1ank Citations

The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP.

Proteins 19 183-98 (1994)
Cited: 100 times
EuropePMC logo PMID: 7937733

Abstract

The structure of E. coli adenylate kinase with bound AMP and AMPPNP at 2.0 A resolution is presented. The protein crystallizes in space group C2 with two molecules in the asymmetric unit, and has been refined to an R factor of 20.1% and an Rfree of 31.6%. In the present structure, the protein is in the closed (globular) form with the large flexible lid domain covering the AMPPNP molecule. Within the protein, AMP and AMPPNP, and ATP analog, occupy the AMP and ATP sites respectively, which had been suggested by the most recent crystal structure of E. coli adenylate kinase with Ap5A bound (Müller and Schulz, 1992, ref. 1) and prior fluorescence studies (Liang et al., 1991, ref. 2). The binding of substrates and the positions of the active site residues are compared between the present structure and the E. coli adenylate kinase/Ap5A structure. We failed to detect a peak in the density map corresponding to the Mg2+ ion which is required for catalysis, and its absence has been attributed to the use of ammonium sulfate in the crystallization solution. Finally, a comparison is made between the present structure and the structure of the heavy chain of muscle myosin.

Reviews - 1ank mentioned but not cited (2)

  1. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M. Microbiol Mol Biol Rev 81 e00040-16 (2017)
  2. Conformations of macromolecules and their complexes from heterogeneous datasets. Schwander P, Fung R, Ourmazd A. Philos Trans R Soc Lond B Biol Sci 369 20130567 (2014)

Articles - 1ank mentioned but not cited (21)

  1. Illuminating the mechanistic roles of enzyme conformational dynamics. Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, Chu JW, Yang H. Proc Natl Acad Sci U S A 104 18055-18060 (2007)
  2. Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open<-->closed transitions. Beckstein O, Denning EJ, Perilla JR, Woolf TB. J Mol Biol 394 160-176 (2009)
  3. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Sternke M, Tripp KW, Barrick D. Proc Natl Acad Sci U S A 116 11275-11284 (2019)
  4. Probing protein quinary interactions by in-cell nuclear magnetic resonance spectroscopy. Majumder S, Xue J, DeMott CM, Reverdatto S, Burz DS, Shekhtman A. Biochemistry 54 2727-2738 (2015)
  5. Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif. Pezza RJ, Villarreal MA, Montich GG, Argaraña CE. Nucleic Acids Res 30 4700-4708 (2002)
  6. A novel and efficient tool for locating and characterizing protein cavities and binding sites. Tripathi A, Kellogg GE. Proteins 78 825-842 (2010)
  7. Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes. Kantarci-Carsibasi N, Haliloglu T, Doruker P. Biophys J 95 5862-5873 (2008)
  8. Prediction of protein thermostability with a direction- and distance-dependent knowledge-based potential. Hoppe C, Schomburg D. Protein Sci 14 2682-2692 (2005)
  9. Molecular mechanism of ATP versus GTP selectivity of adenylate kinase. Rogne P, Rosselin M, Grundström C, Hedberg C, Sauer UH, Wolf-Watz M. Proc Natl Acad Sci U S A 115 3012-3017 (2018)
  10. The energy profiles of atomic conformational transition intermediates of adenylate kinase. Feng Y, Yang L, Kloczkowski A, Jernigan RL. Proteins 77 551-558 (2009)
  11. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies. Drakou CE, Malekkou A, Hayes JM, Lederer CW, Leonidas DD, Oikonomakos NG, Lamond AI, Santama N, Zographos SE. Proteins 80 206-220 (2012)
  12. Direct Mg(2+) binding activates adenylate kinase from Escherichia coli. Tan YW, Hanson JA, Yang H. J Biol Chem 284 3306-3313 (2009)
  13. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method. Molloy K, Shehu A. BMC Struct Biol 13 Suppl 1 S8 (2013)
  14. Protein flexibility: coordinate uncertainties and interpretation of structural differences. Rashin AA, Rashin AH, Jernigan RL. Acta Crystallogr D Biol Crystallogr 65 1140-1161 (2009)
  15. Diversity of function-related conformational changes in proteins: coordinate uncertainty, fragment rigidity, and stability. Rashin AA, Rashin AH, Jernigan RL. Biochemistry 49 5683-5704 (2010)
  16. Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions. Ojeda-May P, Mushtaq AU, Rogne P, Verma A, Ovchinnikov V, Grundström C, Dulko-Smith B, Sauer UH, Wolf-Watz M, Nam K. Biochemistry 60 2246-2258 (2021)
  17. Deprotonated imidodiphosphate in AMPPNP-containing protein structures. Dauter M, Dauter Z. Acta Crystallogr D Biol Crystallogr 67 1073-1075 (2011)
  18. Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method. Sherman DB, Zhang S, Pitner JB, Tropsha A. Proteins 56 828-838 (2004)
  19. Stochastic protein multimerization, activity, and fitness. Hagner K, Setayeshgar S, Lynch M. Phys Rev E 98 062401 (2018)
  20. Rational Design of Adenylate Kinase Thermostability through Coevolution and Sequence Divergence Analysis. Chang J, Zhang C, Cheng H, Tan YW. Int J Mol Sci 22 2768 (2021)
  21. Why are large conformational changes well described by harmonic normal modes? Dehouck Y, Bastolla U. Biophys J 120 5343-5354 (2021)


Reviews citing this publication (2)

Articles citing this publication (75)

  1. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D. Nat Struct Mol Biol 11 945-949 (2004)
  2. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Müller CW, Schlauderer GJ, Reinstein J, Schulz GE. Structure 4 147-156 (1996)
  3. Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. Maragakis P, Karplus M. J Mol Biol 352 807-822 (2005)
  4. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Vonrhein C, Schlauderer GJ, Schulz GE. Structure 3 483-490 (1995)
  5. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Smith CA, Rayment I. Biophys J 70 1590-1602 (1996)
  6. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data. de Groot BL, Hayward S, van Aalten DM, Amadei A, Berendsen HJ. Proteins 31 116-127 (1998)
  7. High-resolution structures of adenylate kinase from yeast ligated with inhibitor Ap5A, showing the pathway of phosphoryl transfer. Abele U, Schulz GE. Protein Sci 4 1262-1271 (1995)
  8. Structure of a tRNA repair enzyme and molecular biology workhorse: T4 polynucleotide kinase. Galburt EA, Pelletier J, Wilson G, Stoddard BL. Structure 10 1249-1260 (2002)
  9. Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Berry MB, Phillips GN. Proteins 32 276-288 (1998)
  10. Structural principles governing domain motions in proteins. Hayward S. Proteins 36 425-435 (1999)
  11. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. Zeleznikar RJ, Dzeja PP, Goldberg ND. J Biol Chem 270 7311-7319 (1995)
  12. X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 A resolution. Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M. J Mol Biol 311 87-100 (2001)
  13. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism. Lu Q, Inouye M. Proc Natl Acad Sci U S A 93 5720-5725 (1996)
  14. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data. Temiz NA, Meirovitch E, Bahar I. Proteins 57 468-480 (2004)
  15. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Ostermann N, Schlichting I, Brundiers R, Konrad M, Reinstein J, Veit T, Goody RS, Lavie A. Structure 8 629-642 (2000)
  16. An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins. Sowdhamini R, Blundell TL. Protein Sci 4 506-520 (1995)
  17. Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements. Hayward S. J Mol Biol 339 1001-1021 (2004)
  18. Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus. Prasad GS, Stura EA, McRee DE, Laco GS, Hasselkus-Light C, Elder JH, Stout CD. Protein Sci 5 2429-2437 (1996)
  19. Large amplitude twisting motions of an interdomain hinge: a disulfide trapping study of the galactose-glucose binding protein. Careaga CL, Sutherland J, Sabeti J, Falke JJ. Biochemistry 34 3048-3055 (1995)
  20. Structural basis for efficient phosphorylation of 3'-azidothymidine monophosphate by Escherichia coli thymidylate kinase. Lavie A, Ostermann N, Brundiers R, Goody RS, Reinstein J, Konrad M, Schlichting I. Proc Natl Acad Sci U S A 95 14045-14050 (1998)
  21. Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Haney P, Konisky J, Koretke KK, Luthey-Schulten Z, Wolynes PG. Proteins 28 117-130 (1997)
  22. Structural characterization of the closed conformation of mouse guanylate kinase. Sekulic N, Shuvalova L, Spangenberg O, Konrad M, Lavie A. J Biol Chem 277 30236-30243 (2002)
  23. The three-dimensional structure of shikimate kinase. Krell T, Coggins JR, Lapthorn AJ. J Mol Biol 278 983-997 (1998)
  24. A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from bacillus subtilis. Weber CH, Park YS, Sanker S, Kent C, Ludwig ML. Structure 7 1113-1124 (1999)
  25. Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase. Liu R, Ström AL, Zhai J, Gal J, Bao S, Gong W, Zhu H. Int J Biochem Cell Biol 41 1371-1380 (2009)
  26. The three-dimensional structure of thymidine kinase from herpes simplex virus type 1. Wild K, Bohner T, Aubry A, Folkers G, Schulz GE. FEBS Lett 368 289-292 (1995)
  27. Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. Criswell AR, Bae E, Stec B, Konisky J, Phillips GN. J Mol Biol 330 1087-1099 (2003)
  28. Sampling protein conformations and pathways. Lei M, Zavodszky MI, Kuhn LA, Thorpe MF. J Comput Chem 25 1133-1148 (2004)
  29. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy. Pelz B, Žoldák G, Zeller F, Zacharias M, Rief M. Nat Commun 7 10848 (2016)
  30. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation. Tugarinov V, Shapiro YE, Liang Z, Freed JH, Meirovitch E. J Mol Biol 315 155-170 (2002)
  31. Protein folding and function: the N-terminal fragment in adenylate kinase. Kumar S, Sham YY, Tsai CJ, Nussinov R. Biophys J 80 2439-2454 (2001)
  32. Structural basis for ligand binding to an enzyme by a conformational selection pathway. Kovermann M, Grundström C, Sauer-Eriksson AE, Sauer UH, Wolf-Watz M. Proc Natl Acad Sci U S A 114 6298-6303 (2017)
  33. Crystal structure of ADP/AMP complex of Escherichia coli adenylate kinase. Berry MB, Bae E, Bilderback TR, Glaser M, Phillips GN. Proteins 62 555-556 (2006)
  34. Recognition of DNA substrates by T4 bacteriophage polynucleotide kinase. Eastberg JH, Pelletier J, Stoddard BL. Nucleic Acids Res 32 653-660 (2004)
  35. Mapping the Dynamics Landscape of Conformational Transitions in Enzyme: The Adenylate Kinase Case. Li D, Liu MS, Ji B. Biophys J 109 647-660 (2015)
  36. The crystal structure of Mycobacterium tuberculosis adenylate kinase in complex with two molecules of ADP and Mg2+ supports an associative mechanism for phosphoryl transfer. Bellinzoni M, Haouz A, Graña M, Munier-Lehmann H, Shepard W, Alzari PM. Protein Sci 15 1489-1493 (2006)
  37. 2.0 A resolution structure of a ternary complex of pig muscle phosphoglycerate kinase containing 3-phospho-D-glycerate and the nucleotide Mn adenylylimidodiphosphate. May A, Vas M, Harlos K, Blake C. Proteins 24 292-303 (1996)
  38. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Krishnamurthy H, Lou H, Kimple A, Vieille C, Cukier RI. Proteins 58 88-100 (2005)
  39. Towards a mechanism of AMP-substrate inhibition in adenylate kinase from Escherichia coli. Sinev MA, Sineva EV, Ittah V, Haas E. FEBS Lett 397 273-276 (1996)
  40. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation. Sherrer RL, O'Donoghue P, Söll D. Nucleic Acids Res 36 1247-1259 (2008)
  41. Essential dynamics sampling study of adenylate kinase: comparison to citrate synthase and implication for the hinge and shear mechanisms of domain motions. Snow C, Qi G, Hayward S. Proteins 67 325-337 (2007)
  42. Modulation of functionally significant conformational equilibria in adenylate kinase by high concentrations of trimethylamine oxide attributed to volume exclusion. Nagarajan S, Amir D, Grupi A, Goldenberg DP, Minton AP, Haas E. Biophys J 100 2991-2999 (2011)
  43. Crystal structure of bacteriophage T4 deoxynucleotide kinase with its substrates dGMP and ATP. Teplyakov A, Sebastiao P, Obmolova G, Perrakis A, Brush GS, Bessman MJ, Wilson KS. EMBO J 15 3487-3497 (1996)
  44. Second-harmonic generation for studying structural motion of biological molecules in real time and space. Salafsky JS. Phys Chem Chem Phys 9 5704-5711 (2007)
  45. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Proteins 56 539-555 (2004)
  46. Mycobacterium tuberculosis thymidylate kinase: structural studies of intermediates along the reaction pathway. Fioravanti E, Haouz A, Ursby T, Munier-Lehmann H, Delarue M, Bourgeois D. J Mol Biol 327 1077-1092 (2003)
  47. Stability, activity and structure of adenylate kinase mutants. Spuergin P, Abele U, Schulz GE. Eur J Biochem 231 405-413 (1995)
  48. In the multi-domain protein adenylate kinase, domain insertion facilitates cooperative folding while accommodating function at domain interfaces. Giri Rao VV, Gosavi S. PLoS Comput Biol 10 e1003938 (2014)
  49. The adenylate kinases from a mesophilic and three thermophilic methanogenic members of the Archaea. Rusnak P, Haney P, Konisky J. J Bacteriol 177 2977-2981 (1995)
  50. The second metal-binding site of 70 kDa heat-shock protein is essential for ADP binding, ATP hydrolysis and ATP synthesis. Wu X, Yano M, Washida H, Kido H. Biochem J 378 793-799 (2004)
  51. Effect of ligand binding on a protein with a complex folding landscape. Mazal H, Aviram H, Riven I, Haran G. Phys Chem Chem Phys 20 3054-3062 (2018)
  52. Molecular dynamics studies on the conformational transitions of adenylate kinase: a computational evidence for the conformational selection mechanism. Ping J, Hao P, Li YX, Wang JF. Biomed Res Int 2013 628536 (2013)
  53. Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii. Konisky J, Michels PC, Clark DS. Appl Environ Microbiol 61 2762-2764 (1995)
  54. Refolding of urea-denatured adenylate kinase. Zhang Hj, Sheng XR, Pan XM, Zhou JM. Biochem J 333 ( Pt 2) 401-405 (1998)
  55. Structure of a tRNA-dependent kinase essential for selenocysteine decoding. Araiso Y, Sherrer RL, Ishitani R, Ho JM, Söll D, Nureki O. Proc Natl Acad Sci U S A 106 16215-16220 (2009)
  56. The influence of proline isomerization and off-pathway intermediates on the folding mechanism of eukaryotic UMP/CMP Kinase. Lorenz T, Reinstein J. J Mol Biol 381 443-455 (2008)
  57. Crystal structure of human adenylate kinase 4 (L171P) suggests the role of hinge region in protein domain motion. Liu R, Xu H, Wei Z, Wang Y, Lin Y, Gong W. Biochem Biophys Res Commun 379 92-97 (2009)
  58. A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774. Gavel OY, Bursakov SA, Di Rocco G, Trincão J, Pickering IJ, George GN, Calvete JJ, Shnyrov VL, Brondino CD, Pereira AS, Lampreia J, Tavares P, Moura JJ, Moura I. J Inorg Biochem 102 1380-1395 (2008)
  59. Modeling the transmembrane arrangement of the uncoupling protein UCP1 and topological considerations of the nucleotide-binding site. Ledesma A, de Lacoba MG, Arechaga I, Rial E. J Bioenerg Biomembr 34 473-486 (2002)
  60. A new algorithm for construction of coarse-grained sites of large biomolecules. Li M, Zhang JZ, Xia F. J Comput Chem 37 795-804 (2016)
  61. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q, Ernst SE, Ostedgaard LS, Shah VS, Ver Heul AR, Welsh MJ, Randak CO. J Biol Chem 290 14140-14153 (2015)
  62. A mutation in CFTR modifies the effects of the adenylate kinase inhibitor Ap5A on channel gating. Dong Q, Randak CO, Welsh MJ. Biophys J 95 5178-5185 (2008)
  63. ATP and AMP mutually influence their interaction with the ATP-binding cassette (ABC) adenylate kinase cystic fibrosis transmembrane conductance regulator (CFTR) at separate binding sites. Randak CO, Dong Q, Ver Heul AR, Elcock AH, Welsh MJ. J Biol Chem 288 27692-27701 (2013)
  64. Electrostatic interactions determine entrance/release order of substrates in the catalytic cycle of adenylate kinase. Ye C, Ding C, Ma R, Wang J, Zhang Z. Proteins 87 337-347 (2019)
  65. Elucidation of Mg²⁺ binding activity of adenylate kinase from Mycobacterium tuberculosis H₃₇Rv using fluorescence studies. Meena LS, Dhakate SR, Sahare PD. Biotechnol Appl Biochem 59 429-436 (2012)
  66. Quantifying the Intrinsic Conformation Energy Landscape Topography of Proteins with Large-Scale Open-Closed Transition. Chu WT, Wang J. ACS Cent Sci 4 1015-1022 (2018)
  67. Structural Basis for GTP versus ATP Selectivity in the NMP Kinase AK3. Rogne P, Dulko-Smith B, Goodman J, Rosselin M, Grundström C, Hedberg C, Nam K, Sauer-Eriksson AE, Wolf-Watz M. Biochemistry 59 3570-3581 (2020)
  68. Conformational and functional significance of residue proline 17 in chicken muscle adenylate kinase. Sheng X, Pan X, Wang C, Zhang Y, Jing G. FEBS Lett 508 318-322 (2001)
  69. Demonstration of phosphoryl group transfer indicates that the ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) exhibits adenylate kinase activity. Randak CO, Ver Heul AR, Welsh MJ. J Biol Chem 287 36105-36110 (2012)
  70. Allosteric communication between ligand binding domains modulates substrate inhibition in adenylate kinase. Scheerer D, Adkar BV, Bhattacharyya S, Levy D, Iljina M, Riven I, Dym O, Haran G, Shakhnovich EI. Proc Natl Acad Sci U S A 120 e2219855120 (2023)
  71. Two-bead polarizable water models combined with a two-bead multipole force field (TMFF) for coarse-grained simulation of proteins. Li M, Zhang JZ. Phys Chem Chem Phys 19 7410-7419 (2017)
  72. Molecular docking investigation of the amantadine binding to the enzymes upregulated or downregulated in Parkinson's disease. Ionescu MI. ADMET DMPK 8 149-175 (2020)
  73. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. J Chem Inf Model 64 150-163 (2024)
  74. Molecular Docking Evaluation of (E)-5-arylidene-2-thioxothiazolidin-4-one Derivatives as Selective Bacterial Adenylate Kinase Inhibitors. Ionescu MI, Oniga O. Molecules 23 E1076 (2018)
  75. The polymer basis of kinetics and equilibria of enzymes: the accessible-volume origin of entropy changes in a class Abeta-lactamase. Rubinson KA. J Protein Chem 17 771-787 (1998)


Related citations provided by authors (1)

  1. Crystallization and Preliminary X-Ray Analysis of Escherichia Coli Adenylate Kinase. Althoff S, Zambrowicz B, Liang P, Glaser M, Phillips Jr GN J. Mol. Biol. 199 665- (1988)