 915-925 (2000)
  85. Salvianolic acid A, a polyphenolic derivative from Salvia miltiorrhiza bunge, as a multifunctional agent for the treatment of Alzheimer's disease. Cao YY, Wang L, Ge H, Lu XL, Pei Z, Gu Q, Xu J. Mol Divers 17 515-524 (2013)
  86. Unfolding of the amyloid β-peptide central helix: mechanistic insights from molecular dynamics simulations. Ito M, Johansson J, Strömberg R, Nilsson L. PLoS One 6 e17587 (2011)
  87. 3D NMR structure of a complex between the amyloid beta peptide (1-40) and the polyphenol ε-viniferin glucoside: implications in Alzheimer's disease. Richard T, Papastamoulis Y, Waffo-Teguo P, Monti JP. Biochim Biophys Acta 1830 5068-5074 (2013)
  88. Alzheimer's disease drug candidates stabilize A-β protein native structure by interacting with the hydrophobic core. Li J, Liu R, Lam KS, Jin LW, Duan Y. Biophys J 100 1076-1082 (2011)
  89. Alzheimer's disease: halothane induces Abeta peptide to oligomeric form--solution NMR studies. Mandal PK, Pettegrew JW, McKeag DW, Mandal R. Neurochem Res 31 883-890 (2006)
  90. Distance measurement between Tyr10 and Met35 in amyloid beta by site-directed spin-labeling ESR spectroscopy: implications for the stronger neurotoxicity of Abeta42 than Abeta40. Murakami K, Hara H, Masuda Y, Ohigashi H, Irie K. Chembiochem 8 2308-2314 (2007)
  91. Early events in protein aggregation: molecular flexibility and hydrophobicity/charge interaction in amyloid peptides as studied by molecular dynamics simulations. Valerio M, Colosimo A, Conti F, Giuliani A, Grottesi A, Manetti C, Zbilut JP. Proteins 58 110-118 (2005)
  92. Structural analysis of the pyroglutamate-modified isoform of the Alzheimer's disease-related amyloid-β using NMR spectroscopy. Sun N, Hartmann R, Lecher J, Stoldt M, Funke SA, Gremer L, Ludwig HH, Demuth HU, Kleinschmidt M, Willbold D. J Pept Sci 18 691-695 (2012)
  93. Designed fluorescent probes reveal interactions between amyloid-beta(1-40) peptides and GM1 gangliosides in micelles and lipid vesicles. Mikhalyov I, Olofsson A, Gröbner G, Johansson LB. Biophys J 99 1510-1519 (2010)
  94. Introduction of d-Glutamate at a Critical Residue of Aβ42 Stabilizes a Prefibrillary Aggregate with Enhanced Toxicity. Warner CJ, Dutta S, Foley AR, Raskatov JA. Chemistry 22 11967-11970 (2016)
  95. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution. Klinger AL, Kiselar J, Ilchenko S, Komatsu H, Chance MR, Axelsen PH. Biochemistry 53 7724-7734 (2014)
  96. Identification of the molecular interaction site of amyloid beta peptide by using a fluorescence assay. Watanabe K, Segawa T, Nakamura K, Kodaka M, Konakahara T, Okuno H. J Pept Res 58 342-346 (2001)
  97. Phosphorylation Interferes with Maturation of Amyloid-β Fibrillar Structure in the N Terminus. Rezaei-Ghaleh N, Kumar S, Walter J, Zweckstetter M. J Biol Chem 291 16059-16067 (2016)
  98. Structural analysis of amyloid beta peptide fragment (25-35) in different microenvironments. Shanmugam G, Jayakumar R. Biopolymers 76 421-434 (2004)
  99. Structural features of the Cu(II) complex with the rat Abeta(1-28) fragment. Gaggelli E, Grzonka Z, Kozłowski H, Migliorini C, Molteni E, Valensin D, Valensin G. Chem Commun (Camb) 341-343 (2008)
  100. Effect of trehalose on amyloid beta (29-40)-membrane interaction. Reddy AS, Izmitli A, de Pablo JJ. J Chem Phys 131 085101 (2009)
  101. Structural analysis of membrane-bound hECE-1 dimer using molecular modeling techniques: insights into conformational changes and Aβ1-42 peptide binding. Sonawane KD, Barage SH. Amino Acids 47 543-559 (2015)
  102. Structural and functional properties of peptides based on the N-terminus of HIV-1 gp41 and the C-terminus of the amyloid-beta protein. Gordon LM, Nisthal A, Lee AB, Eskandari S, Ruchala P, Jung CL, Waring AJ, Mobley PW. Biochim Biophys Acta 1778 2127-2137 (2008)
  103. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications. Myari A, Hadjiliadis N, Fatemi N, Sarkar B. J Inorg Biochem 98 1483-1494 (2004)
  104. Molecular modeling of zinc and copper binding with Alzheimer's amyloid beta-peptide. Han D, Wang H, Yang P. Biometals 21 189-196 (2008)
  105. Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine. Storjohann R, Rozek A, Sparrow JT, Cushley RJ. Biochim Biophys Acta 1486 253-264 (2000)
  106. COCO: a simple tool to enrich the representation of conformational variability in NMR structures. Laughton CA, Orozco M, Vranken W. Proteins 75 206-216 (2009)
  107. Charged surfactants induce a non-fibrillar aggregation pathway of amyloid-beta peptide. Loureiro JA, Rocha S, Pereira Mdo C. J Pept Sci 19 581-587 (2013)
  108. Induced Dipole-Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides. Lemkul JA, Huang J, MacKerell AD. J Phys Chem B 119 15574-15582 (2015)
  109. Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. Yao S, Weber DK, Separovic F, Keizer DW. Eur Biophys J 43 331-339 (2014)
  110. Aggregation of amyloid Abeta((1-40)) peptide in perdeuterated 2,2,2-trifluoroethanol caused by ultrasound sonication. Filippov AV, Gröbner G, Antzutkin ON. Magn Reson Chem 48 427-434 (2010)
  111. Characterization of Aβ aggregation mechanism probed by congo red. Wang CC, Huang HB, Tsay HJ, Shiao MS, Wu WJ, Cheng YC, Lin TH. J Biomol Struct Dyn 30 160-169 (2012)
  112. Effect of nanomolar concentrations of sodium dodecyl sulfate, a catalytic inductor of alpha-helices, on human calcitonin incorporation and channel formation in planar lipid membranes. Micelli S, Meleleo D, Picciarelli V, Stoico MG, Gallucci E. Biophys J 87 1065-1075 (2004)
  113. Interaction of the amyloid β peptide with sodium dodecyl sulfate as a membrane-mimicking detergent. Shabestari MH, Meeuwenoord NJ, Filippov DV, Huber M. J Biol Phys 42 299-315 (2016)
  114. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants. Tiwari MK, Kepp KP. J Alzheimers Dis 47 215-229 (2015)
  115. Modeling the binding mechanism of Alzheimer's Aβ1-42 to nicotinic acetylcholine receptors based on similarity with snake α-neurotoxins. Maatuk N, Samson AO. Neurotoxicology 34 236-242 (2013)
  116. Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Legge FS, Treutlein H, Howlett GJ, Yarovsky I. Biophys Chem 130 102-113 (2007)
  117. Translational, rotational and internal dynamics of amyloid beta-peptides (Abeta40 and Abeta42) from molecular dynamics simulations. Bora RP, Prabhakar R. J Chem Phys 131 155103 (2009)
  118. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides? Pastore A, Raimondi F, Rajendran L, Temussi PA. Commun Biol 3 135 (2020)
  119. pH effects on the conformational preferences of amyloid beta-peptide (1-40) in HFIP aqueous solution by NMR spectroscopy. Valerio M, Porcelli F, Zbilut JP, Giuliani A, Manetti C, Conti F. ChemMedChem 3 833-843 (2008)
  120. 3-Hydroxy-4-pyridinone derivatives as metal ion and amyloid binding agents. Telpoukhovskaia MA, Rodríguez-Rodríguez C, Cawthray JF, Scott LE, Page BD, Alí-Torres J, Sodupe M, Bailey GA, Patrick BO, Orvig C. Metallomics 6 249-262 (2014)
  121. Implication of novel biochemical property of beta-amyloid. Elbaum D, Brzyska M, Bacia A, Alkon DL. Biochem Biophys Res Commun 267 733-738 (2000)
  122. Influence of sequence and lipid type on membrane perturbation by human and rat amyloid β-peptide (1-42). Brown AM, Bevan DR. Arch Biochem Biophys 614 1-13 (2017)
  123. On the metal ion (Zn(2+), Cu(2+)) coordination with beta-amyloid peptide: DFT computational study. Marino T, Russo N, Toscano M, Pavelka M. Interdiscip Sci 2 57-69 (2010)
  124. Pathogenic properties of Alzheimer's β-amyloid identified from structure-property patient-phenotype correlations. Tiwari MK, Kepp KP. Dalton Trans 44 2747-2754 (2015)
  125. Solvent Removal Induces a Reversible β-to-α Switch in Oligomeric Aβ Peptide. Kumar ST, Leppert J, Bellstedt P, Wiedemann C, Fändrich M, Görlach M. J Mol Biol 428 268-273 (2016)
  126. Biophysical insights into the membrane interaction of the core amyloid-forming Aβ40 fragment K16-K28 and its role in the pathogenesis of Alzheimer's disease. Bera S, Korshavn KJ, Kar RK, Lim MH, Ramamoorthy A, Bhunia A. Phys Chem Chem Phys 18 16890-16901 (2016)
  127. Is the Conformational Ensemble of Alzheimer's Aβ10-40 Peptide Force Field Dependent? Siwy CM, Lockhart C, Klimov DK. PLoS Comput Biol 13 e1005314 (2017)
  128. A multi-functional peptide as an HIV-1 entry inhibitor based on self-concentration, recognition, and covalent attachment. Zhao L, Tong P, Chen YX, Hu ZW, Wang K, Zhang YN, Zhao DS, Cai LF, Liu KL, Zhao YF, Li YM. Org Biomol Chem 10 6512-6520 (2012)
  129. A routine method for cloning, expressing and purifying Aβ(1-42) for structural NMR studies. Weber DK, Sani MA, Gehman JD. Amino Acids 46 2415-2426 (2014)
  130. Membrane-Induced Dichotomous Conformation of Amyloid β with the Disordered N-Terminal Segment Followed by the Stable C-Terminal β Structure. Yagi-Utsumi M, Kato K, Nishimura K. PLoS One 11 e0146405 (2016)
  131. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. Cieplak AS. PLoS One 12 e0180905 (2017)
  132. Sequence-based modeling of Abeta42 soluble oligomers. Dulin F, Callebaut I, Colloc'h N, Mornon JP. Biopolymers 85 422-437 (2007)
  133. Use of a combination of the RDC method and NOESY NMR spectroscopy to determine the structure of Alzheimer's amyloid Aβ10-35 peptide in solution and in SDS micelles. Usachev KS, Filippov AV, Antzutkin ON, Klochkov VV. Eur Biophys J 42 803-810 (2013)
  134. Combined experimental and simulation studies suggest a revised mode of action of the anti-Alzheimer disease drug NQ-Trp. Berthoumieu O, Nguyen PH, Castillo-Frias MP, Ferre S, Tarus B, Nasica-Labouze J, Noël S, Saurel O, Rampon C, Doig AJ, Derreumaux P, Faller P. Chemistry 21 12657-12666 (2015)
  135. Conformational solution studies of the SDS micelle-bound 11-28 fragment of two Alzheimer's beta-amyloid variants (E22K and A21G) using CD, NMR, and MD techniques. Rodziewicz-Motowidło S, Juszczyk P, Kołodziejczyk AS, Sikorska E, Skwierawska A, Oleszczuk M, Grzonka Z. Biopolymers 87 23-39 (2007)
  136. Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR. Grage SL, Afonin S, Grüne M, Ulrich AS. Chem Phys Lipids 132 65-77 (2004)
  137. L17A/F19A Substitutions Augment the α-Helicity of β-Amyloid Peptide Discordant Segment. Liang CT, Huang HB, Wang CC, Chen YR, Chang CF, Shiao MS, Chen YC, Lin TH. PLoS One 11 e0154327 (2016)
  138. Lipids uniquely alter the secondary structure and toxicity of amyloid beta 1-42 aggregates. Zhaliazka K, Matveyenka M, Kurouski D. FEBS J 290 3203-3220 (2023)
  139. Microscopic investigation of reversible nanoscale surface size dependent protein conjugation. Yokoyama K, Cho H, Cullen SP, Kowalik M, Briglio NM, Hoops HJ, Zhao Z, Carpenter MA. Int J Mol Sci 10 2348-2366 (2009)
  140. Searching for an endogenous anti-Alzheimer molecule: identifying small molecules in the brain that slow Alzheimer disease progression by inhibition of ß-amyloid aggregation. Meek AR, Simms GA, Weaver DF. J Psychiatry Neurosci 38 269-275 (2013)
  141. Surface induced collapse of Aβ1-42 with the F19A replacement following adsorption on a single walled carbon nanotube. Jana AK, Sengupta N. Biophys Chem 184 108-115 (2013)
  142. The Arctic mutation alters helix length and type in the 11-28 beta-amyloid peptide monomer-CD, NMR and MD studies in an SDS micelle. Rodziewicz-Motowidło S, Czaplewska P, Sikorska E, Spodzieja M, Kołodziejczyk AS. J Struct Biol 164 199-209 (2008)
  143. Examination of Adsorption Orientation of Amyloidogenic Peptides Over Nano-Gold Colloidal Particle Surfaces. Yokoyama K, Brown K, Shevlin P, Jenkins J, D'Ambrosio E, Ralbovsky N, Battaglia J, Deshmukh I, Ichiki A. Int J Mol Sci 20 (2019)
  144. Folding a protein with equal probability of being helix or hairpin. Lin CY, Chen NY, Mou CY. Biophys J 103 99-108 (2012)
  145. Lipid insertion domain unfolding regulates protein orientational transition behavior in a lipid bilayer. Cheng KH, Qiu L, Cheng SY, Vaughn MW. Biophys Chem 206 22-39 (2015)
  146. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role. Miklós I, Zádori Z. PLoS Comput Biol 8 e1002356 (2012)
  147. Scaling and alpha-helix regulation of protein relaxation in a lipid bilayer. Qiu L, Buie C, Cheng KH, Vaughn MW. J Chem Phys 141 225101 (2014)
  148. Using cell structures to develop functional nanomaterials and nanostructures--case studies of actin filaments and microtubules. Wu KC, Yang CY, Cheng CM. Chem Commun (Camb) 50 4148-4157 (2014)
  149. A Capped Peptide of the Aggregation Prone NAC 71-82 Amino Acid Stretch of α-Synuclein Folds into Soluble β-Sheet Oligomers at Low and Elevated Peptide Concentrations. Näsström T, Ådén J, Shibata F, Andersson PO, Karlsson BCG. Int J Mol Sci 21 (2020)
  150. A faster migrating variant masquerades as NICD when performing in vitro gamma-secretase assays with bacterially expressed Notch substrates. Keller PC, Tomita T, Hayashi I, Chandu D, Weber JD, Cistola DP, Kopan R. Biochemistry 45 5351-5358 (2006)
  151. Amyloid-β peptide dimers undergo a random coil to β-sheet transition in the aqueous phase but not at the neuronal membrane. Fatafta H, Khaled M, Owen MC, Sayyed-Ahmad A, Strodel B. Proc Natl Acad Sci U S A 118 (2021)
  152. Cell size effects in the molecular dynamics of the intrinsically disordered Aβ peptide. Mehra R, Kepp KP. J Chem Phys 151 085101 (2019)
  153. Computational Analysis of the Interactions between the S100B Extracellular Chaperone and Its Amyloid β Peptide Client. Rodrigues FEP, Figueira AJ, Gomes CM, Machuqueiro M. Int J Mol Sci 22 (2021)
  154. Conformational Characterization of Native and L17A/F19A-Substituted Dutch-Type β-Amyloid Peptides. He KC, Chen YR, Liang CT, Huang SJ, Tzeng CY, Chang CF, Huang SJ, Huang HB, Lin TH. Int J Mol Sci 21 (2020)
  155. Discrete conformational changes as regulators of the hydrolytic properties of beta-amyloid (1-40). Brzyska M, Trzesniewska K, Gers T, Elbaum D. FEBS J 273 5598-5611 (2006)
  156. Internal and environmental effects on folding and dimerization of the Alzheimer's β amyloid peptide. Anand P, Hansmann UH. Mol Simul 37 (2011)
  157. Investigation of the effect of erythrosine B on amyloid beta peptide using molecular modeling. Lee J, Kwon I, Jang SS, Cho AE. J Mol Model 22 92 (2016)
  158. Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations. McCoy MD, Hamre J, Klimov DK, Jafri MS. Biophys J 120 189-204 (2021)
  159. Spatial structure of heptapeptide Aβ(16-22) (beta-amyloid Aβ(1-40) active fragment) in solution and in complex with a biological membrane model. Usachev KS, Efimov SV, Yulmetov AR, Filippov AV, Antzutkin ON, Afonin S, Klochkov VV. Magn Reson Chem 50 784-792 (2012)
  160. Switch region for pathogenic structural change in conformational disease and its prediction. Liu X, Zhao YP. PLoS One 5 e8441 (2010)
  161. The molecular behavior of a single β-amyloid inside a dipalmitoylphosphatidylcholine bilayer at three different temperatures: An atomistic simulation study: Aβ interaction with DPPC: Atomistic simulation. Kargar F, Emadi S, Fazli H. Proteins 85 1298-1310 (2017)
  162. Amide-based derivatives of β-alanine hydroxamic acid as histone deacetylase inhibitors: attenuation of potency through resonance effects. Liao V, Liu T, Codd R. Bioorg Med Chem Lett 22 6200-6204 (2012)
  163. Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations. Muvva C, Murugan NA, Subramanian V. Int J Mol Sci 22 (2021)
  164. Calcium inhibits penetration of Alzheimer's Aβ1 -42 monomers into the membrane. Boopathi S, Garduño-Juárez R. Proteins 90 2124-2143 (2022)
  165. Characterization of Homogeneous and Heterogeneous Amyloid-β42 Oligomer Preparations with Biochemical Methods and Infrared Spectroscopy Reveals a Correlation between Infrared Spectrum and Oligomer Size. Vosough F, Barth A. ACS Chem Neurosci 12 473-488 (2021)
  166. Dimerization and conformation-related free energy landscapes of dye-tagged amyloid-β12-28 linked to FRET experiments. Kulesza A, Daly S, Dugourd P. Phys Chem Chem Phys 19 9470-9477 (2017)
  167. Molecular insights into the effect L17A/F19A double mutation on the structure and dynamics of Aβ40 : A molecular dynamics simulation study. Saini RK, Shuaib S, Goyal D, Goyal B. J Cell Biochem 119 8949-8961 (2018)
  168. Residue Interaction Network Analysis Predicts a Val24-Ile31 Interaction May be Involved in Preventing Amyloid-Beta (1-42) Primary Nucleation. Griffin JWD, Bradshaw PC. Protein J 40 175-183 (2021)
  169. Surfactant-induced assembly of enzymatically-stable peptide hydrogels. Jones BH, Martinez AM, Wheeler JS, Spoerke ED. Soft Matter 11 3572-3580 (2015)
  170. Does the electrical activity of neurons contribute to the pathogenesis of Alzheimer's Disease? Concepcion GP, Padlan EA. Med Hypotheses 74 27-28 (2010)
  171. Dynamic observations of various oligomers in amyloid β isoforms using laboratory diffracted X-ray blinking. Chang J, Arai T, Kuramochi M, Inamasu R, Lee Z, Ohkubo T, Mio K, Sasaki YC. Biochem Biophys Rep 31 101298 (2022)
  172. Exploring the Early Stages of the Amyloid Aβ(1-42) Peptide Aggregation Process: An NMR Study. Santoro A, Grimaldi M, Buonocore M, Stillitano I, D'Ursi AM. Pharmaceuticals (Basel) 14 (2021)
  173. Identification of amyloid beta in small extracellular vesicles via Raman spectroscopy. Imanbekova M, Suarasan S, Rojalin T, Mizenko RR, Hilt S, Mathur M, Lepine P, Nicouleau M, Mohamed NV, Durcan TM, Carney RP, Voss JC, Wachsmann-Hogiu S. Nanoscale Adv 3 4119-4132 (2021)
  174. Novel Vaccine against Pathological Pyroglutamate-Modified Amyloid Beta for Prevention of Alzheimer's Disease. Zagorski K, King O, Hovakimyan A, Petrushina I, Antonyan T, Chailyan G, Ghazaryan M, Hyrc KL, Chadarevian JP, Davtyan H, Blurton-Jones M, Cribbs DH, Agadjanyan MG, Ghochikyan A. Int J Mol Sci 24 9797 (2023)
  175. Structural basis of FPR2 in recognition of Aβ42 and neuroprotection by humanin. Zhu Y, Lin X, Zong X, Han S, Wang M, Su Y, Ma L, Chu X, Yi C, Zhao Q, Wu B. Nat Commun 13 1775 (2022)
  176. The neuroprotective N-terminal amyloid-β core hexapeptide reverses reactive gliosis and gliotoxicity in Alzheimer's disease pathology models. Lantz MJ, Roberts AM, Delgado DD, Nichols RA. J Neuroinflammation 20 129 (2023)
  177. Transition Networks Unveil Disorder-to-Order Transformations in Aβ Caused by Glycosaminoglycans or Lipids. Schäffler M, Samantray S, Strodel B. Int J Mol Sci 24 11238 (2023)