1ajj Citations

Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module.

Nature 388 691-3 (1997)
Cited: 226 times
EuropePMC logo PMID: 9262405

Abstract

The low-density lipoprotein receptor (LDLR) is responsible for the uptake of cholesterol-containing lipoprotein particles into cells. The amino-terminal region of LDLR, which consists of seven tandemly repeated, approximately 40-amino-acid, cysteine-rich modules (LDL-A modules), mediates binding to lipoproteins. LDL-A modules are biologically ubiquitous domains, found in over 100 proteins in the sequence database. The structure of ligand-binding repeat 5 (LR5) of the LDLR, determined to 1.7 A resolution by X-ray crystallography and presented here, contains a calcium ion coordinated by acidic residues that lie at the carboxy-terminal end of the domain and are conserved among LDL-A modules. Naturally occurring point mutations found in patients with the disease familial hypercholesterolaemia alter residues that directly coordinate Ca2+ or that serve as scaffolding residues of LR5.

Reviews - 1ajj mentioned but not cited (7)

  1. Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers. Blacklow SC. Curr. Opin. Struct. Biol. 17 419-426 (2007)
  2. Peptide aptamers: development and applications. Reverdatto S, Burz DS, Shekhtman A. Curr Top Med Chem 15 1082-1101 (2015)
  3. In vitro-engineered non-antibody protein therapeutics. Simeon R, Chen Z. Protein Cell 9 3-14 (2018)
  4. Miniproteins as a Powerful Modality in Drug Development. Crook ZR, Nairn NW, Olson JM. Trends Biochem Sci 45 332-346 (2020)
  5. Does human homology reduce the potential immunogenicity of non-antibody scaffolds? De Groot AS, Khan S, Mattei AE, Lelias S, Martin WD. Front Immunol 14 1215939 (2023)
  6. Endoplasmic reticulum quality control in lipoprotein metabolism. Koerner CM, Roberts BS, Neher SB. Mol. Cell. Endocrinol. 498 110547 (2019)
  7. Protein scaffolds: antibody alternatives for cancer diagnosis and therapy. Luo R, Liu H, Cheng Z. RSC Chem Biol 3 830-847 (2022)

Articles - 1ajj mentioned but not cited (29)

  1. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Zhang C, Liu S, Zhou H, Zhou Y. Protein Sci 13 400-411 (2004)
  2. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. Hewat EA, Neumann E, Conway JF, Moser R, Ronacher B, Marlovits TC, Blaas D. EMBO J. 19 6317-6325 (2000)
  3. Differential geometry based solvation model I: Eulerian formulation. Chen Z, Baker NA, Wei GW. J Comput Phys 229 8231-8258 (2010)
  4. A statistical mechanical method to optimize energy functions for protein folding. Bastolla U, Vendruscolo M, Knapp EW. Proc. Natl. Acad. Sci. U.S.A. 97 3977-3981 (2000)
  5. Differential geometry based solvation model II: Lagrangian formulation. Chen Z, Baker NA, Wei GW. J Math Biol 63 1139-1200 (2011)
  6. MIBPB: a software package for electrostatic analysis. Chen D, Chen Z, Chen C, Geng W, Wei GW. J Comput Chem 32 756-770 (2011)
  7. Multiscale molecular dynamics using the matched interface and boundary method. Geng W, Wei GW. J Comput Phys 230 435-457 (2011)
  8. Variational multiscale models for charge transport. Wei GW, Zheng Q, Chen Z, Xia K. SIAM Rev Soc Ind Appl Math 54 699-754 (2012)
  9. Second-order Poisson Nernst-Planck solver for ion channel transport. Zheng Q, Chen D, Wei GW. J Comput Phys 230 5239-5262 (2011)
  10. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats: insight from the nmr structure of the 10th complement type repeat domain alone and in complex with gentamicin. Dagil R, O'Shea C, Nykjær A, Bonvin AM, Kragelund BB. J. Biol. Chem. 288 4424-4435 (2013)
  11. Biomolecular surface construction by PDE transform. Zheng Q, Yang S, Wei GW. Int J Numer Method Biomed Eng 28 291-316 (2012)
  12. The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation. Kong RC, Petrie EJ, Mohanty B, Ling J, Lee JC, Gooley PR, Bathgate RA. J. Biol. Chem. 288 28138-28151 (2013)
  13. The structure, dynamics, and binding of the LA45 module pair of the low-density lipoprotein receptor suggest an important role for LA4 in ligand release. Guttman M, Komives EA. Biochemistry 50 11001-11008 (2011)
  14. Role of an intramolecular contact on lipoprotein uptake by the LDL receptor. Zhao Z, Michaely P. Biochim. Biophys. Acta 1811 397-408 (2011)
  15. Identification of the human rhinovirus serotype 1A binding site on the murine low-density lipoprotein receptor by using human-mouse receptor chimeras. Herdy B, Snyers L, Reithmayer M, Hinterdorfer P, Blaas D. J. Virol. 78 6766-6774 (2004)
  16. A free-rotating and self-avoiding chain model for deriving statistical potentials based on protein structures. Cheng J, Pei J, Lai L. Biophys J 92 3868-3877 (2007)
  17. A super-Gaussian Poisson-Boltzmann model for electrostatic free energy calculation: smooth dielectric distribution for protein cavities and in both water and vacuum states. Hazra T, Ahmed Ullah S, Wang S, Alexov E, Zhao S. J Math Biol 79 631-672 (2019)
  18. Association between foldability and aggregation propensity in small disulfide-rich proteins. Fraga H, Graña-Montes R, Illa R, Covaleda G, Ventura S. Antioxid. Redox Signal. 21 368-383 (2014)
  19. Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy. Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C. Med Sci Monit 24 5668-5688 (2018)
  20. Exploring the complete mutational space of the LDL receptor LA5 domain using molecular dynamics: linking SNPs with disease phenotypes in familial hypercholesterolemia. Angarica VE, Orozco M, Sancho J. Hum. Mol. Genet. 25 1233-1246 (2016)
  21. Ca2+ binding to complement-type repeat domains 5 and 6 from the low-density lipoprotein receptor-related protein. Andersen OM, Vorum H, Honoré B, Thøgersen HC. BMC Biochem. 4 7 (2003)
  22. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems. Xia K, Wei GW. Comput Math Appl 68 719-745 (2014)
  23. Overall Abstracts of the Fourth International Symposium on Molecular Insect Science. May 28-June 2, 2002. Tucson, Arizona, USA. J. Insect Sci. 2 17 (2002)
  24. Atomic hydration potentials using a Monte Carlo Reference State (MCRS) for protein solvation modeling. Rakhmanov SV, Makeev VJ. BMC Struct Biol 7 19 (2007)
  25. Switch region for pathogenic structural change in conformational disease and its prediction. Liu X, Zhao YP. PLoS ONE 5 e8441 (2010)
  26. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  27. Differences in Recycling of Apolipoprotein E3 and E4-LDL Receptor Complexes-A Mechanistic Hypothesis. Kim M, Bezprozvanny I. Int J Mol Sci 22 5030 (2021)
  28. Enriched gradient recovery for interface solutions of the Poisson-Boltzmann equation. Borleske G, Zhou YC. J Comput Phys 421 109725 (2020)
  29. Synthesis of multi-module low density lipoprotein receptor class A domains with acid labile cyanopyridiniumylides (CyPY) as aspartic acid masking groups. Neumann K, Vujinovic A, Kamara S, Zwicky A, Baldauf S, Bode JW. RSC Chem Biol 4 292-299 (2023)


Reviews citing this publication (42)

  1. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. Physiol. Rev. 88 887-918 (2008)
  2. Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI. Krieger M. Annu. Rev. Biochem. 68 523-558 (1999)
  3. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Moestrup SK, Møller HJ. Ann. Med. 36 347-354 (2004)
  4. Nonvertebrate hemoglobins: functions and molecular adaptations. Weber RE, Vinogradov SN. Physiol. Rev. 81 569-628 (2001)
  5. Anaplastic lymphoma kinase: signalling in development and disease. Palmer RH, Vernersson E, Grabbe C, Hallberg B. Biochem. J. 420 345-361 (2009)
  6. The mammalian low-density lipoprotein receptor family. Hussain MM, Strickland DK, Bakillah A. Annu. Rev. Nutr. 19 141-172 (1999)
  7. Structural models of human apolipoprotein A-I: a critical analysis and review. Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW. Biochim. Biophys. Acta 1531 4-46 (2001)
  8. Structure and physiologic function of the low-density lipoprotein receptor. Jeon H, Blacklow SC. Annu. Rev. Biochem. 74 535-562 (2005)
  9. Anaplastic lymphoma kinase proteins in growth control and cancer. Pulford K, Morris SW, Turturro F. J. Cell. Physiol. 199 330-358 (2004)
  10. The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Nykjaer A, Willnow TE. Trends Cell Biol. 12 273-280 (2002)
  11. Endocytic receptors in the renal proximal tubule. Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Physiology (Bethesda) 27 223-236 (2012)
  12. Lipoprotein receptors: new roles for ancient proteins. Willnow TE, Nykjaer A, Herz J. Nat. Cell Biol. 1 E157-62 (1999)
  13. Receptor-mediated endocytosis in renal proximal tubule. Christensen EI, Verroust PJ, Nielsen R. Pflugers Arch. 458 1039-1048 (2009)
  14. Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Moestrup SK, Verroust PJ. Annu. Rev. Nutr. 21 407-428 (2001)
  15. Molecular basis of exchangeable apolipoprotein function. Narayanaswami V, Ryan RO. Biochim. Biophys. Acta 1483 15-36 (2000)
  16. LRP5 and LRP6 in development and disease. Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO. Trends Endocrinol. Metab. 24 31-39 (2013)
  17. Insect vitellogenin/lipophorin receptors: molecular structures, role in oogenesis, and regulatory mechanisms. Tufail M, Takeda M. J. Insect Physiol. 55 87-103 (2009)
  18. The LDL receptor: how acid pulls the trigger. Beglova N, Blacklow SC. Trends Biochem. Sci. 30 309-317 (2005)
  19. Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Arnaout MA. Annu. Rev. Med. 52 93-123 (2001)
  20. Oxidized phospholipids as a new landmark in atherosclerosis. Itabe H. Prog. Lipid Res. 37 181-207 (1998)
  21. Orchestration of secretory protein folding by ER chaperones. Gidalevitz T, Stevens F, Argon Y. Biochim. Biophys. Acta 1833 2410-2424 (2013)
  22. Proteinuria and events beyond the slit. Nielsen R, Christensen EI. Pediatr. Nephrol. 25 813-822 (2010)
  23. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Nielsen R, Christensen EI, Birn H. Kidney Int. 89 58-67 (2016)
  24. Mechanistic diversity of cytokine receptor signaling across cell membranes. Stroud RM, Wells JA. Sci. STKE 2004 re7 (2004)
  25. The low-density lipoprotein receptor: ligands, debates and lore. Rudenko G, Deisenhofer J. Curr. Opin. Struct. Biol. 13 683-689 (2003)
  26. Calcium. Evenäs J, Malmendal A, Forsén S. Curr Opin Chem Biol 2 293-302 (1998)
  27. How calcium makes endocytic receptors attractive. Andersen CB, Moestrup SK. Trends Biochem. Sci. 39 82-90 (2014)
  28. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem. J. 473 2273-2293 (2016)
  29. An intramolecular spin of the LDL receptor beta propeller. Jeon H, Blacklow SC. Structure 11 133-136 (2003)
  30. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Pohlkamp T, Wasser CR, Herz J. Front Mol Neurosci 10 54 (2017)
  31. The switch on the RAPper's necklace... Herz J. Mol. Cell 23 451-455 (2006)
  32. Proteostasis Regulation in the Endoplasmic Reticulum: An Emerging Theme in the Molecular Pathology and Therapeutic Management of Familial Hypercholesterolemia. Oommen D, Kizhakkedath P, Jawabri AA, Varghese DS, Ali BR. Front Genet 11 570355 (2020)
  33. Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Guarino SR, Canciani A, Forneris F. Front Mol Biosci 6 156 (2019)
  34. The modular architecture of leukocyte cell-surface receptors. Campbell ID. Immunol. Rev. 163 11-18 (1998)
  35. Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Wulf AM, Moreno MM, Paka C, Rampasekova A, Liu KJ. Int J Mol Sci 22 11718 (2021)
  36. Endocytic receptor LRP2/megalin-of holoprosencephaly and renal Fanconi syndrome. Willnow TE, Christ A. Pflugers Arch. 469 907-916 (2017)
  37. How multi-scale structural biology elucidated context-dependent variability in ectodomain conformation along with the ligand capture and release cycle for LDLR family members. Nogi T. Biophys Rev 10 481-492 (2018)
  38. Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Zhou W, Wahl DR. Cancers (Basel) 11 (2019)
  39. New perspectives for targeting therapy in ALK-positive human cancers. Zhao S, Li J, Xia Q, Liu K, Dong Z. Oncogene 42 1959-1969 (2023)
  40. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Sarafanov AG. Int J Mol Sci 24 8584 (2023)
  41. Reconfiguring Nature's Cholesterol Accepting Lipoproteins as Nanoparticle Platforms for Transport and Delivery of Therapeutic and Imaging Agents. Chuang ST, Cruz S, Narayanaswami V. Nanomaterials (Basel) 10 (2020)
  42. Vitellogenin Receptor as a Target for Tick Control: A Mini-Review. Mitchell RD, Sonenshine DE, Pérez de León AA. Front Physiol 10 618 (2019)

Articles citing this publication (148)

  1. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J. Neuron 24 481-489 (1999)
  2. Reelin is a ligand for lipoprotein receptors. D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. Neuron 24 471-479 (1999)
  3. New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations. Lee MS, Feig M, Salsbury FR, Brooks CL. J Comput Chem 24 1348-1356 (2003)
  4. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Toomes C, Bottomley HM, Jackson RM, Towns KV, Scott S, Mackey DA, Craig JE, Jiang L, Yang Z, Trembath R, Woodruff G, Gregory-Evans CY, Gregory-Evans K, Parker MJ, Black GC, Downey LM, Zhang K, Inglehearn CF. Am. J. Hum. Genet. 74 721-730 (2004)
  5. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. Velasco G, Cal S, Quesada V, Sánchez LM, López-Otín C. J. Biol. Chem. 277 37637-37646 (2002)
  6. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. Springer TA. J. Mol. Biol. 283 837-862 (1998)
  7. Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Fisher C, Beglova N, Blacklow SC. Mol. Cell 22 277-283 (2006)
  8. The interactive Factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. Saunders RE, Abarrategui-Garrido C, Frémeaux-Bacchi V, Goicoechea de Jorge E, Goodship TH, López Trascasa M, Noris M, Ponce Castro IM, Remuzzi G, Rodríguez de Córdoba S, Sánchez-Corral P, Skerka C, Zipfel PF, Perkins SJ. Hum. Mutat. 28 222-234 (2007)
  9. X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Verdaguer N, Fita I, Reithmayer M, Moser R, Blaas D. Nat. Struct. Mol. Biol. 11 429-434 (2004)
  10. Molecular mechanisms of the defective hepcidin inhibition in TMPRSS6 mutations associated with iron-refractory iron deficiency anemia. Silvestri L, Guillem F, Pagani A, Nai A, Oudin C, Silva M, Toutain F, Kannengiesser C, Beaumont C, Camaschella C, Grandchamp B. Blood 113 5605-5608 (2009)
  11. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Lorén CE, Scully A, Grabbe C, Edeen PT, Thomas J, McKeown M, Hunter T, Palmer RH. Genes Cells 6 531-544 (2001)
  12. Lumbricus erythrocruorin at 3.5 A resolution: architecture of a megadalton respiratory complex. Royer WE, Sharma H, Strand K, Knapp JE, Bhyravbhatla B. Structure 14 1167-1177 (2006)
  13. Structural hierarchy in erythrocruorin, the giant respiratory assemblage of annelids. Royer WE, Strand K, van Heel M, Hendrickson WA. Proc. Natl. Acad. Sci. U.S.A. 97 7107-7111 (2000)
  14. Familial hypercholesterolaemia. Marais AD. Clin Biochem Rev 25 49-68 (2004)
  15. The mature avian leukosis virus subgroup A envelope glycoprotein is metastable, and refolding induced by the synergistic effects of receptor binding and low pH is coupled to infection. Smith JG, Mothes W, Blacklow SC, Cunningham JM. J. Virol. 78 1403-1410 (2004)
  16. The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of a lysine in the VP1 HI loop is not sufficient for receptor binding. Vlasak M, Roivainen M, Reithmayer M, Goesler I, Laine P, Snyers L, Hovi T, Blaas D. J. Virol. 79 7389-7395 (2005)
  17. Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif. Jensen GA, Andersen OM, Bonvin AM, Bjerrum-Bohr I, Etzerodt M, Thøgersen HC, O'Shea C, Poulsen FM, Kragelund BB. J. Mol. Biol. 362 700-716 (2006)
  18. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Dixit R, Arakane Y, Specht CA, Richard C, Kramer KJ, Beeman RW, Muthukrishnan S. Insect Biochem. Mol. Biol. 38 440-451 (2008)
  19. Roles of functional and structural domains of hepatocyte growth factor activator inhibitor type 1 in the inhibition of matriptase. Kojima K, Tsuzuki S, Fushiki T, Inouye K. J Biol Chem 283 2478-2487 (2008)
  20. Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis. Tufail M, Takeda M. Insect Mol. Biol. 14 389-401 (2005)
  21. cDNA cloning and transcriptional regulation of the vitellogenin receptor from the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Chen ME, Lewis DK, Keeley LL, Pietrantonio PV. Insect Mol. Biol. 13 195-204 (2004)
  22. T222P mutation of the insulin-like 3 hormone receptor LGR8 is associated with testicular maldescent and hinders receptor expression on the cell surface membrane. Bogatcheva NV, Ferlin A, Feng S, Truong A, Gianesello L, Foresta C, Agoulnik AI. Am. J. Physiol. Endocrinol. Metab. 292 E138-44 (2007)
  23. C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer formation by modulating TGF-beta signaling. Reiner DJ, Ailion M, Thomas JH, Meyer BJ. Curr. Biol. 18 1101-1109 (2008)
  24. Production and characterization of a soluble, active form of Tva, the subgroup A avian sarcoma and leukosis virus receptor. Balliet JW, Berson J, D'Cruz CM, Huang J, Crane J, Gilbert JM, Bates P. J. Virol. 73 3054-3061 (1999)
  25. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Tiyanont K, Wales TE, Aste-Amezaga M, Aster JC, Engen JR, Blacklow SC. Structure 19 546-554 (2011)
  26. A novel pattern of mutation in uromodulin disorders: autosomal dominant medullary cystic kidney disease type 2, familial juvenile hyperuricemic nephropathy, and autosomal dominant glomerulocystic kidney disease. Lens XM, Banet JF, Outeda P, Barrio-Lucía V. Am. J. Kidney Dis. 46 52-57 (2005)
  27. Mechanism of low density lipoprotein (LDL) release in the endosome: implications of the stability and Ca2+ affinity of the fifth binding module of the LDL receptor. Arias-Moreno X, Velazquez-Campoy A, Rodríguez JC, Pocoví M, Sancho J. J Biol Chem 283 22670-22679 (2008)
  28. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Boldbaatar D, Battsetseg B, Matsuo T, Hatta T, Umemiya-Shirafuji R, Xuan X, Fujisaki K. Biochem. Cell Biol. 86 331-344 (2008)
  29. Unique expression pattern of a novel mosaic receptor in the developing cerebral cortex. Hermans-Borgmeyer I, Hampe W, Schinke B, Methner A, Nykjaer A, Süsens U, Fenger U, Herbarth B, Schaller HC. Mech. Dev. 70 65-76 (1998)
  30. A cellular receptor of human rhinovirus type 2, the very-low-density lipoprotein receptor, binds to two neighboring proteins of the viral capsid. Neumann E, Moser R, Snyers L, Blaas D, Hewat EA. J. Virol. 77 8504-8511 (2003)
  31. Molecular cloning and developmental expression pattern of the vitellogenin receptor from the cockroach, Leucophaea maderae. Tufail M, Takeda M. Insect Biochem. Mol. Biol. 37 235-245 (2007)
  32. Characterization of determinants for envelope binding and infection in tva, the subgroup A avian sarcoma and leukosis virus receptor. Rong L, Gendron K, Strohl B, Shenoy R, Wool-Lewis RJ, Bates P. J. Virol. 72 4552-4559 (1998)
  33. Structure of the minimal interface between ApoE and LRP. Guttman M, Prieto JH, Handel TM, Domaille PJ, Komives EA. J. Mol. Biol. 398 306-319 (2010)
  34. Conversion of a human low-density lipoprotein receptor ligandbinding repeat to a virus receptor: identification of residues important for ligand specificity. Rong L, Gendron K, Bates P. Proc. Natl. Acad. Sci. U.S.A. 95 8467-8472 (1998)
  35. Genetic, molecular and functional analyses of complement factor I deficiency. Nilsson SC, Trouw LA, Renault N, Miteva MA, Genel F, Zelazko M, Marquart H, Muller K, Sjöholm AG, Truedsson L, Villoutreix BO, Blom AM. Eur. J. Immunol. 39 310-323 (2009)
  36. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. Huang S, Henry L, Ho YK, Pownall HJ, Rudenko G. J. Lipid Res. 51 297-308 (2010)
  37. Sequence and structure of human rhinoviruses reveal the basis of receptor discrimination. Vlasak M, Blomqvist S, Hovi T, Hewat E, Blaas D. J. Virol. 77 6923-6930 (2003)
  38. Vitellogenin receptor mutation leads to the oogenesis mutant phenotype "scanty vitellin" of the silkworm, Bombyx mori. Lin Y, Meng Y, Wang YX, Luo J, Katsuma S, Yang CW, Banno Y, Kusakabe T, Shimada T, Xia QY. J. Biol. Chem. 288 13345-13355 (2013)
  39. NMR structure of a concatemer of the first and second ligand-binding modules of the human low-density lipoprotein receptor. Kurniawan ND, Atkins AR, Bieri S, Brown CJ, Brereton IM, Kroon PA, Smith R. Protein Sci. 9 1282-1293 (2000)
  40. Solution structures of the first and fourth TSR domains of F-spondin. Pääkkönen K, Tossavainen H, Permi P, Rakkolainen H, Rauvala H, Raulo E, Kilpeläinen I, Güntert P. Proteins 64 665-672 (2006)
  41. The role of linkers in the reassembly of the 3.6 MDa hexagonal bilayer hemoglobin from Lumbricus terrestris. Kuchumov AR, Taveau JC, Lamy JN, Wall JS, Weber RE, Vinogradov SN. J. Mol. Biol. 289 1361-1374 (1999)
  42. Cloning and characterization of the cDNA and gene for human epitheliasin. Jacquinet E, Rao NV, Rao GV, Zhengming W, Albertine KH, Hoidal JR. Eur. J. Biochem. 268 2687-2699 (2001)
  43. Functional characterization of splicing and ligand-binding domain variants in the LDL receptor. Etxebarria A, Palacios L, Stef M, Tejedor D, Uribe KB, Oleaga A, Irigoyen L, Torres B, Ostolaza H, Martin C. Hum. Mutat. 33 232-243 (2012)
  44. The epidermal growth factor homology domain of the LDL receptor drives lipoprotein release through an allosteric mechanism involving H190, H562, and H586. Zhao Z, Michaely P. J. Biol. Chem. 283 26528-26537 (2008)
  45. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein. Andersen OM, Petersen HH, Jacobsen C, Moestrup SK, Etzerodt M, Andreasen PA, Thøgersen HC. Biochem. J. 357 289-296 (2001)
  46. Decoding of lipoprotein-receptor interactions: properties of ligand binding modules governing interactions with apolipoprotein E. Guttman M, Prieto JH, Croy JE, Komives EA. Biochemistry 49 1207-1216 (2010)
  47. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected]. Dong N, Zhou T, Zhang Y, Liu M, Li H, Huang X, Liu Z, Wu Y, Fukuda K, Qin J, Wu Q. J. Biol. Chem. 289 17909-17916 (2014)
  48. Species-specific receptor recognition by a minor-group human rhinovirus (HRV): HRV serotype 1A distinguishes between the murine and the human low-density lipoprotein receptor. Reithmayer M, Reischl A, Snyers L, Blaas D. J. Virol. 76 6957-6965 (2002)
  49. The solution structure of the viral binding domain of Tva, the cellular receptor for subgroup A avian leukosis and sarcoma virus. Tonelli M, Peters RJ, James TL, Agard DA. FEBS Lett. 509 161-168 (2001)
  50. The cortical granule serine protease CGSP1 of the sea urchin, Strongylocentrotus purpuratus, is autocatalytic and contains a low-density lipoprotein receptor-like domain. Haley SA, Wessel GM. Dev. Biol. 211 1-10 (1999)
  51. The role of calcium in lipoprotein release by the low-density lipoprotein receptor. Zhao Z, Michaely P. Biochemistry 48 7313-7324 (2009)
  52. Calcium as a crucial cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum. Pena F, Jansens A, van Zadelhoff G, Braakman I. J. Biol. Chem. 285 8656-8664 (2010)
  53. Functional characterization and classification of frequent low-density lipoprotein receptor variants. Etxebarria A, Benito-Vicente A, Palacios L, Stef M, Cenarro A, Civeira F, Ostolaza H, Martin C. Hum. Mutat. 36 129-141 (2015)
  54. LRP6 dimerization through its LDLR domain is required for robust canonical Wnt pathway activation. Chen J, Yan H, Ren DN, Yin Y, Li Z, He Q, Wo D, Ho MS, Chen Y, Liu Z, Yang J, Liu S, Zhu W. Cell. Signal. 26 1068-1074 (2014)
  55. NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor. Kurniawan ND, Aliabadizadeh K, Brereton IM, Kroon PA, Smith R. J. Mol. Biol. 311 341-356 (2001)
  56. Atomic structure of the autosomal recessive hypercholesterolemia phosphotyrosine-binding domain in complex with the LDL-receptor tail. Dvir H, Shah M, Girardi E, Guo L, Farquhar MG, Zajonc DM. Proc. Natl. Acad. Sci. U.S.A. 109 6916-6921 (2012)
  57. Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects. Takahashi D, Garcia BL, Kanost MR. Proc. Natl. Acad. Sci. U.S.A. 112 13856-13861 (2015)
  58. LRP 1 B functions as a receptor for Pseudomonas exotoxin. Pastrana DV, Hanson AJ, Knisely J, Bu G, Fitzgerald DJ. Biochim. Biophys. Acta 1741 234-239 (2005)
  59. Receptor-induced conformational changes in the SU subunit of the avian sarcoma/leukosis virus A envelope protein: implications for fusion activation. Delos SE, Godby JA, White JM. J. Virol. 79 3488-3499 (2005)
  60. Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. Robinson DG, Pimpl P. Protoplasma 251 247-264 (2014)
  61. Scrambled isomers as key intermediates in the oxidative folding of ligand binding module 5 of the low density lipoprotein receptor. Arias-Moreno X, Arolas JL, Aviles FX, Sancho J, Ventura S. J. Biol. Chem. 283 13627-13637 (2008)
  62. Solution structure of the viral receptor domain of Tva and its implications in viral entry. Wang QY, Huang W, Dolmer K, Gettins PG, Rong L. J. Virol. 76 2848-2856 (2002)
  63. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat. Martínez-Oliván J, Arias-Moreno X, Velazquez-Campoy A, Millet O, Sancho J. FEBS J. 281 1534-1546 (2014)
  64. Subunit distribution of calcium-binding sites in Lumbricus terrestris hemoglobin. Kuchumov AR, Loo JA, Vinogradov SN. J Protein Chem 19 139-149 (2000)
  65. Binding characteristics of a panel of monoclonal antibodies against the ligand binding domain of the human LDLr. Nguyen AT, Hirama T, Chauhan V, Mackenzie R, Milne R. J. Lipid Res. 47 1399-1405 (2006)
  66. Human rhinovirus type 2-antibody complexes enter and infect cells via Fc-gamma receptor IIB1. Baravalle G, Brabec M, Snyers L, Blaas D, Fuchs R. J. Virol. 78 2729-2737 (2004)
  67. Role of calcium in protein folding and function of Tva, the receptor of subgroup A avian sarcoma and leukosis virus. Wang QY, Dolmer K, Huang W, Gettins PG, Rong L. J. Virol. 75 2051-2058 (2001)
  68. Thermodynamics of protein-cation interaction: Ca(+2) and Mg(+2) binding to the fifth binding module of the LDL receptor. Arias-Moreno X, Cuesta-Lopez S, Millet O, Sancho J, Velazquez-Campoy A. Proteins 78 950-961 (2010)
  69. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival. Fadeev A, Krauss J, Singh AP, Nüsslein-Volhard C. Pigment Cell Melanoma Res 29 284-296 (2016)
  70. A single lysine of the two-lysine recognition motif of the D3 domain of receptor-associated protein is sufficient to mediate endocytosis by low-density lipoprotein receptor-related protein. van den Biggelaar M, Sellink E, Klein Gebbinck JW, Mertens K, Meijer AB. Int. J. Biochem. Cell Biol. 43 431-440 (2011)
  71. CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site. Duus K, Thielens NM, Lacroix M, Tacnet P, Frachet P, Holmskov U, Houen G. FEBS J. 277 4956-4964 (2010)
  72. Characterization of low density lipoprotein receptor ligand interactions by fluorescence resonance energy transfer. Yamamoto T, Lamoureux J, Ryan RO. J. Lipid Res. 47 1091-1096 (2006)
  73. Isolation and characterization of three novel serine protease genes from Xenopus laevis. Yamada K, Takabatake T, Takeshima K. Gene 252 209-216 (2000)
  74. Linker chains of the gigantic hemoglobin of the earthworm Lumbricus terrestris: primary structures of linkers L2, L3, and L4 and analysis of the connectivity of the disulfide bonds in linker L1. Kao WY, Qin J, Fushitani K, Smith SS, Gorr TA, Riggs CK, Knapp JE, Chait BT, Riggs AF. Proteins 63 174-187 (2006)
  75. Localization of basic residues required for receptor binding to the single alpha-helix of the receptor binding domain of human alpha2-macroglobulin. Huang W, Dolmer K, Liao X, Gettins PG. Protein Sci. 7 2602-2612 (1998)
  76. Molecular Characterization of Vitellogenin and Vitellogenin Receptor of Bemisia tabaci. Upadhyay SK, Singh H, Dixit S, Mendu V, Verma PC. PLoS ONE 11 e0155306 (2016)
  77. Soluble low-density lipoprotein receptor-related protein. Grimsley PG, Quinn KA, Owensby DA. Trends Cardiovasc. Med. 8 363-368 (1998)
  78. Structure of a rat α₁-macroglobulin receptor-binding domain dimer. Xiao T, DeCamp DL, Sprang SR. Protein Sci. 9 1889-1897 (2000)
  79. Computational diagnosis of protein conformational diseases: short molecular dynamics simulations reveal a fast unfolding of r-LDL mutants that cause familial hypercholesterolemia. Cuesta-López S, Falo F, Sancho J. Proteins 66 87-95 (2007)
  80. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues. van den Biggelaar M, Madsen JJ, Faber JH, Zuurveld MG, van der Zwaan C, Olsen OH, Stennicke HR, Mertens K, Meijer AB. J. Biol. Chem. 290 16463-16476 (2015)
  81. Kinetic analysis of binding interaction between the subgroup A Rous sarcoma virus glycoprotein SU and its cognate receptor Tva: calcium is not required for ligand binding. Yu X, Wang QY, Guo Y, Dolmer K, Young JA, Gettins PG, Rong L. J. Virol. 77 7517-7526 (2003)
  82. Quantitative dissection of the binding contributions of ligand lysines of the receptor-associated protein (RAP) to the low density lipoprotein receptor-related protein (LRP1). Dolmer K, Campos A, Gettins PG. J. Biol. Chem. 288 24081-24090 (2013)
  83. Apolipoprotein E-low density lipoprotein receptor binding: study of protein-protein interaction in rationally selected docked complexes. Prévost M, Raussens V. Proteins 55 874-884 (2004)
  84. Molecular characterization of the vitellogenin receptor from the tick, Amblyomma hebraeum (Acari: Ixodidae). Smith AD, Reuben Kaufman W. Insect Biochem. Mol. Biol. 43 1133-1141 (2013)
  85. Novel TMPRSS3 variants in Pakistani families with autosomal recessive non-syndromic hearing impairment. Lee K, Khan S, Islam A, Ansar M, Andrade PB, Kim S, Santos-Cortez RL, Ahmad W, Leal SM. Clin. Genet. 82 56-63 (2012)
  86. The complex of the insect LDL receptor homolog, lipophorin receptor, LpR, and its lipoprotein ligand does not dissociate under endosomal conditions. Roosendaal SD, Kerver J, Schipper M, Rodenburg KW, Van der Horst DJ. FEBS J. 275 1751-1766 (2008)
  87. Whole exome sequencing is necessary to clarify ID/DD cases with de novo copy number variants of uncertain significance: Two proof-of-concept examples. Giorgio E, Ciolfi A, Biamino E, Caputo V, Di Gregorio E, Belligni EF, Calcia A, Gaidolfi E, Bruselles A, Mancini C, Cavalieri S, Molinatto C, Cirillo Silengo M, Ferrero GB, Tartaglia M, Brusco A. Am. J. Med. Genet. A 170 1772-1779 (2016)
  88. Molecular analysis of the TMPRSS3 gene in Moroccan families with non-syndromic hearing loss. Charif M, Abidi O, Boulouiz R, Nahili H, Rouba H, Kandil M, Delprat B, Lenaers G, Barakat A. Biochem. Biophys. Res. Commun. 419 643-647 (2012)
  89. Molecular cloning and partial characterization of an ovarian receptor with seven ligand binding repeats, an orthologue of low-density lipoprotein receptor, in the cutthroat trout (Oncorhynchus clarki). Luo W, Ito Y, Mizuta H, Massaki K, Hiramatsu N, Todo T, Reading BJ, Sullivan CV, Hara A. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 166 263-271 (2013)
  90. Neuronal megalin mediates synaptic plasticity-a novel mechanism underlying intellectual disabilities in megalin gene pathologies. Gomes JR, Lobo A, Nogueira R, Terceiro AF, Costelha S, Lopes IM, Magalhães A, Summavielle T, Saraiva MJ. Brain Commun 2 fcaa135 (2020)
  91. ALK-activating homologous mutations in LTK induce cellular transformation. Roll JD, Reuther GW. PLoS ONE 7 e31733 (2012)
  92. Calcium affects OX1 orexin (hypocretin) receptor responses by modifying both orexin binding and the signal transduction machinery. Putula J, Pihlajamaa T, Kukkonen JP. Br. J. Pharmacol. 171 5816-5828 (2014)
  93. Structural insights into recognition of beta2-glycoprotein I by the lipoprotein receptors. Beglov D, Lee CJ, De Biasio A, Kozakov D, Brenke R, Vajda S, Beglova N. Proteins 77 940-949 (2009)
  94. Three-dimensional NMR structure of the sixth ligand-binding module of the human LDL receptor: comparison of two adjacent modules with different ligand binding specificities. Clayton D, Brereton IM, Kroon PA, Smith R. FEBS Lett. 479 118-122 (2000)
  95. Activity-associated effect of LDL receptor missense variants located in the cysteine-rich repeats. Etxebarria A, Benito-Vicente A, Stef M, Ostolaza H, Palacios L, Martin C. Atherosclerosis 238 304-312 (2015)
  96. Characterization of the LDL-A module mutants of Tva, the subgroup A Rous sarcoma virus receptor, and the implications in protein folding. Wang QY, Manicassamy B, Yu X, Dolmer K, Gettins PG, Rong L. Protein Sci. 11 2596-2605 (2002)
  97. Domain swapping reveals that low density lipoprotein (LDL) type A repeat order affects ligand binding to the LDL receptor. Yamamoto T, Ryan RO. J. Biol. Chem. 284 13396-13400 (2009)
  98. Genetics and kinetics of familial hypercholesterolemia, with the special focus on FH-(Marburg) p.W556R. Soufi M, Kurt B, Schweer H, Sattler AM, Klaus G, Zschocke J, Schaefer JR. Atheroscler Suppl 10 5-11 (2009)
  99. NMR studies of the low-density lipoprotein receptor-binding peptide of apolipoprotein E bound to dodecylphosphocholine micelles. Clayton D, Brereton IM, Kroon PA, Smith R. Protein Sci. 8 1797-1805 (1999)
  100. The human LGR7 low-density lipoprotein class A module requires calcium for structure. Hopkins EJ, Bathgate RA, Gooley PR. Ann. N. Y. Acad. Sci. 1041 27-34 (2005)
  101. Anionic phospholipids inhibit apolipoprotein E--low-density lipoprotein receptor interactions. Yamamoto T, Ryan RO. Biochem. Biophys. Res. Commun. 354 820-824 (2007)
  102. Gene structure and molecular phylogeny of the linker chains from the giant annelid hexagonal bilayer hemoglobins. Chabasse C, Bailly X, Sanchez S, Rousselot M, Zal F. J. Mol. Evol. 63 365-374 (2006)
  103. Human complement factor I: its expression by insect cells and its biochemical and structural characterisation. Ullman CG, Chamberlain D, Ansari A, Emery VC, Haris PI, Sim RB, Perkins SJ. Mol. Immunol. 35 503-512 (1998)
  104. Identification of receptor-interacting regions of vitellogenin within evolutionarily conserved β-sheet structures by using a peptide array. Roth Z, Weil S, Aflalo ED, Manor R, Sagi A, Khalaila I. Chembiochem 14 1116-1122 (2013)
  105. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake. Pompey S, Zhao Z, Luby-Phelps K, Michaely P. J. Lipid Res. 54 744-753 (2013)
  106. Roles of CUB and LDL receptor class A domain repeats of a transmembrane serine protease matriptase in its zymogen activation. Inouye K, Tomoishi M, Yasumoto M, Miyake Y, Kojima K, Tsuzuki S, Fushiki T. J. Biochem. 153 51-61 (2013)
  107. A mutation in the first ligand-binding repeat of the human very-low-density lipoprotein receptor results in high-affinity binding of the single V1 module to human rhinovirus 2. Nizet S, Wruss J, Landstetter N, Snyers L, Blaas D. J. Virol. 79 14730-14736 (2005)
  108. Calcium depletion challenges endoplasmic reticulum proteostasis by destabilising BiP-substrate complexes. Preissler S, Rato C, Yan Y, Perera LA, Czako A, Ron D. Elife 9 e62601 (2020)
  109. NRAP-1 Is a Presynaptically Released NMDA Receptor Auxiliary Protein that Modifies Synaptic Strength. Lei N, Mellem JE, Brockie PJ, Madsen DM, Maricq AV. Neuron 96 1303-1316.e6 (2017)
  110. Secondary Binding Interactions in a Synthetic Receptor for Trimethyllysine. Pinkin NK, Liu I, Abron JD, Waters ML. Chemistry 21 17981-17986 (2015)
  111. Solution structure of the twelfth cysteine-rich ligand-binding repeat in rat megalin. Wolf CA, Dancea F, Shi M, Bade-Noskova V, Rüterjans H, Kerjaschki D, Lücke C. J. Biomol. NMR 37 321-328 (2007)
  112. Structural basis for ligand capture and release by the endocytic receptor ApoER2. Hirai H, Yasui N, Yamashita K, Tabata S, Yamamoto M, Takagi J, Nogi T. EMBO Rep. 18 982-999 (2017)
  113. Structural basis of transcobalamin recognition by human CD320 receptor. Alam A, Woo JS, Schmitz J, Prinz B, Root K, Chen F, Bloch JS, Zenobi R, Locher KP. Nat Commun 7 12100 (2016)
  114. 39-kDa receptor-associated protein (RAP) facilitates secretion and ligand binding of extracellular region of very-low-density-lipoprotein receptor: implications for a distinct pathway from low-density-lipoprotein receptor. Sato A, Shimada Y, Herz J, Yamamoto T, Jingami H. Biochem. J. 341 ( Pt 2) 377-383 (1999)
  115. Comment Catching the common cold. Blacklow SC. Nat. Struct. Mol. Biol. 11 388-390 (2004)
  116. Identification of two residues within the LDL-A module of Tva that dictate the altered receptor specificity of mutant subgroup A avian sarcoma and leukosis viruses. Rai T, Caffrey M, Rong L. J. Virol. 79 14962-14966 (2005)
  117. Mapping the functional domains of TCblR/CD320, the receptor for cellular uptake of transcobalamin-bound cobalamin. Jiang W, Nakayama Y, Sequeira JM, Quadros EV. FASEB J. 27 2988-2994 (2013)
  118. Molecular cloning, characterization, expression pattern and cellular distribution of an ovarian lipophorin receptor in the cockroach, Leucophaea maderae. Tufail M, Elmogy M, Ali Fouda MM, Elgendy AM, Bembenek J, Trang LT, Shao QM, Takeda M. Insect Mol. Biol. 18 281-294 (2009)
  119. The apparently symmetrical hexagonal bilayer hemoglobin from Lumbricus terrestris has a large dipole moment. Takashima S, Kuchumov AR, Vinogradov SN. Biophys. Chem. 77 27-35 (1999)
  120. A conserved LDL-receptor motif regulates corin and CD320 membrane targeting in polarized renal epithelial cells. Zhang C, Chen Y, Sun S, Zhang Y, Wang L, Luo Z, Liu M, Dong L, Dong N, Wu Q. Elife 9 e56059 (2020)
  121. An A1-A1 mutant with improved binding and inhibition of β2GPI/antibody complexes in antiphospholipid syndrome. Kolyada A, Karageorgos I, Mahlawat P, Beglova N. FEBS J. 282 864-873 (2015)
  122. Gelofusine Attenuates Tubulointerstitial Injury Induced by cRGD-Conjugated siRNA by Regulating the TLR3 Signaling Pathway. Cen B, Liao W, Wang Z, Gao L, Wei Y, Huang W, He S, Wang W, Liu X, Pan X, Ji A. Mol Ther Nucleic Acids 11 300-311 (2018)
  123. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor. Martínez-Oliván J, Fraga H, Arias-Moreno X, Ventura S, Sancho J. PLoS ONE 10 e0132141 (2015)
  124. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII. Kurasawa JH, Shestopal SA, Karnaukhova E, Struble EB, Lee TK, Sarafanov AG. J. Biol. Chem. 288 22033-22041 (2013)
  125. Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Basore K, Ma H, Kafai NM, Mackin S, Kim AS, Nelson CA, Diamond MS, Fremont DH. Nature 598 672-676 (2021)
  126. The spacing between cysteines two and three of the LDL-A module of Tva is important for subgroup A avian sarcoma and leukosis virus entry. Rai T, Marble D, Rihani K, Rong L. J. Virol. 78 683-691 (2004)
  127. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. Chun H, Kurasawa JH, Olivares P, Marakasova ES, Shestopal SA, Hassink GU, Karnaukhova E, Karnaukhova E, Migliorini M, Obi JO, Smith AK, Wintrode PL, Durai P, Park K, Deredge D, Strickland DK, Sarafanov AG. J Thromb Haemost 20 2255-2269 (2022)
  128. LBD1 of Vitellogenin Receptor Specifically Binds to the Female-Specific Storage Protein SP1 via LBR1 and LBR3. Liu L, Wang Y, Li Y, Lin Y, Hou Y, Zhang Y, Wei S, Zhao P, Zhao P, He H. PLoS ONE 11 e0162317 (2016)
  129. Short peptide receptor mimics for atherosclerosis risk assessment of LDL. Gaus K, Hall EA. Biosens Bioelectron 18 151-164 (2003)
  130. Structures of LRP2 reveal a molecular machine for endocytosis. Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Cell 186 821-836.e13 (2023)
  131. The closed conformation of the LDL receptor is destabilized by the low Ca(++) concentration but favored by the high Mg(++) concentration in the endosome. Martínez-Oliván J, Arias-Moreno X, Hurtado-Guerrero R, Carrodeguas JA, Miguel-Romero L, Marina A, Bruscolini P, Sancho J. FEBS Lett. 589 3534-3540 (2015)
  132. Bladder drug mirabegron exacerbates atherosclerosis through activation of brown fat-mediated lipolysis. Sui W, Li H, Yang Y, Jing X, Xue F, Cheng J, Dong M, Zhang M, Pan H, Chen Y, Zhang Y, Zhou Q, Shi W, Wang X, Zhang H, Zhang C, Zhang Y, Cao Y. Proc. Natl. Acad. Sci. U.S.A. 116 10937-10942 (2019)
  133. High-Affinity Binding of LDL Receptor-Related Protein 1 to Matrix Metalloprotease 1 Requires Protease:Inhibitor Complex Formation. Arai AL, Migliorini M, Au DT, Hahn-Dantona E, Peeney D, Stetler-Stevenson WG, Muratoglu SC, Strickland DK. Biochemistry 59 2922-2933 (2020)
  134. Identification and Characterization of Rhipicephalus microplus ATAQ Homolog from Haemaphysalis longicornis Ticks and Its Immunogenic Potential as an Anti-Tick Vaccine Candidate Molecule. Adjou Moumouni PF, Naomasa S, Tuvshintulga B, Sato N, Okado K, Zheng W, Lee SH, Mosqueda J, Suzuki H, Xuan X, Umemiya-Shirafuji R. Microorganisms 11 822 (2023)
  135. Identification of amino acid residues in the ligand binding repeats of LDL receptor important for PCSK9 binding. Deng SJ, Alabi A, Gu HM, Adijiang A, Qin S, Zhang DW. J. Lipid Res. 60 516-527 (2019)
  136. Identification of roles for H264, H306, H439, and H635 in acid-dependent lipoprotein release by the LDL receptor. Dong H, Zhao Z, LeBrun DG, Michaely P. J. Lipid Res. 58 364-374 (2017)
  137. LDLR, LRP1, and Megalin redundantly participate in the uptake of Clostridium novyi alpha-toxin. Zhou Y, Li D, Li D, Chen A, He L, Luo J, Tao L. Commun Biol 5 906 (2022)
  138. LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca2+ Signaling and Expression of Cytoskeleton-Related Proteins. Au DT, Ying Z, Hernández-Ochoa EO, Fondrie WE, Hampton B, Migliorini M, Galisteo R, Schneider MF, Daugherty A, Rateri DL, Strickland DK, Muratoglu SC. Arterioscler. Thromb. Vasc. Biol. 38 2651-2664 (2018)
  139. Molecular chaperone RAP interacts with LRP1 in a dynamic bivalent mode and enhances folding of ligand-binding regions of other LDLR family receptors. Marakasova E, Olivares P, Karnaukhova E, Chun H, Hernandez NE, Kurasawa JH, Hassink GU, Shestopal SA, Strickland DK, Sarafanov AG. J Biol Chem 297 100842 (2021)
  140. Molecular modeling of LDLR aids interpretation of genomic variants. Klee EW, Zimmermann MT. J. Mol. Med. 97 533-540 (2019)
  141. Case Reports Novel low density lipoprotein receptor variant linked to early onset acute myocardial infarction in a patient with familial hypercholesterolaemia. Bangash FA, Antbring CR, Wald DS. JRSM Open 5 2042533313518917 (2014)
  142. Nuclear Magnetic Resonance Solution Structure of the Recombinant Fragment Containing Three Fibrin-Binding Cysteine-Rich Domains of the Very Low Density Lipoprotein Receptor. Banerjee K, Yakovlev S, Gruschus JM, Medved L, Tjandra N. Biochemistry 57 4395-4403 (2018)
  143. Proteomics analysis reveals a potential new target protein for the lipid-lowering effect of Berberine8998. Yu CY, Liu GY, Liu XH, Gui YZ, Liu HM, Zheng HC, Gorecki DC, Patel AV, Yu C, Wang YP. Acta Pharmacol. Sin. 39 1473-1482 (2018)
  144. Replacement of cysteine at position 46 in the first cysteine-rich repeat of the LDL receptor impairs apolipoprotein recognition. Benito-Vicente A, Uribe KB, Siddiqi H, Jebari S, Galicia-Garcia U, Larrea-Sebal A, Cenarro A, Stef M, Ostolaza H, Civeira F, Palacios L, Martin C. PLoS ONE 13 e0204771 (2018)
  145. Simulated pathogenic conformational switch regions matched well with the biochemical findings. Liu X, Zhao YP. J Biomed Inform 43 365-375 (2010)
  146. The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses. Ma H, Adams LJ, Raju S, Sariol A, Kafai NM, Janova H, Klimstra WB, Fremont DH, Diamond MS. Nat Commun 15 246 (2024)
  147. Two novel variations in LRP2 cause Donnai-Barrow syndrome in a Chinese family with severe early-onset high myopia. Yuan S, Huang X, Zhang S, Yang S, Rui X, Qi X, Wang X, Zheng Y, Rong W, Sheng X. Front Genet 14 1107347 (2023)
  148. p.(Asp47Asn) and p.(Thr62Met): non deleterious LDL receptor missense variants functionally characterized in vitro. Benito-Vicente A, Siddiqi H, Uribe KB, Jebari S, Galicia-Garcia U, Larrea-Sebal A, Stef M, Ostolaza H, Palacios L, Martin C. Sci Rep 8 16614 (2018)


Related citations provided by authors (1)