1ayf Citations

New aspects of electron transfer revealed by the crystal structure of a truncated bovine adrenodoxin, Adx(4-108).

Abstract

Background

Adrenodoxin (Adx) is a [2Fe-2S] ferredoxin involved in steroid hormone biosynthesis in the adrenal gland mitochondrial matrix of mammals. Adx is a small soluble protein that transfers electrons from adrenodoxin reductase (AR) to different cytochrome P450 isoforms where they are consumed in hydroxylation reactions. A crystallographic study of Adx is expected to reveal the structural basis for an important electron transfer reaction mediated by a vertebrate [2Fe-2S] ferredoxin.

Results

The crystal structure of a truncated bovine adrenodoxin, Adx(4-108), was determined at 1.85 A resolution and refined to a crystallographic R value of 0.195. The structure was determined using multiple wavelength anomalous dispersion phasing techniques, making use of the iron atoms in the [2Fe-2S] cluster of the protein. The protein displays the compact (alpha + beta) fold typical for [2Fe-2S] ferredoxins. The polypeptide chain is organized into a large core domain and a smaller interaction domain which comprises 35 residues, including all those previously determined to be involved in binding to AR and cytochrome P450. A small interdomain motion is observed as a structural difference between the two independent molecules in the asymmetric unit of the crystal. Charged residues of Adx(4-108) are clustered to yield a strikingly asymmetric electric potential of the protein molecule.

Conclusion

The crystal structure of Adx(4-108) provides the first detailed description of a vertebrate [2Fe-2S] ferredoxin and serves to explain a large body of biochemical studies in terms of a three-dimensional structure. The structure suggests how a change in the redox state of the [2Fe-2S] cluster may be coupled to a domain motion of the protein. It seems likely that the clearly asymmetric charge distribution on the surface of Adx(4-108) and the resulting strong molecular dipole are involved in electrostatic steering of the interactions with AR and cytochrome P450.

Articles - 1ayf mentioned but not cited (6)

  1. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Proc Natl Acad Sci U S A 108 10139-10143 (2011)
  2. pyDockSAXS: protein-protein complex structure by SAXS and computational docking. Jiménez-García B, Pons C, Svergun DI, Bernadó P, Fernández-Recio J. Nucleic Acids Res 43 W356-61 (2015)
  3. Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. Campbell IJ, Bennett GN, Silberg JJ. Front Energy Res 7 (2019)
  4. Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns. Sagadin T, Riehm JL, Milhim M, Hutter MC, Bernhardt R. Commun Biol 1 99 (2018)
  5. Concerning P450 Evolution: Structural Analyses Support Bacterial Origin of Sterol 14α-Demethylases. Lamb DC, Hargrove TY, Zhao B, Wawrzak Z, Goldstone JV, Nes WD, Kelly SL, Waterman MR, Stegeman JJ, Lepesheva GI. Mol Biol Evol 38 952-967 (2021)
  6. The reduced [2Fe-2S] clusters in adrenodoxin and Arthrospira platensis ferredoxin share spin density with protein nitrogens, probed using 2D ESEEM. Dikanov SA, Samoilova RI, Kappl R, Crofts AR, Hüttermann J. Phys Chem Chem Phys 11 6807-6819 (2009)


Reviews citing this publication (13)

  1. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Miller WL, Auchus RJ. Endocr Rev 32 81-151 (2011)
  2. Early steps in steroidogenesis: intracellular cholesterol trafficking. Miller WL, Bose HS. J Lipid Res 52 2111-2135 (2011)
  3. The autodisplay story, from discovery to biotechnical and biomedical applications. Jose J, Meyer TF. Microbiol Mol Biol Rev 71 600-619 (2007)
  4. Role of mitochondria in steroidogenesis. Papadopoulos V, Miller WL. Best Pract Res Clin Endocrinol Metab 26 771-790 (2012)
  5. Adrenodoxin: structure, stability, and electron transfer properties. Grinberg AV, Hannemann F, Schiffler B, Müller J, Heinemann U, Bernhardt R. Proteins 40 590-612 (2000)
  6. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. J Biol Chem 295 833-849 (2020)
  7. Transient complexes of redox proteins: structural and dynamic details from NMR studies. Prudêncio M, Ubbink M. J Mol Recognit 17 524-539 (2004)
  8. Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies. Midzak A, Papadopoulos V. Front Endocrinol (Lausanne) 7 106 (2016)
  9. Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Lewis DF, Hlavica P. Biochim Biophys Acta 1460 353-374 (2000)
  10. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. Hlavica P, Schulze J, Lewis DF. J Inorg Biochem 96 279-297 (2003)
  11. An integrated approach to structural genomics. Heinemann U, Frevert J, Hofmann K, Illing G, Maurer C, Oschkinat H, Saenger W. Prog Biophys Mol Biol 73 347-362 (2000)
  12. Bacterial (CYP101) and mitochondrial P450 systems-how comparable are they? Schiffler B, Bernhardt R. Biochem Biophys Res Commun 312 223-228 (2003)
  13. Cytochrome P450 side-chain cleavage: insights gained from homology modeling. Storbeck KH, Swart P, Swart AC. Mol Cell Endocrinol 265-266 65-70 (2007)

Articles citing this publication (54)

  1. Structure of a cytochrome P450-redox partner electron-transfer complex. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL. Proc Natl Acad Sci U S A 96 1863-1868 (1999)
  2. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R. Proc Natl Acad Sci U S A 107 11775-11780 (2010)
  3. Steroid hormone synthesis in mitochondria. Miller WL. Mol Cell Endocrinol 379 62-73 (2013)
  4. The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE. J Mol Biol 289 981-990 (1999)
  5. Structure and function of plant-type ferredoxins. Fukuyama K. Photosynth Res 81 289-301 (2004)
  6. Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, Bartlam M, Wong LL, Rao Z. J Biol Chem 285 27372-27384 (2010)
  7. Crystal structure of putidaredoxin, the [2Fe-2S] component of the P450cam monooxygenase system from Pseudomonas putida. Sevrioukova IF, Garcia C, Li H, Bhaskar B, Poulos TL. J Mol Biol 333 377-392 (2003)
  8. Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS. Yan R, Konarev PV, Iannuzzi C, Adinolfi S, Roche B, Kelly G, Simon L, Martin SR, Py B, Barras F, Svergun DI, Pastore A. J Biol Chem 288 24777-24787 (2013)
  9. The tertiary structure of full-length bovine adrenodoxin suggests functional dimers. Pikuleva IA, Tesh K, Waterman MR, Kim Y. Arch Biochem Biophys 373 44-55 (2000)
  10. Redox-dependent structural reorganization in putidaredoxin, a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida. Sevrioukova IF. J Mol Biol 347 607-621 (2005)
  11. Intermolecular dynamics studied by paramagnetic tagging. Xu X, Keizers PH, Reinle W, Hannemann F, Bernhardt R, Ubbink M. J Biomol NMR 43 247-254 (2009)
  12. Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. Yeh AP, Chatelet C, Soltis SM, Kuhn P, Meyer J, Rees DC. J Mol Biol 300 587-595 (2000)
  13. Protein recognition in ferredoxin-P450 electron transfer in the class I CYP199A2 system from Rhodopseudomonas palustris. Bell SG, Xu F, Johnson EO, Forward IM, Bartlam M, Rao Z, Wong LL. J Biol Inorg Chem 15 315-328 (2010)
  14. Vertebrate-type and plant-type ferredoxins: crystal structure comparison and electron transfer pathway modelling. Müller JJ, Müller A, Rottmann M, Bernhardt R, Heinemann U. J Mol Biol 294 501-513 (1999)
  15. Deletions in the loop surrounding the iron-sulfur cluster of adrenodoxin severely affect the interactions with its native redox partners adrenodoxin reductase and cytochrome P450(scc) (CYP11A1). Zöllner A, Hannemann F, Lisurek M, Bernhardt R. J Inorg Biochem 91 644-654 (2002)
  16. Covalently crosslinked complexes of bovine adrenodoxin with adrenodoxin reductase and cytochrome P450scc. Mass spectrometry and Edman degradation of complexes of the steroidogenic hydroxylase system. Müller EC, Lapko A, Otto A, Müller JJ, Ruckpaul K, Heinemann U. Eur J Biochem 268 1837-1843 (2001)
  17. Adrenodoxin (Adx) and CYP11A1 (P450scc) induce apoptosis by the generation of reactive oxygen species in mitochondria. Derouet-Hümbert E, Roemer K, Bureik M. Biol Chem 386 453-461 (2005)
  18. Chaperone-assisted expression of authentic bovine adrenodoxin reductase in Escherichia coli. Vonrhein C, Schmidt U, Ziegler GA, Schweiger S, Hanukoglu I, Schulz GE. FEBS Lett 443 167-169 (1999)
  19. Human ferredoxin-2 displays a unique conformational change. Qi W, Li J, Cowan JA. Dalton Trans 42 3088-3091 (2013)
  20. Evolutionarily divergent electron donor proteins interact with P450MT2 through the same helical domain but different contact points. Anandatheerthavarada HK, Amuthan G, Biswas G, Robin MA, Murali R, Waterman MR, Avadhani NG. EMBO J 20 2394-2403 (2001)
  21. Interactions of natural polyamines with mammalian proteins. Schuster I, Bernhardt R. Biomol Concepts 2 79-94 (2011)
  22. Proton environment of reduced Rieske iron-sulfur cluster probed by two-dimensional ESEEM spectroscopy. Kolling DR, Samoilova RI, Shubin AA, Crofts AR, Dikanov SA. J Phys Chem A 113 653-667 (2009)
  23. A new application of the yeast two-hybrid system in protein engineering. Bichet A, Hannemann F, Rekowski M, Bernhardt R. Protein Eng Des Sel 20 117-123 (2007)
  24. Structure of a [2Fe-2S] ferredoxin from Rhodobacter capsulatus likely involved in Fe-S cluster biogenesis and conformational changes observed upon reduction. Sainz G, Jakoncic J, Sieker LC, Stojanoff V, Sanishvili N, Asso M, Bertrand P, Armengaud J, Jouanneau Y. J Biol Inorg Chem 11 235-246 (2006)
  25. Insights into the design of a hybrid system between Anabaena ferredoxin-NADP+ reductase and bovine adrenodoxin. Faro M, Schiffler B, Heinz A, Nogués I, Medina M, Bernhardt R, Gómez-Moreno C. Eur J Biochem 270 726-735 (2003)
  26. Polyamines: naturally occurring small molecule modulators of electrostatic protein-protein interactions. Berwanger A, Eyrisch S, Schuster I, Helms V, Bernhardt R. J Inorg Biochem 104 118-125 (2010)
  27. Evidence for the cluster model of mitochondrial steroid hydroxylase system derived from dissociation constants of the complex between adrenodoxin reductase and adrenodoxin. Hara T, Koba C, Takeshima M, Sagara Y. Biochem Biophys Res Commun 276 210-215 (2000)
  28. Self-association of adrenodoxin studied by using analytical ultracentrifugation. Behlke J, Ristau O, Müller EC, Hannemann F, Bernhardt R. Biophys Chem 125 159-165 (2007)
  29. Analysis of the interaction of a hybrid system consisting of bovine adrenodoxin reductase and flavodoxin from the cyanobacterium Anabaena PCC 7119. Zöllner A, Nogués I, Heinz A, Medina M, Gómez-Moreno C, Bernhardt R. Bioelectrochemistry 63 61-65 (2004)
  30. Oxidized adrenodoxin acts as a competitive inhibitor of cytochrome P450scc in mitochondria from the human placenta. Tuckey RC, McKinley AJ, Headlam MJ. Eur J Biochem 268 2338-2343 (2001)
  31. Structural and functional consequences of substitutions at the Pro108-Arg14 hydrogen bond in bovine adrenodoxin. Grinberg A, Bernhardt R. Biochem Biophys Res Commun 249 933-937 (1998)
  32. What Your Crystal Structure Will Not Tell You about Enzyme Function. Pochapsky TC, Pochapsky SS. Acc Chem Res 52 1409-1418 (2019)
  33. Contribution of a salt bridge to the thermostability of adrenodoxin determined by site-directed mutagenesis. Grinberg AV, Bernhardt R. Arch Biochem Biophys 396 25-34 (2001)
  34. Protein phosphorylation and intermolecular electron transfer: a joint experimental and computational study of a hormone biosynthesis pathway. Zöllner A, Pasquinelli MA, Bernhardt R, Beratan DN. J Am Chem Soc 129 4206-4216 (2007)
  35. Structural and thermodynamic characterization of the adrenodoxin-like domain of the electron-transfer protein Etp1 from Schizosaccharomyces pombe. Müller JJ, Hannemann F, Schiffler B, Ewen KM, Kappl R, Heinemann U, Bernhardt R. J Inorg Biochem 105 957-965 (2011)
  36. The interaction domain of the redox protein adrenodoxin is mandatory for binding of the electron acceptor CYP11A1, but is not required for binding of the electron donor adrenodoxin reductase. Heinz A, Hannemann F, Müller JJ, Heinemann U, Bernhardt R. Biochem Biophys Res Commun 338 491-498 (2005)
  37. A step toward understanding the folding mechanism of bovine adrenodoxin. Bera AK, Grinberg A, Bernhardt R. Arch Biochem Biophys 361 315-322 (1999)
  38. Electron-nuclear interactions in two prototypical [2Fe-2S] proteins: selective (chiral) deuteration and analysis of (1)H and (2)H NMR signals from the alpha and beta hydrogens of cysteinyl residues that ligate the iron in the active sites of human ferredoxin and Anabaena 7120 vegetative ferredoxin. Xia B, Jenk D, LeMaster DM, Westler WM, Markley JL. Arch Biochem Biophys 373 328-334 (2000)
  39. A new assignment strategy for the hyperfine-shifted 13C and 15N resonances in Fe2S2 ferredoxins. Jain NU, Pochapsky TC. Biochem Biophys Res Commun 258 54-59 (1999)
  40. Mechanistic studies on formation of the dinitrosyl iron complex of the [2Fe-2S] cluster of SoxR protein. Fujikawa M, Kobayashi K, Kozawa T. J Biochem 156 163-172 (2014)
  41. Modeling of electrostatic recognition processes in the mammalian mitochondrial steroid hydroxylase system. Müller JJ, Lapko A, Ruckpaul K, Heinemann U. Biophys Chem 100 281-292 (2003)
  42. Molecular dynamics simulation of truncated bovine adrenodoxin. Shakya SK, Gu W, Helms V. Biopolymers 78 9-20 (2005)
  43. Letter Assignment of 1H, 13C and 15N signals of bovine adrenodoxin. Weiss R, Brachais L, Löhr F, Hartleib J, Bernhardt R, Rüterjans H. J Biomol NMR 17 355-356 (2000)
  44. Exploration of the structural environment of the iron-sulfur cluster in putidaredoxin by nitrogen-15 NMR spectroscopy of selectively labeled cysteine residues. Sari N, Holden MJ, Mayhew MP, Vilker VL, Coxon B. Biochem Biophys Res Commun 249 773-780 (1998)
  45. ISC-like [2Fe-2S] ferredoxin (FdxB) dimer from Pseudomonas putida JCM 20004: structural and electron-nuclear double resonance characterization. Iwasaki T, Kappl R, Bracic G, Shimizu N, Ohmori D, Kumasaka T. J Biol Inorg Chem 16 923-935 (2011)
  46. The solution structure of a gallium-substituted putidaredoxin mutant: GaPdx C85S. Pochapsky TC, Kuti M, Kazanis S. J Biomol NMR 12 407-415 (1998)
  47. Mechanism of steroidogenic electron transport: role of conserved Glu429 in destabilization of CYP11A1-adrenodoxin complex. Strushkevich NV, Harnastai IN, Usanov SA. Biochemistry (Mosc) 75 570-578 (2010)
  48. Partial fusion of a cytochrome P450 system by carboxy-terminal attachment of putidaredoxin reductase to P450cam (CYP101A1). Johnson EO, Wong LL. Catal Sci Technol 6 7549-7560 (2016)
  49. NMR spectroscopic studies of the hydrogenosomal [2Fe-2S] ferredoxin from Trichomonas vaginalis: hyperfine-shifted 1H resonances. Liu HY, Germanas JP. J Inorg Biochem 72 127-131 (1998)
  50. Novel approach to improve progesterone hydroxylation selectivity by CYP106A2 via rational design of adrenodoxin binding. Sagadin T, Riehm J, Putkaradze N, Hutter MC, Bernhardt R. FEBS J 286 1240-1249 (2019)
  51. Computational, spectroscopic, and resonant mirror biosensor analysis of the interaction of adrenodoxin with native and tryptophan-modified NADPH-adrenodoxin reductase. Sargisova Y, Pierfederici FM, Scirè A, Bertoli E, Tanfani F, Febbraio F, Briante R, Karapetyan Y, Mardanyan S. Proteins 57 302-310 (2004)
  52. Raman and infrared spectroscopic evidence for the structural changes of the 2Fe2S cluster and its environment during the interaction of adrenodoxin and adrenodoxin reductase. Khalil M, Bernhardt R, Hellwig P. Spectrochim Acta A Mol Biomol Spectrosc 183 298-305 (2017)
  53. Site-directed mutations (Asp405Ile and Glu124Ile) in cytochrome P450scc: effect on adrenodoxin binding. Ghisellini P, Paternolli C, Nicolini C. J Cell Biochem 95 720-730 (2005)
  54. Structure of adrenodoxin and function in mitochondrial steroid hydroxylation. Bernhardt R, Müller A, Uhlmann H, Grinberg A, Müller JJ, Heinemann U. Endocr Res 24 531-539 (1998)