1aqj Citations

Differential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI.

J Mol Biol 265 56-67 (1997)
Related entries: 1aqi, 2adm

Cited: 63 times
EuropePMC logo PMID: 8995524

Abstract

The crystal structures of the binary complexes of the DNA methyltransferase M.TaqI with the inhibitor Sinefungin and the reaction product S-adenosyl-L-homocysteine were determined, both at 2.6 A resolution. Structural comparison of these binary complexes with the complex formed by M.TaqI and the cofactor S-adenosyl-L-methionine suggests that the key element for molecular recognition of these ligands is the binding of their adenosine part in a pocket, and discrimination between cofactor, reaction product and inhibitor is mediated by different conformations of these molecules; the methionine part of S-adenosyl-L-methionine is located in the binding cleft, whereas the amino acid moieties of Sinefungin and S-adenosyl-L-homocysteine are in a different orientation and interact with the active site amino acid residues 105NPPY108. Dissociation constants for the complexes of M.TaqI with the three ligands were determined spectrofluorometrically. Sinefungin binds more strongly than S-adenosyl-L-homocysteine or S-adenosyl-L-methionine, with KD=0.34 microM, 2.4 microM and 2.0 microM, respectively.

Reviews - 1aqj mentioned but not cited (1)

  1. Many paths to methyltransfer: a chronicle of convergence. Schubert HL, Blumenthal RM, Cheng X. Trends Biochem Sci 28 329-335 (2003)

Articles - 1aqj mentioned but not cited (1)

  1. Protein function annotation by local binding site surface similarity. Spitzer R, Cleves AE, Varela R, Jain AN. Proteins 82 679-694 (2014)


Reviews citing this publication (7)

  1. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Jeltsch A. Chembiochem 3 274-293 (2002)
  2. Fold change in evolution of protein structures. Grishin NV. J Struct Biol 134 167-185 (2001)
  3. Type I restriction enzymes and their relatives. Loenen WA, Dryden DT, Raleigh EA, Wilson GG. Nucleic Acids Res 42 20-44 (2014)
  4. Structure, function and mechanism of exocyclic DNA methyltransferases. Bheemanaik S, Reddy YV, Rao DN. Biochem J 399 177-190 (2006)
  5. Involvement of DNA methylation in human carcinogenesis. Schmutte C, Jones PA. Biol Chem 379 377-388 (1998)
  6. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L, Xu Z. Curr Med Chem 17 4052-4071 (2010)
  7. Mechanistic link between DNA methyltransferases and DNA repair enzymes by base flipping. Lloyd RS, Cheng X. Biopolymers 44 139-151 (1997)

Articles citing this publication (54)

  1. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. EMBO J 21 2757-2768 (2002)
  2. A new method to detect related function among proteins independent of sequence and fold homology. Schmitt S, Kuhn D, Klebe G. J Mol Biol 323 387-406 (2002)
  3. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. McDaniel BA, Grundy FJ, Artsimovitch I, Henkin TM. Proc Natl Acad Sci U S A 100 3083-3088 (2003)
  4. RNA methylation under heat shock control. Bügl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U. Mol Cell 6 349-360 (2000)
  5. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Holz B, Klimasauskas S, Serva S, Weinhold E. Nucleic Acids Res 26 1076-1083 (1998)
  6. Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii. Khan A, Taylor S, Su C, Mackey AJ, Boyle J, Cole R, Glover D, Tang K, Paulsen IT, Berriman M, Boothroyd JC, Pfefferkorn ER, Dubey JP, Ajioka JW, Roos DS, Wootton JC, Sibley LD. Nucleic Acids Res 33 2980-2992 (2005)
  7. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Djordjevic S, Stock AM. Structure 5 545-558 (1997)
  8. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A. Nat Struct Biol 9 27-31 (2002)
  9. Structure of the YibK methyltransferase from Haemophilus influenzae (HI0766): a cofactor bound at a site formed by a knot. Lim K, Zhang H, Tempczyk A, Krajewski W, Bonander N, Toedt J, Howard A, Eisenstein E, Herzberg O. Proteins 51 56-67 (2003)
  10. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C. J Mol Biol 289 277-291 (1999)
  11. Structure of protein phosphatase methyltransferase 1 (PPM1), a leucine carboxyl methyltransferase involved in the regulation of protein phosphatase 2A activity. Leulliot N, Quevillon-Cheruel S, Sorel I, Li de La Sierra-Gallay I, Collinet B, Graille M, Blondeau K, Bettache N, Poupon A, Janin J, van Tilbeurgh H. J Biol Chem 279 8351-8358 (2004)
  12. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases. Scavetta RD, Thomas CB, Walsh MA, Szegedi S, Joachimiak A, Gumport RI, Churchill ME. Nucleic Acids Res 28 3950-3961 (2000)
  13. Protein structure alignment using a genetic algorithm. Szustakowski JD, Weng Z. Proteins 38 428-440 (2000)
  14. Structure of a binary complex of HhaI methyltransferase with S-adenosyl-L-methionine formed in the presence of a short non-specific DNA oligonucleotide. O'Gara M, Zhang X, Roberts RJ, Cheng X. J Mol Biol 287 201-209 (1999)
  15. The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Foster PG, Nunes CR, Greene P, Moustakas D, Stroud RM. Structure 11 1609-1620 (2003)
  16. C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Ceccaldi A, Rajavelu A, Champion C, Rampon C, Jurkowska R, Jankevicius G, Sénamaud-Beaufort C, Ponger L, Gagey N, Ali HD, Tost J, Vriz S, Ros S, Dauzonne D, Jeltsch A, Guianvarc'h D, Arimondo PB. Chembiochem 12 1337-1345 (2011)
  17. Crystal structure of a putative type I restriction-modification S subunit from Mycoplasma genitalium. Calisto BM, Pich OQ, Piñol J, Fita I, Querol E, Carpena X. J Mol Biol 351 749-762 (2005)
  18. Synthesis of S-adenosyl-L-homocysteine capture compounds for selective photoinduced isolation of methyltransferases. Dalhoff C, Hüben M, Lenz T, Poot P, Nordhoff E, Köster H, Weinhold E. Chembiochem 11 256-265 (2010)
  19. Crystal structure of protein isoaspartyl methyltransferase: a catalyst for protein repair. Skinner MM, Puvathingal JM, Walter RL, Friedman AM. Structure 8 1189-1201 (2000)
  20. Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Fislage M, Roovers M, Tuszynska I, Bujnicki JM, Droogmans L, Versées W. Nucleic Acids Res 40 5149-5161 (2012)
  21. Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase. Guelorget A, Roovers M, Guérineau V, Barbey C, Li X, Golinelli-Pimpaneau B. Nucleic Acids Res 38 6206-6218 (2010)
  22. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. Huh JH, Kim DJ, Zhao XQ, Li M, Jo YY, Yoon TM, Shin SK, Yong JH, Ryu YW, Yang YY, Suh JW. FEMS Microbiol Lett 238 439-447 (2004)
  23. Crystal structure of MboIIA methyltransferase. Osipiuk J, Walsh MA, Joachimiak A. Nucleic Acids Res 31 5440-5448 (2003)
  24. Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Suzuki Y, Noma A, Suzuki T, Ishitani R, Nureki O. Nucleic Acids Res 37 2910-2925 (2009)
  25. Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies. Gros C, Chauvigné L, Poulet A, Menon Y, Ausseil F, Dufau I, Arimondo PB. Nucleic Acids Res 41 e185 (2013)
  26. Kinetics of methylation and binding of DNA by the EcoRV adenine-N6 methyltransferase. Jeltsch A, Friedrich T, Roth M. J Mol Biol 275 747-758 (1998)
  27. Vesicular stomatitis viruses resistant to the methylase inhibitor sinefungin upregulate RNA synthesis and reveal mutations that affect mRNA cap methylation. Li J, Chorba JS, Whelan SP. J Virol 81 4104-4115 (2007)
  28. Chemical display of thymine residues flipped out by DNA methyltransferases. Serva S, Weinhold E, Roberts RJ, Klimasauskas S. Nucleic Acids Res 26 3473-3479 (1998)
  29. Sinefungin, a natural nucleoside analogue of S-adenosylmethionine, inhibits Streptococcus pneumoniae biofilm growth. Yadav MK, Park SW, Chae SW, Song JJ. Biomed Res Int 2014 156987 (2014)
  30. Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. Kilgore JA, Du X, Melito L, Wei S, Wang C, Chin HG, Posner B, Pradhan S, Ready JM, Williams NS. J Biol Chem 288 19673-19684 (2013)
  31. Structural basis for binding of RNA and cofactor by a KsgA methyltransferase. Tu C, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Structure 17 374-385 (2009)
  32. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase. Szegedi SS, Reich NO, Gumport RI. Nucleic Acids Res 28 3962-3971 (2000)
  33. Quantitative labeling of long plasmid DNA with nanometer precision. Pljevaljcić G, Schmidt F, Scheidig AJ, Lurz R, Weinhold E. Chembiochem 8 1516-1519 (2007)
  34. RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited--bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. Bujnicki JM, Rychlewski L. BMC Bioinformatics 3 10 (2002)
  35. Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi. Watanabe M, Yuzawa H, Handa N, Kobayashi I. Appl Environ Microbiol 72 5367-5375 (2006)
  36. Structural and functional analyses of the archaeal tRNA m2G/m22G10 methyltransferase aTrm11 provide mechanistic insights into site specificity of a tRNA methyltransferase that contains common RNA-binding modules. Hirata A, Nishiyama S, Tamura T, Yamauchi A, Hori H. Nucleic Acids Res 44 6377-6390 (2016)
  37. Structure of Type IIL Restriction-Modification Enzyme MmeI in Complex with DNA Has Implications for Engineering New Specificities. Callahan SJ, Luyten YA, Gupta YK, Wilson GG, Roberts RJ, Morgan RD, Aggarwal AK. PLoS Biol 14 e1002442 (2016)
  38. Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Zhou J, Horton JR, Blumenthal RM, Zhang X, Cheng X. Nat Commun 12 3436 (2021)
  39. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1. Guja KE, Venkataraman K, Yakubovskaya E, Shi H, Mejia E, Hambardjieva E, Karzai AW, Garcia-Diaz M. Nucleic Acids Res 41 7947-7959 (2013)
  40. A theoretical examination of the factors controlling the catalytic efficiency of the DNA-(adenine-N6)-methyltransferase from Thermus aquaticus. Newby ZE, Lau EY, Bruice TC. Proc Natl Acad Sci U S A 99 7922-7927 (2002)
  41. Enzyme-mediated cytosine deamination by the bacterial methyltransferase M.MspI. Zingg JM, Shen JC, Jones PA. Biochem J 332 ( Pt 1) 223-230 (1998)
  42. Circular permutation of DNA cytosine-N4 methyltransferases: in vivo coexistence in the BcnI system and in vitro probing by hybrid formation. Vilkaitis G, Lubys A, Merkiene E, Timinskas A, Janulaitis A, Klimasauskas S. Nucleic Acids Res 30 1547-1557 (2002)
  43. Functional mapping of the EcoRV DNA methyltransferase by random mutagenesis and screening for catalytically inactive mutants. Friedrich T, Roth M, Helm-Kruse S, Jeltsch A. Biol Chem 379 475-480 (1998)
  44. Substrate-dependent dihydroxylation of substituted cyclopentenes: toward the syntheses of carbocyclic sinefungin and noraristeromycin. Jiang MX, Jin B, Gage JL, Priour A, Savela G, Miller MJ. J Org Chem 71 4164-4169 (2006)
  45. Sinefungin resistance of Saccharomyces cerevisiae arising from Sam3 mutations that inactivate the AdoMet transporter or from increased expression of AdoMet synthase plus mRNA cap guanine-N7 methyltransferase. Zheng S, Shuman S, Schwer B. Nucleic Acids Res 35 6895-6903 (2007)
  46. mRNA expression in mouse hypothalamus and basal forebrain during influenza infection: a novel model for sleep regulation. Ding M, Toth LA. Physiol Genomics 24 225-234 (2006)
  47. Cysteine methylation controls radical generation in the Cfr radical AdoMet rRNA methyltransferase. Challand MR, Salvadori E, Driesener RC, Kay CW, Roach PL, Spencer J. PLoS One 8 e67979 (2013)
  48. Repurposing epigenetic inhibitors to target the Clostridioides difficile-specific DNA adenine methyltransferase and sporulation regulator CamA. Zhou J, Horton JR, Yu D, Ren R, Blumenthal RM, Zhang X, Cheng X. Epigenetics 17 970-981 (2022)
  49. Binding of MmeI restriction-modification enzyme to its specific recognition sequence is stimulated by S-adenosyl-L-methionine. Nakonieczna J, Zmijewski JW, Banecki B, Podhajska AJ. Mol Biotechnol 37 127-135 (2007)
  50. High-throughput screening-compatible assays of As(III) S-adenosylmethionine methyltransferase activity. Dong H, Xu W, Pillai JK, Packianathan C, Rosen BP. Anal Biochem 480 67-73 (2015)
  51. 1H and 13C NMR study of the complex formed by copper(II) with the nucleoside antibiotic sinefungin. Cappannelli M, Gaggelli E, Jezowska-Bojczuk M, Molteni E, Mucha A, Porciatti E, Valensin D, Valensin G. J Inorg Biochem 101 1005-1012 (2007)
  52. Binding studies of a putative C. pseudotuberculosis target protein from Vitamin B12 Metabolism. Peinado RDS, Olivier DS, Eberle RJ, de Moraes FR, Amaral MS, Arni RK, Coronado MA. Sci Rep 9 6350 (2019)
  53. The conserved aspartate in motif III of b family AdoMet-dependent DNA methyltransferase is important for methylation. Gopinath A, Kulkarni M, Ahmed I, Chouhan OP, Saikrishnan K. J Biosci 45 10 (2020)
  54. Kinetic Basis of the Bifunctionality of SsoII DNA Methyltransferase. Timofeyeva NA, Ryazanova AY, Norkin MV, Oretskaya TS, Fedorova OS, Kubareva EA. Molecules 23 E1192 (2018)


Related citations provided by authors (3)

  1. A Model for DNA Binding and Enzyme Action Derived from Crystallographic Studies of the TaqI N6-Adenine-Methyltransferase. Schluckebier G, Labahn J, Granzin J, Schildkraut I, Saenger W Gene 157 131- (1995)
  2. Universal Catalytic Domain Structure of Adomet-Dependent Methyltransferases. Schluckebier G, O'Gara M, Saenger W, Cheng X J. Mol. Biol. 247 16- (1995)
  3. Three-Dimensional Structure of the Adenine-Specific DNA Methyltransferase M.Taq I in Complex with the Cofactor S-Adenosylmethionine. Labahn J, Granzin J, Schluckebier G, Robinson DP, Jack WE, Schildkraut I, Saenger W Proc. Natl. Acad. Sci. U.S.A. 91 10957- (1994)