1ahj Citations

Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold.

Structure 5 691-9 (1997)
Cited: 96 times
EuropePMC logo PMID: 9195885

Abstract

Background

Nitrile hydratases are unusual metalloenzymes that catalyze the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alphabeta unit. We have determined the crystal structure of photoactivated iron-containing nitrile hydratase from Rhodococcus sp. R312 to 2.65 A resolution as a first step in the elucidation of its catalytic mechanism.

Results

The alpha subunit consists of a long N-terminal arm and a C-terminal domain that forms a novel fold. This fold can be described as a four layered structure, alpha-beta-beta-alpha, with unusual connectivities between the beta strands. The beta subunit also contains a long N-terminal extension, a helical domain, and a C-terminal domain that folds into a beta roll. The two subunits form a tight heterodimer that is the functional unit of the enzyme. The active site is located in a cavity at the subunit-subunit interface. The iron centre is formed by residues from the alpha subunit only-three cysteine thiolates and two mainchain amide nitrogen atoms are ligands.

Conclusion

Nitrile hydratases contain a novel iron centre with a structure not previously observed in proteins; it resembles a hybrid of the iron centres of heme and Fe-S proteins. The low-spin electronic configuration presumably results in part from two Fe-amide nitrogen bonds. The structure is consistent with the metal ion having a role as a Lewis acid in the catalytic reaction.

Articles - 1ahj mentioned but not cited (7)

  1. Conformational changes in redox pairs of protein structures. Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Protein Sci. 18 1745-1765 (2009)
  2. Refining the Structural Model of a Heterohexameric Protein Complex: Surface Induced Dissociation and Ion Mobility Provide Key Connectivity and Topology Information. Song Y, Nelp MT, Bandarian V, Wysocki VH. ACS Cent Sci 1 477-487 (2015)
  3. Functional evolution of two subtly different (similar) folds. Agrawal V, Kishan RK. BMC Struct. Biol. 1 5 (2001)
  4. Modeling of loops in proteins: a multi-method approach. Jamroz M, Kolinski A. BMC Struct. Biol. 10 5 (2010)
  5. ResBoost: characterizing and predicting catalytic residues in enzymes. Alterovitz R, Arvey A, Sankararaman S, Dallett C, Freund Y, Sjölander K. BMC Bioinformatics 10 197 (2009)
  6. Determination of locked interfaces in biomolecular complexes using Haptimol_RD. Iakovou G, Laycock S, Hayward S. Biophys Physicobiol 13 97-103 (2016)
  7. SPARC: Structural properties associated with residue constraints. Neuwald AF, Yang H, Tracy Nixon B. Comput Struct Biotechnol J 20 1702-1715 (2022)


Reviews citing this publication (20)

  1. Cobalt proteins. Kobayashi M, Shimizu S. Eur. J. Biochem. 261 1-9 (1999)
  2. Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Kobayashi M, Shimizu S. Nat. Biotechnol. 16 733-736 (1998)
  3. Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Kovacs JA. Chem. Rev. 104 825-848 (2004)
  4. The nitrilase superfamily: classification, structure and function. Pace HC, Brenner C. Genome Biol. 2 REVIEWS0001 (2001)
  5. Nitrile hydrolases. Kobayashi M, Shimizu S. Curr Opin Chem Biol 4 95-102 (2000)
  6. Active sites of transition-metal enzymes with a focus on nickel. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Curr. Opin. Struct. Biol. 8 749-758 (1998)
  7. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Shafaat HS, Rüdiger O, Ogata H, Lubitz W. Biochim. Biophys. Acta 1827 986-1002 (2013)
  8. Metal-thiolate bonds in bioinorganic chemistry. Solomon EI, Gorelsky SI, Dey A. J Comput Chem 27 1415-1428 (2006)
  9. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. Drennan CL, Doukov TI, Ragsdale SW. J. Biol. Inorg. Chem. 9 511-515 (2004)
  10. Overview of screening for new microbial catalysts and their uses in organic synthesis--selection and optimization of biocatalysts. Asano Y. J. Biotechnol. 94 65-72 (2002)
  11. Nitrilase and its application as a 'green' catalyst. Singh R, Sharma R, Tewari N, Geetanjali, Rawat DS. Chem. Biodivers. 3 1279-1287 (2006)
  12. Designing redox metalloproteins from bottom-up and top-down perspectives. Barker PD. Curr. Opin. Struct. Biol. 13 490-499 (2003)
  13. Hydratases involved in nitrile conversion: screening, characterization and application. Yamada H, Shimizu S, Kobayashi M. Chem Rec 1 152-161 (2001)
  14. Nitrosyl iron complexes--synthesis, structure and biology. Lewandowska H, Kalinowska M, Brzóska K, Wójciuk K, Wójciuk G, Kruszewski M. Dalton Trans 40 8273-8289 (2011)
  15. Emergence of metal selectivity and promiscuity in metalloenzymes. Eom H, Song WJ. J Biol Inorg Chem 24 517-531 (2019)
  16. Synthetic chemistry and chemical precedents for understanding the structure and function of acetyl coenzyme A synthase. Riordan CG. J. Biol. Inorg. Chem. 9 542-549 (2004)
  17. Integron-sequestered dihydrofolate reductase: a recently redeployed enzyme. Alonso H, Gready JE. Trends Microbiol. 14 236-242 (2006)
  18. Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Supreetha K, Rao SN, Srividya D, Anil HS, Kiran S. Mol Biol Rep 46 4661-4673 (2019)
  19. High-valent copper in biomimetic and biological oxidations. Keown W, Gary JB, Stack TD. J. Biol. Inorg. Chem. 22 289-305 (2017)
  20. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Cheng Z, Xia Y, Zhou Z. Front Bioeng Biotechnol 8 352 (2020)

Articles citing this publication (69)

  1. Letter Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I. Nat. Struct. Biol. 5 347-351 (1998)
  2. Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SP, Garcin E, Rousset M, Fontecilla-Camps JC. J. Biol. Inorg. Chem. 10 239-249 (2005)
  3. Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Shomura Y, Yoon KS, Nishihara H, Higuchi Y. Nature 479 253-256 (2011)
  4. Post-translational modification is essential for catalytic activity of nitrile hydratase. Murakami T, Nojiri M, Nakayama H, Odaka M, Yohda M, Dohmae N, Takio K, Nagamune T, Endo I. Protein Sci. 9 1024-1030 (2000)
  5. Crystal structure of cobalt-containing nitrile hydratase. Miyanaga A, Fushinobu S, Ito K, Wakagi T. Biochem. Biophys. Res. Commun. 288 1169-1174 (2001)
  6. Photoactive Ruthenium Nitrosyls: Effects of Light and Potential Application as NO Donors. Rose MJ, Mascharak PK. Coord Chem Rev 252 2093-2114 (2008)
  7. Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T. Eur. J. Biochem. 271 429-438 (2004)
  8. An enzyme controlled by light: the molecular mechanism of photoreactivity in nitrile hydratase. Endo I, Odaka M, Yohda M. Trends Biotechnol. 17 244-248 (1999)
  9. Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center. Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M. J. Mol. Biol. 366 1497-1509 (2007)
  10. Crystal structure of nitrile hydratase from a thermophilic Bacillus smithii. Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K. Biochem. Biophys. Res. Commun. 312 340-345 (2003)
  11. Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe Mossbauer and EPR spectroscopy. Pandelia ME, Bykov D, Izsak R, Infossi P, Giudici-Orticoni MT, Bill E, Neese F, Lubitz W. Proc. Natl. Acad. Sci. U.S.A. 110 483-488 (2013)
  12. Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp. strain YH3-3 purification and characterization. Kato Y, Tsuda T, Asano Y. Eur. J. Biochem. 263 662-670 (1999)
  13. Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt. Zhou Z, Hashimoto Y, Kobayashi M. J. Biol. Chem. 284 14930-14938 (2009)
  14. Why is there an "inert" metal center in the active site of nitrile hydratase? Reactivity and ligand dissociation from a five-coordinate Co(III) nitrile hydratase model. Shearer J, Kung IY, Lovell S, Kaminsky W, Kovacs JA. J. Am. Chem. Soc. 123 463-468 (2001)
  15. Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Kim S, Oriel P. Enzyme Microb. Technol. 27 492-501 (2000)
  16. High resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals posttranslational oxidation of two cysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism. Song L, Wang M, Shi J, Xue Z, Wang MX, Qian S. Biochem. Biophys. Res. Commun. 362 319-324 (2007)
  17. Reversible [4Fe-3S] cluster morphing in an O(2)-tolerant [NiFe] hydrogenase. Frielingsdorf S, Fritsch J, Schmidt A, Hammer M, Löwenstein J, Siebert E, Pelmenschikov V, Jaenicke T, Kalms J, Rippers Y, Lendzian F, Zebger I, Teutloff C, Kaupp M, Bittl R, Hildebrandt P, Friedrich B, Lenz O, Scheerer P. Nat. Chem. Biol. 10 378-385 (2014)
  18. Catalytic mechanism of nitrile hydratase proposed by time-resolved X-ray crystallography using a novel substrate, tert-butylisonitrile. Hashimoto K, Suzuki H, Taniguchi K, Noguchi T, Yohda M, Odaka M. J. Biol. Chem. 283 36617-36623 (2008)
  19. Probing the influence of local coordination environment on the properties of Fe-type nitrile hydratase model complexes. Jackson HL, Shoner SC, Rittenberg D, Cowen JA, Lovell S, Barnhart D, Kovacs JA. Inorg Chem 40 1646-1653 (2001)
  20. The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile. Martinez S, Wu R, Sanishvili R, Liu D, Holz R. J. Am. Chem. Soc. 136 1186-1189 (2014)
  21. Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. Nojiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I. FEBS Lett. 465 173-177 (2000)
  22. Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Brandão PF, Clapp JP, Bull AT. Appl. Environ. Microbiol. 69 5754-5766 (2003)
  23. Molecular characterisation of a novel thermophilic nitrile hydratase. Cramp RA, Cowan DA. Biochim. Biophys. Acta 1431 249-260 (1999)
  24. A nitrile hydratase in the eukaryote Monosiga brevicollis. Foerstner KU, Doerks T, Muller J, Raes J, Bork P. PLoS ONE 3 e3976 (2008)
  25. The chemistry and complexes of small cyano anions. Turner DR, Chesman AS, Murray KS, Deacon GB, Batten SR. Chem. Commun. (Camb.) 47 10189-10210 (2011)
  26. Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosteroni. Stevens JM, Rao Saroja N, Jaouen M, Belghazi M, Schmitter JM, Mansuy D, Artaud I, Sari MA. Protein Expr. Purif. 29 70-76 (2003)
  27. Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Trott S, Bürger S, Calaminus C, Stolz A. Appl. Environ. Microbiol. 68 3279-3286 (2002)
  28. Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase. Yamanaka Y, Hashimoto K, Ohtaki A, Noguchi K, Yohda M, Odaka M. J. Biol. Inorg. Chem. 15 655-665 (2010)
  29. Nitrile hydration by thiolate- and alkoxide-ligated Co-NHase analogues. Isolation of Co(III)-amidate and Co(III)-iminol intermediates. Swartz RD, Coggins MK, Kaminsky W, Kovacs JA. J. Am. Chem. Soc. 133 3954-3963 (2011)
  30. Post-translational modification of Rhodococcus R312 and Comamonas NI1 nitrile hydratases. Stevens JM, Belghazi M, Jaouen M, Bonnet D, Schmitter JM, Mansuy D, Sari MA, Artaud I. J Mass Spectrom 38 955-961 (2003)
  31. Detection of a nitric oxide synthase possibly involved in the regulation of the Rhodococcus sp R312 nitrile hydratase. Sari MA, Moali C, Boucher JL, Jaouen M, Mansuy D. Biochem. Biophys. Res. Commun. 250 364-368 (1998)
  32. Neutral and reduced Roussin's red salt ester [Fe(2)(mu-RS)(2)(NO)(4)] (R = n-Pr, t-Bu, 6-methyl-2-pyridyl and 4,6-dimethyl-2-pyrimidyl): synthesis, X-ray crystal structures, spectroscopic, electrochemical and density functional theoretical investigations. Wang R, Camacho-Fernandez MA, Xu W, Zhang J, Li L. Dalton Trans 777-786 (2009)
  33. Photolability of NO in designed metal nitrosyls with carboxamido-N donors: a theoretical attempt to unravel the mechanism. Fry NL, Mascharak PK. Dalton Trans 41 4726-4735 (2012)
  34. The Cys-Xaa-His metal-binding motif: [N] versus [S] coordination and nickel-mediated formation of cysteinyl sulfinic acid. Van Horn JD, Bulaj G, Goldenberg DP, Burrows CJ. J. Biol. Inorg. Chem. 8 601-610 (2003)
  35. The crystal structure of XC1258 from Xanthomonas campestris: a putative procaryotic Nit protein with an arsenic adduct in the active site. Chin KH, Tsai YD, Chan NL, Huang KF, Wang AH, Chou SH. Proteins 69 665-671 (2007)
  36. PROMISE: a database of information on prosthetic centres and metal ions in protein active sites. Degtyarenko KN, North AC, Perkins DN, Findlay JB. Nucleic Acids Res. 26 376-381 (1998)
  37. Properties of square-pyramidal alkyl-thiolate Fe(III) complexes, including an analogue of the unmodified form of nitrile hydratase. Lugo-Mas P, Taylor W, Schweitzer D, Theisen RM, Xu L, Shearer J, Swartz RD, Gleaves MC, Dipasquale A, Kaminsky W, Kovacs JA. Inorg Chem 47 11228-11236 (2008)
  38. Site-directed mutagenesis for cysteine residues of cobalt-containing nitrile hydratase. Hashimoto Y, Sasaki S, Herai S, Oinuma K, Shimizu S, Kobayashi M. J. Inorg. Biochem. 91 70-77 (2002)
  39. A Co(III) complex in a mixed sulfur/nitrogen ligand environment: modeling the substrate- and product-bound forms of the metalloenzyme thiocyanate hydrolase. Shearer J, Kung IY, Lovell S, Kovacs JA. Inorg Chem 39 4998-4999 (2000)
  40. Nitrosative cytosine deamination. An exploration of the chemistry emanating from deamination with pyrimidine ring-opening. Rayat S, Qian M, Glaser R. Chem. Res. Toxicol. 18 1211-1218 (2005)
  41. Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270. Song L, Wang M, Yang X, Qian S. Biotechnol J 2 717-724 (2007)
  42. Use of metallopeptide based mimics demonstrates that the metalloprotein nitrile hydratase requires two oxidized cysteinates for catalytic activity. Shearer J, Callan PE, Amie J. Inorg Chem 49 9064-9077 (2010)
  43. Editorial Arm-domain interactions in proteins: a review. Schleif R. Proteins 34 1-3 (1999)
  44. Insights into catalytic activity of industrial enzyme Co-nitrile hydratase. Docking studies of nitriles and amides. Peplowski L, Kubiak K, Nowak W. J Mol Model 13 725-730 (2007)
  45. Molecular dynamics simulations of the photoactive protein nitrile hydratase. Kubiak K, Nowak W. Biophys. J. 94 3824-3838 (2008)
  46. N2S2Ni metallothiolates as a class of ligands that support organometallic and bioorganometallic reactivity. Rampersad MV, Jeffery SP, Reibenspies JH, Ortiz CG, Darensbourg DJ, Darensbourg MY. Angew. Chem. Int. Ed. Engl. 44 1217-1220 (2005)
  47. Spectroscopic and Computational Studies of Nitrile Hydratase: Insights into Geometric and Electronic Structure and the Mechanism of Amide Synthesis. Light KM, Yamanaka Y, Odaka M, Solomon EI. Chem Sci 6 6280-6294 (2015)
  48. An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain. Wilding B, Veselá AB, Perry JJ, Black GW, Zhang M, Martínková L, Klempier N. Org. Biomol. Chem. 13 7803-7812 (2015)
  49. Capture of Ni(II), Cu(I) and Z(II) by thiolate sulfurs of an N2S2Ni complex: a role for a metallothiolate ligand in the acetyl-coenzyme A synthase active site. Golden ML, Rampersad MV, Reibenspies JH, Darensbourg MY. Chem. Commun. (Camb.) 1824-1825 (2003)
  50. In vivo and in vitro reconstitution of unique key steps in cystobactamid antibiotic biosynthesis. Groß S, Schnell B, Haack PA, Auerbach D, Müller R. Nat Commun 12 1696 (2021)
  51. A new approach to possible substrate binding mechanisms for nitrile hydratase. Taştan Bishop AO, Sewell T. Biochem. Biophys. Res. Commun. 343 319-325 (2006)
  52. Incorporation of thiolate donation using 2,2'-dithiodibenzaldehyde: complexes of a pentadentate N2S3 ligand with relevance to the active site of Co nitrile hydratase. Smucker BW, Vanstipdonk MJ, Eichhorn DM. J. Inorg. Biochem. 101 1537-1542 (2007)
  53. Modeling catalytic mechanism of nitrile hydratase by semi-empirical quantum mechanical calculation. Yu H, Liu J, Shen Z. J. Mol. Graph. Model. 27 522-528 (2008)
  54. Sequential oxidations of thiolates and the cobalt metallocenter in a synthetic metallopeptide: implications for the biosynthesis of nitrile hydratase. Dutta A, Flores M, Roy S, Schmitt JC, Hamilton GA, Hartnett HE, Shearer JM, Jones AK. Inorg Chem 52 5236-5245 (2013)
  55. Two arginine residues in the substrate pocket predominantly control the substrate selectivity of thiocyanate hydrolase. Yamanaka Y, Arakawa T, Watanabe T, Namima S, Sato M, Hori S, Ohtaki A, Noguchi K, Katayama Y, Yohda M, Odaka M. J. Biosci. Bioeng. 116 22-27 (2013)
  56. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris. Tsai YD, Chin KH, Shr HL, Gao FP, Lyu PC, Wang AH, Chou SH. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 999-1002 (2006)
  57. Exhaustive oxidation of a nickel dithiolate complex: some mechanistic insights en route to sulfate formation. Hosler ER, Herbst RW, Maroney MJ, Chohan BS. Dalton Trans 41 804-816 (2012)
  58. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering. Cheng Z, Peplowski L, Cui W, Xia Y, Liu Z, Zhang J, Kobayashi M, Zhou Z. Biotechnol. Bioeng. 115 524-535 (2018)
  59. Increasing reactivity by incorporating π-acceptor ligands into coordinatively unsaturated thiolate-ligated iron(II) complexes. Toledo S, Yan Poon PC, Gleaves M, Rees J, Rogers DM, Kaminsky W, Kovacs JA. Inorganica Chim Acta 524 120422 (2021)
  60. Influence of cobalt substitution on the activity of iron-type nitrile hydratase: are cobalt type nitrile hydratases regulated by carbon monoxide? Sari MA, Jaouen M, Saroja NR, Artaud I. J. Inorg. Biochem. 101 614-622 (2007)
  61. Iron and Cobalt Complexes of 2,6-Diacetylpyridine-bis(R-thiosemicarbazone) (R=H, phenyl) Showing Unprecedented Ligand Deviation from Planarity. Panja A, Campana C, Leavitt C, Van Stipdonk MJ, Eichhorn DM. Inorganica Chim Acta 362 1348-1354 (2009)
  62. Light-induced release of nitric oxide from the nitric oxide-bound CDGSH-type [2Fe-2S] clusters in mitochondrial protein Miner2. Wang Y, Lee J, Ding H. Nitric Oxide 89 96-103 (2019)
  63. Multiple States of Nitrile Hydratase from Rhodococcus equi TG328-2: Structural and Mechanistic Insights from Electron Paramagnetic Resonance and Density Functional Theory Studies. Stein N, Gumataotao N, Hajnas N, Wu R, Lankathilaka KPW, Bornscheuer UT, Liu D, Fiedler AT, Holz RC, Bennett B. Biochemistry 56 3068-3077 (2017)
  64. Recent Advances in Multinuclear Metal Nitrosyl Complexes. Li L, Li L. Coord Chem Rev 306 678-700 (2016)
  65. Time-Resolved Crystallography of the Reaction Intermediate of Nitrile Hydratase: Revealing a Role for the Cysteinesulfenic Acid Ligand as a Catalytic Nucleophile. Yamanaka Y, Kato Y, Hashimoto K, Iida K, Nagasawa K, Nakayama H, Dohmae N, Noguchi K, Noguchi T, Yohda M, Odaka M. Angew. Chem. Int. Ed. Engl. 54 10763-10767 (2015)
  66. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. Martinez S, Wu R, Krzywda K, Opalka V, Chan H, Liu D, Holz RC. J. Biol. Inorg. Chem. 20 885-894 (2015)
  67. Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving-Williams Behavior. Choi TS, Tezcan FA. J Am Chem Soc 144 18090-18100 (2022)
  68. Evidence for the participation of an extra α-helix at β-subunit surface in the thermal stability of Co-type nitrile hydratase. Pei X, Wang J, Wu Y, Zhen X, Tang M, Wang Q, Wang A. Appl. Microbiol. Biotechnol. 102 7891-7900 (2018)
  69. Novel catalytic activity of nitrile hydratase from Rhodococcus sp. N771. Taniguchi K, Murata K, Murakami Y, Takahashi S, Nakamura T, Hashimoto K, Koshino H, Dohmae N, Yohda M, Hirose T, Maeda M, Odaka M. J. Biosci. Bioeng. 106 174-179 (2008)