1am7 Citations

Crystal structure of the lysozyme from bacteriophage lambda and its relationship with V and C-type lysozymes.

J Mol Biol 276 151-64 (1998)
Cited: 35 times
EuropePMC logo PMID: 9514719

Abstract

Like other lysozymes, the bacteriophage lambda lysozyme is involved in the digestion of bacterial walls. This enzyme is remarkable in that its mechanism of action is different from the classical lysozyme's mechanism. From the point of view of protein evolution, it shows features of lysozymes from different classes. The crystal structure of the enzyme in which all tryptophan residues have been replaced by aza-tryptophan has been solved by X-ray crystallography at 2.3 A using a combination of multiple isomorphous replacement, non-crystallographic symmetry averaging and density modification techniques. There are three molecules in the asymmetric unit. The characteristic structural elements of lysozymes are conserved: each molecule is organized in two domains connected by a helix and the essential catalytic residue (Glu19) is located in the depth of a cleft between the two domains. This cleft shows an open conformation in two of the independent molecules, while access to the cavity is much more restricted in the last one. A structural alignment with T4 lysozyme and hen egg white lysozyme allows us to superpose about 60 C alpha atoms with a rms distance close to 2 A. The best alignments concern the helix preceding the catalytic residue, some parts of the beta sheets and the helix joining the two domains. The results of sequence alignments with the V and C lysozymes, in which weak local similarities had been detected, are compared with the structural results.

Reviews - 1am7 mentioned but not cited (2)

  1. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Dik DA, Marous DR, Fisher JF, Mobashery S. Crit. Rev. Biochem. Mol. Biol. 52 503-542 (2017)
  2. Decoding an Amino Acid Sequence to Extract Information on Protein Folding. Kikuchi T. Molecules 27 3020 (2022)

Articles - 1am7 mentioned but not cited (8)

  1. Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. Wang LP, McKiernan KA, Gomes J, Beauchamp KA, Head-Gordon T, Rice JE, Swope WC, Martínez TJ, Pande VS. J Phys Chem B 121 4023-4039 (2017)
  2. Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs. Wohlkönig A, Huet J, Looze Y, Wintjens R. PLoS ONE 5 e15388 (2010)
  3. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail. Xiang Y, Morais MC, Cohen DN, Bowman VD, Anderson DL, Rossmann MG. Proc. Natl. Acad. Sci. U.S.A. 105 9552-9557 (2008)
  4. Predicting protein function from structure: unique structural features of proteases. Stawiski EW, Baucom AE, Lohr SC, Gregoret LM. Proc. Natl. Acad. Sci. U.S.A. 97 3954-3958 (2000)
  5. Crystal Structures of the SpoIID Lytic Transglycosylases Essential for Bacterial Sporulation. Nocadello S, Minasov G, Shuvalova LS, Dubrovska I, Sabini E, Anderson WF. J. Biol. Chem. 291 14915-14926 (2016)
  6. Prediction of four kinds of simple supersecondary structures in protein by using chemical shifts. Yonge F. ScientificWorldJournal 2014 978503 (2014)
  7. An NMR and MD study of complexes of bacteriophage lambda lysozyme with tetra- and hexa-N-acetylchitohexaose. Turupcu A, Bowen AM, Di Paolo A, Matagne A, Oostenbrink C, Redfield C, Smith LJ. Proteins 88 82-93 (2020)
  8. Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion. Liu P, Dong X, Cao X, Xie Q, Huang X, Jiang J, Dai H, Tang Z, Lin Y, Feng S, Luo K. Microbiol Spectr e0451522 (2023)


Reviews citing this publication (3)

  1. Holins: the protein clocks of bacteriophage infections. Wang IN, Smith DL, Young R. Annu. Rev. Microbiol. 54 799-825 (2000)
  2. Bacteriophage lambda: Early pioneer and still relevant. Casjens SR, Hendrix RW. Virology 479-480 310-330 (2015)
  3. Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. Feiss M, Young R, Ramsey J, Adhya S, Georgopoulos C, Hendrix RW, Hatfull GF, Gilcrease EB, Casjens SR. Microbiol Mol Biol Rev 86 e0012421 (2022)

Articles citing this publication (22)

  1. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S. Proc. Natl. Acad. Sci. U.S.A. 104 5348-5353 (2007)
  2. Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. Kropinski AM. J. Bacteriol. 182 6066-6074 (2000)
  3. Sizing the holin lesion with an endolysin-beta-galactosidase fusion. Wang IN, Deaton J, Young R. J. Bacteriol. 185 779-787 (2003)
  4. Genetic and biochemical analysis of dimer and oligomer interactions of the lambda S holin. Gründling A, Bläsi U, Young R. J. Bacteriol. 182 6082-6090 (2000)
  5. Dimerization between the holin and holin inhibitor of phage lambda. Gründling A, Smith DL, Bläsi U, Young R. J. Bacteriol. 182 6075-6081 (2000)
  6. The holin of bacteriophage lambda forms rings with large diameter. Savva CG, Dewey JS, Deaton J, White RL, Struck DK, Holzenburg A, Young R. Mol. Microbiol. 69 784-793 (2008)
  7. Crystal structure of Tapes japonica Lysozyme with substrate analogue: structural basis of the catalytic mechanism and manifestation of its chitinase activity accompanied by quaternary structural change. Goto T, Abe Y, Kakuta Y, Takeshita K, Imoto T, Ueda T. J. Biol. Chem. 282 27459-27467 (2007)
  8. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Briers Y, Schmelcher M, Loessner MJ, Hendrix J, Engelborghs Y, Volckaert G, Lavigne R. Biochem. Biophys. Res. Commun. 383 187-191 (2009)
  9. Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. van Straaten KE, Dijkstra BW, Vollmer W, Thunnissen AM. J. Mol. Biol. 352 1068-1080 (2005)
  10. Identification of dynamic structural motifs involved in peptidoglycan glycosyltransfer. Lovering AL, De Castro L, Strynadka NC. J. Mol. Biol. 383 167-177 (2008)
  11. Identification and functional characterization of a novel barnacle cement protein. Urushida Y, Nakano M, Matsuda S, Inoue N, Kanai S, Kitamura N, Nishino T, Kamino K. FEBS J. 274 4336-4346 (2007)
  12. A Study of Ion-Neutral Collision Cross Section Values for Low Charge States of Peptides, Proteins, and Peptide/Protein Complexes. Fernandez-Lima FA, Blase RC, Russell DH. Int J Mass Spectrom 298 111-118 (2010)
  13. Role of disulfide bonds in goose-type lysozyme. Kawamura S, Ohkuma M, Chijiiwa Y, Kohno D, Nakagawa H, Hirakawa H, Kuhara S, Torikata T. FEBS J. 275 2818-2830 (2008)
  14. Crystal structures of a T4-lysozyme duplication-extension mutant demonstrate that the highly conserved beta-sheet region has low intrinsic folding propensity. Sagermann M, Matthews BW. J. Mol. Biol. 316 931-940 (2002)
  15. Histidine modification and mutagenesis point to the involvement of a large conformational change in the mechanism of action of phage lambda lysozyme. Evrard C, Fastrez J, Soumillion P. FEBS Lett. 460 442-446 (1999)
  16. Protein crystallization - is it rocket science? DeLucas LJ. Drug Discov. Today 6 734-744 (2001)
  17. Backbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda. Di Paolo A, Duval V, Matagne A, Redfield C. Biomol NMR Assign 4 111-114 (2010)
  18. The dynamics of lysozyme from bacteriophage lambda in solution probed by NMR and MD simulations. Smith LJ, Bowen AM, Di Paolo A, Matagne A, Redfield C. Chembiochem 14 1780-1788 (2013)
  19. Origin of a Core Bacterial Gene via Co-option and Detoxification of a Phage Lysin. Randich AM, Kysela DT, Morlot C, Brun YV. Curr Biol 29 1634-1646.e6 (2019)
  20. [The properties of the Pseudomonas aeruginosa bacteriophage phiPMG1]. Chertkov OV, Chuprov-Netochin RN, Legotskiĭ SV, Sykilinda NN, Shneider MM, Ivanova MA, Pleteneva EA, Shaburova OV, Burkal'tseva MB, Kostriukova ES, Lazarev VN, Kliachko NL, Miroshnikov KA. Bioorg. Khim. 37 807-814 (2011)
  21. Characterization of the flexible lip regions in bacteriophage lambda lysozyme using MD simulations. Smith LJ, van Gunsteren WF, Hansen N. Eur. Biophys. J. 44 235-247 (2015)
  22. Engineered regulation of lysozyme by the SH3-CB1 binding interaction. Pham E, Truong K. Protein Eng. Des. Sel. 25 307-311 (2012)


Related citations provided by authors (6)