1att Citations

Crystal structure of cleaved bovine antithrombin III at 3.2 A resolution.

J Mol Biol 232 223-41 (1993)
Cited: 55 times
EuropePMC logo PMID: 8331659

Abstract

The crystal structure of cleaved antithrombin III (ATIII) has been determined to 3.2 A resolution by single isomorphous replacement, real space density modification and phase extension protocols. The heavy-atom sites and the first molecular envelope were determined owing to the molecular replacement solution previously reported and partially refined. Refinement of the two molecules of the asymmetric unit led to a crystallographic R-factor of 0.212 for all reflections between 8.0 and 3.2 A, without inclusion of water molecules. The root-mean-square deviation from ideal values is, respectively, 0.015 A and 3.6 degrees for bond lengths and bond angles. The topology of the molecule closely resembles that of cleaved serpins inhibitors with the two residues forming the reactive bond at opposite ends of the molecule. The most significant difference between ATIII and alpha 1-antitrypsin lies in the 45 residue N-terminal extension in ATIII which contribute to the definition of the heparin binding site. This loop region at the surface of the molecule is held by two disulphide bridges to the protein core and exhibits high temperature factor values. It forms a valley which restrains the possibilities for binding of heparin. Docking of the pentasaccharide unit which represents the minimum fragment of heparin able to bind to ATIII indicates a possible role for arginine 14 in the interaction of heparin and the protein.

Articles - 1att mentioned but not cited (5)

  1. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Chmelar J, Oliveira CJ, Rezacova P, Francischetti IM, Kovarova Z, Pejler G, Kopacek P, Ribeiro JM, Mares M, Kopecky J, Kotsyfakis M. Blood 117 736-744 (2011)
  2. Resolution of ab initio shapes determined from small-angle scattering. Tuukkanen AT, Kleywegt GJ, Svergun DI. IUCrJ 3 440-447 (2016)
  3. A structure-derived snap-trap mechanism of a multispecific serpin from the dysbiotic human oral microbiome. Goulas T, Ksiazek M, Garcia-Ferrer I, Sochaj-Gregorczyk AM, Waligorska I, Wasylewski M, Potempa J, Gomis-Rüth FX. J. Biol. Chem. 292 10883-10898 (2017)
  4. Identification and partial characterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, Mikeš L, Potěšil D, Zdráhal Z, Dvořák J, Gelnar M, Kašný M. Parasite 25 61 (2018)
  5. Mass Spectrometry Reveals a Multifaceted Role of Glycosaminoglycan Chains in Factor Xa Inactivation by Antithrombin. Minsky BB, Abzalimov RR, Niu C, Zhao Y, Kirsch Z, Dubin PL, Savinov SN, Kaltashov IA. Biochemistry 57 4880-4890 (2018)


Reviews citing this publication (10)

  1. Enzymatic degradation of glycosaminoglycans. Ernst S, Langer R, Cooney CL, Sasisekharan R. Crit. Rev. Biochem. Mol. Biol. 30 387-444 (1995)
  2. More to "heparin" than anticoagulation. Lindahl U, Lidholt K, Spillmann D, Kjellén L. Thromb. Res. 75 1-32 (1994)
  3. An atlas of serpin conformations. Whisstock J, Skinner R, Lesk AM. Trends Biochem. Sci. 23 63-67 (1998)
  4. Regulation of proteolytic activity in tissues. Twining SS. Crit. Rev. Biochem. Mol. Biol. 29 315-383 (1994)
  5. The structural puzzle of how serpin serine proteinase inhibitors work. Wright HT. Bioessays 18 453-464 (1996)
  6. Molecular and structural basis of steroid hormone binding and release from corticosteroid-binding globulin. Lin HY, Muller YA, Hammond GL. Mol. Cell. Endocrinol. 316 3-12 (2010)
  7. Coagulation factors and their inhibitors. Stubbs MT, Bode W. Curr. Opin. Struct. Biol. 4 823-832 (1994)
  8. Molecular genetics of antithrombin deficiency. Lane DA, Kunz G, Olds RJ, Thein SL. Blood Rev. 10 59-74 (1996)
  9. Antithrombin and its inherited deficiencies. Perry DJ. Blood Rev. 8 37-55 (1994)
  10. Molecular genetics of human antithrombin deficiency. Perry DJ, Carrell RW. Hum. Mutat. 7 7-22 (1996)

Articles citing this publication (40)

  1. The anticoagulant activation of antithrombin by heparin. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. Proc. Natl. Acad. Sci. U.S.A. 94 14683-14688 (1997)
  2. Biological implications of a 3 A structure of dimeric antithrombin. Carrell RW, Stein PE, Fermi G, Wardell MR. Structure 2 257-270 (1994)
  3. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Schreuder HA, de Boer B, Dijkema R, Mulders J, Theunissen HJ, Grootenhuis PD, Hol WG. Nat. Struct. Biol. 1 48-54 (1994)
  4. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI. EMBO J. 18 1468-1479 (1999)
  5. Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Elliott PR, Pei XY, Dafforn TR, Lomas DA. Protein Sci. 9 1274-1281 (2000)
  6. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Wei A, Rubin H, Cooperman BS, Christianson DW. Nat. Struct. Biol. 1 251-258 (1994)
  7. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn-->Asp) Bruce D, Perry DJ, Borg JY, Carrell RW, Wardell MR. J. Clin. Invest. 94 2265-2274 (1994)
  8. Preparation and characterization of latent alpha 1-antitrypsin. Lomas DA, Elliott PR, Chang WS, Wardell MR, Carrell RW. J. Biol. Chem. 270 5282-5288 (1995)
  9. Structural basis for serpin inhibitor activity. Wright HT, Scarsdale JN. Proteins 22 210-225 (1995)
  10. Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Célérier J, Cruz A, Lamandé N, Gasc JM, Corvol P. Hypertension 39 224-228 (2002)
  11. Identification of a glycosaminoglycan-binding site in chemokine macrophage inflammatory protein-1alpha. Koopmann W, Krangel MS. J. Biol. Chem. 272 10103-10109 (1997)
  12. How small peptides block and reverse serpin polymerisation. Zhou A, Stein PE, Huntington JA, Sivasothy P, Lomas DA, Carrell RW. J. Mol. Biol. 342 931-941 (2004)
  13. The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: crystal structure of an uncleaved alpha1-antitrypsin at 2.7 A. Ryu SE, Choi HJ, Kwon KS, Lee KN, Yu MH. Structure 4 1181-1192 (1996)
  14. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding. Mayo KH, Ilyina E, Roongta V, Dundas M, Joseph J, Lai CK, Maione T, Daly TJ. Biochem. J. 312 ( Pt 2) 357-365 (1995)
  15. Importance of the release of strand 1C to the polymerization mechanism of inhibitory serpins. Chang WS, Whisstock J, Hopkins PC, Lesk AM, Carrell RW, Wardell MR. Protein Sci. 6 89-98 (1997)
  16. Interaction of heparin with human angiogenin. Soncin F, Strydom DJ, Shapiro R. J. Biol. Chem. 272 9818-9824 (1997)
  17. Probing serpin reactive-loop conformations by proteolytic cleavage. Chang WS, Wardell MR, Lomas DA, Carrell RW. Biochem. J. 314 ( Pt 2) 647-653 (1996)
  18. Letter A mechanism for heparin-induced potentiation of antithrombin III. van Boeckel CA, Grootenhuis PD, Visser A. Nat. Struct. Biol. 1 423-425 (1994)
  19. Identification of heparin-binding sites in midkine and their role in neurite-promotion. Asai T, Watanabe K, Ichihara-Tanaka K, Kaneda N, Kojima S, Iguchi A, Inagaki F, Muramatsu T. Biochem. Biophys. Res. Commun. 236 66-70 (1997)
  20. The heparin-binding site of antithrombin is crucial for antiangiogenic activity. Zhang W, Swanson R, Izaguirre G, Xiong Y, Lau LF, Olson ST. Blood 106 1621-1628 (2005)
  21. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Renatus M, Zhou Q, Stennicke HR, Snipas SJ, Turk D, Bankston LA, Liddington RC, Salvesen GS. Structure 8 789-797 (2000)
  22. Crystal structure of viral serpin crmA provides insights into its mechanism of cysteine proteinase inhibition. Simonovic M, Gettins PGW, Volz K. Protein Sci. 9 1423-1427 (2000)
  23. Three novel missense mutations in the antithrombin III (AT3) gene causing recurrent venous thrombosis. Millar DS, Wacey AI, Ribando J, Melissari E, Laursen B, Woods P, Kakkar VV, Cooper DN. Hum. Genet. 94 509-512 (1994)
  24. From natural to synthetic multisite thrombin inhibitors. Lombardi A, De Simone G, Galdiero S, Staiano N, Nastri F, Pavone V. Biopolymers 51 19-39 (1999)
  25. Structure of the complex of leech-derived tryptase inhibitor (LDTI) with trypsin and modeling of the LDTI-tryptase system. Di Marco S, Priestle JP. Structure 5 1465-1474 (1997)
  26. Modeling of serpin-protease complexes: antithrombin-thrombin, alpha 1-antitrypsin (358Met-->Arg)-thrombin, alpha 1-antitrypsin (358Met-->Arg)-trypsin, and antitrypsin-elastase. Whisstock J, Lesk AM, Carrell R. Proteins 26 288-303 (1996)
  27. Arginine substitutions in the hinge region of antichymotrypsin affect serpin beta-sheet rearrangement. Lukacs CM, Zhong JQ, Plotnick MI, Rubin H, Cooperman BS, Christianson DW. Nat. Struct. Biol. 3 888-893 (1996)
  28. Crystal structure of neuroserpin: a neuronal serpin involved in a conformational disease. Briand C, Kozlov SV, Sonderegger P, Grütter MG. FEBS Lett. 505 18-22 (2001)
  29. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms. Kaslik G, Westler WM, Gráf L, Markley JL. Arch. Biochem. Biophys. 362 254-264 (1999)
  30. Significance of secondary structure predictions on the reactive center loop region of serpins: a model for the folding of serpins into a metastable state. Patston PA, Gettins PG. FEBS Lett. 383 87-92 (1996)
  31. Serpin alpha 1proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy. Koloczek H, Banbula A, Salvesen GS, Potempa J. Protein Sci. 5 2226-2235 (1996)
  32. The spontaneous polymerization of plasminogen activator inhibitor type-2 and Z-antitrypsin are due to different molecular aberrations. Wilczynska M, Lobov S, Ny T. FEBS Lett. 537 11-16 (2003)
  33. Three novel mutations of antithrombin inducing high-molecular-mass compounds. Emmerich J, Vidaud D, Alhenc-Gelas M, Chadeuf G, Gouault-Heilmann M, Aillaud MF, Aiach M. Arterioscler. Thromb. 14 1958-1965 (1994)
  34. 13C-NMR relation study of heparin-disaccharide interactions with tripeptides GRG and GKG. Mikhailov D, Mayo KH, Pervin A, Linhardt RJ. Biochem. J. 315 ( Pt 2) 447-454 (1996)
  35. Apical and non-polarized secretion of serpins from MDCK cells. Vogel LK, Larsen JE. FEBS Lett. 473 297-302 (2000)
  36. Probing plasma clearance of the thrombin-antithrombin complex with a monoclonal antibody against the putative serpin-enzyme complex receptor-binding site. Long GL, Kjellberg M, Villoutreix BO, Stenflo J. Eur. J. Biochem. 270 4059-4069 (2003)
  37. A spectroscopic study of the structures of latent, active and reactive-center-cleaved type-1 plasminogen-activator inhibitor. Schulze AJ, Quarzago D, Andreasen PA. Eur. J. Biochem. 240 550-555 (1996)
  38. Cellular receptor structures for pseudorabies virus are blocked by antithrombin III. Voigt A, Sawitzky D, Zeichhardt H, Habermehl KO. Med. Microbiol. Immunol. 184 97-103 (1995)
  39. Is the binding of beta-amyloid protein to antichymotrypsin in Alzheimer plaques mediated by a beta-strand insertion? Lukacs CM, Christianson DW. Proteins 25 420-424 (1996)
  40. Genotype phenotype correlation in a pediatric population with antithrombin deficiency. Kovac M, Mitic G, Djilas I, Kuzmanovic M, Serbic O, Lekovic D, Tomic B, Bereczky Z. Eur J Pediatr 178 1471-1478 (2019)


Related citations provided by authors (3)

  1. Antithrombin III: structural and functional aspects.. Mourey L, Samama JP, Delarue M, Choay J, Lormeau JC, Petitou M, Moras D Biochimie 72 599-608 (1990)
  2. Crystal Structure of Bovine Antithrombin III. Delarue M, Samama J-P, Mourey L, Moras D Acta Crystallogr., B 46 550- (1990)
  3. Crystallization and preliminary crystallographic data for bovine antithrombin III.. Samama JP, Delarue M, Mourey L, Choay J, Moras D J Mol Biol 210 877-9 (1989)