1a79 Citations

Crystal structure and evolution of a transfer RNA splicing enzyme.

Science 280 279-84 (1998)
Cited: 114 times
EuropePMC logo PMID: 9535656

Abstract

The splicing of transfer RNA precursors is similar in Eucarya and Archaea. In both kingdoms an endonuclease recognizes the splice sites and releases the intron, but the mechanism of splice site recognition is different in each kingdom. The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms. The structure indicates that the cleavage reaction is similar to that of ribonuclease A and the arrangement of the active sites is conserved between the archaeal and eucaryal enzymes. These results suggest an evolutionary pathway for splice site recognition.

Reviews - 1a79 mentioned but not cited (3)

  1. Recent Insights Into the Structure, Function, and Evolution of the RNA-Splicing Endonucleases. Hirata A. Front Genet 10 103 (2019)
  2. Recent insights into the structure, function, and regulation of the eukaryotic transfer RNA splicing endonuclease complex. Hayne CK, Lewis TA, Stanley RE. Wiley Interdiscip Rev RNA 13 e1717 (2022)
  3. New insights into RNA processing by the eukaryotic tRNA splicing endonuclease. Hayne CK, Sekulovski S, Hurtig JE, Stanley RE, Trowitzsch S, van Hoof A. J Biol Chem 299 105138 (2023)

Articles - 1a79 mentioned but not cited (9)

  1. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Nucleic Acids Res 40 7016-7045 (2012)
  2. Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. Proc Natl Acad Sci U S A 102 8933-8938 (2005)
  3. Amyloidogenic sequences in native protein structures. Tzotzos S, Doig AJ. Protein Sci 19 327-348 (2010)
  4. Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease. Mitchell M, Xue S, Erdman R, Randau L, Söll D, Li H. Nucleic Acids Res 37 5793-5802 (2009)
  5. Functional importance of crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease. Yoshinari S, Shiba T, Inaoka DK, Itoh T, Kurisu G, Harada S, Kita K, Watanabe Y. Nucleic Acids Res 37 4787-4798 (2009)
  6. A topological algorithm for identification of structural domains of proteins. Emmert-Streib F, Mushegian A. BMC Bioinformatics 8 237 (2007)
  7. Structural and mutational analysis of tRNA intron-splicing endonuclease from Thermoplasma acidophilum DSM 1728: catalytic mechanism of tRNA intron-splicing endonucleases. Kim YK, Mizutani K, Rhee KH, Nam KH, Lee WH, Lee EH, Kim EE, Park SY, Hwang KY. J Bacteriol 189 8339-8346 (2007)
  8. Recurrent structural motifs in non-homologous protein structures. Johansson MU, Zoete V, Guex N. Int J Mol Sci 14 7795-7814 (2013)
  9. Quantitative analysis of visual codewords of a protein distance matrix. Pražnikar J, Attygalle NT. PLoS One 17 e0263566 (2022)


Reviews citing this publication (18)

  1. tRNA splicing. Abelson J, Trotta CR, Li H. J Biol Chem 273 12685-12688 (1998)
  2. Structural motifs in RNA. Moore PB. Annu Rev Biochem 68 287-300 (1999)
  3. Function, mechanism and regulation of bacterial ribonucleases. Nicholson AW. FEMS Microbiol Rev 23 371-390 (1999)
  4. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. Charpentier E, Richter H, van der Oost J, White MF. FEMS Microbiol Rev 39 428-441 (2015)
  5. RNA bulges as architectural and recognition motifs. Hermann T, Patel DJ. Structure 8 R47-54 (2000)
  6. Determination of protein function, evolution and interactions by structural genomics. Teichmann SA, Murzin AG, Chothia C. Curr Opin Struct Biol 11 354-363 (2001)
  7. Diversity and roles of (t)RNA ligases. Popow J, Schleiffer A, Martinez J. Cell Mol Life Sci 69 2657-2670 (2012)
  8. RNA-protein complexes. Cusack S. Curr Opin Struct Biol 9 66-73 (1999)
  9. Handling tRNA introns, archaeal way and eukaryotic way. Yoshihisa T. Front Genet 5 213 (2014)
  10. tRNA gene diversity in the three domains of life. Fujishima K, Kanai A. Front Genet 5 142 (2014)
  11. Ribonuclease III: new sense from nuisance. Conrad C, Rauhut R. Int J Biochem Cell Biol 34 116-129 (2002)
  12. Searching genomes for ribozymes and riboswitches. Hammann C, Westhof E. Genome Biol 8 210 (2007)
  13. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. FEMS Microbiol Rev 42 579-613 (2018)
  14. Transfer RNA processing in archaea: unusual pathways and enzymes. Heinemann IU, Söll D, Randau L. FEBS Lett 584 303-309 (2010)
  15. Cutting, dicing, healing and sealing: the molecular surgery of tRNA. Lopes RR, Kessler AC, Polycarpo C, Alfonzo JD. Wiley Interdiscip Rev RNA 6 337-349 (2015)
  16. Structure and mechanism of the Red recombination system of bacteriophage λ. Caldwell BJ, Bell CE. Prog Biophys Mol Biol 147 33-46 (2019)
  17. The life and times of a tRNA. Phizicky EM, Hopper AK. RNA 29 898-957 (2023)
  18. The evolutionary challenges of extreme environments (Part 1). Waterman TH. J Exp Zool 285 326-359 (1999)

Articles citing this publication (84)

  1. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK. Nature 407 711-717 (2000)
  2. Comparative genomics and evolution of proteins involved in RNA metabolism. Anantharaman V, Koonin EV, Aravind L. Nucleic Acids Res 30 1427-1464 (2002)
  3. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. Marck C, Grosjean H. RNA 8 1189-1232 (2002)
  4. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation. Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR. Cell 117 311-321 (2004)
  5. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T. Mol Biol Cell 14 3266-3279 (2003)
  6. Structure and function of archaeal box C/D sRNP core proteins. Aittaleb M, Rashid R, Chen Q, Palmer JR, Daniels CJ, Li H. Nat Struct Biol 10 256-263 (2003)
  7. Efficient RNA 2'-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C'/D' RNPs. Tran EJ, Zhang X, Maxwell ES. EMBO J 22 3930-3940 (2003)
  8. Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. Marck C, Grosjean H. RNA 9 1516-1531 (2003)
  9. Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Englert M, Beier H. Nucleic Acids Res 33 388-399 (2005)
  10. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. Mol Cell 5 1025-1034 (2000)
  11. Cytoplasmic splicing of tRNA in Saccharomyces cerevisiae. Yoshihisa T, Ohshima C, Yunoki-Esaki K, Endo T. Genes Cells 12 285-297 (2007)
  12. Crystal structure of the archaeal holliday junction resolvase Hjc and implications for DNA recognition. Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Structure 9 197-204 (2001)
  13. Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control. Yang JY, Deng XY, Li YS, Ma XC, Feng JX, Yu B, Chen Y, Luo YL, Wang X, Chen ML, Fang ZX, Zheng FX, Li YP, Zhong Q, Kang TB, Song LB, Xu RH, Zeng MS, Chen W, Zhang H, Xie W, Gao S. Nat Commun 9 1165 (2018)
  14. Transfer RNA genes in pieces. Randau L, Söll D. EMBO Rep 9 623-628 (2008)
  15. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Randau L, Calvin K, Hall M, Yuan J, Podar M, Li H, Söll D. Proc Natl Acad Sci U S A 102 17934-17939 (2005)
  16. Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Iyer LM, Koonin EV, Aravind L. Genome Biol 3 RESEARCH0012 (2002)
  17. Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea. Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. Proc Natl Acad Sci U S A 102 15418-15422 (2005)
  18. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales. Sugahara J, Kikuta K, Fujishima K, Yachie N, Tomita M, Kanai A. Mol Biol Evol 25 2709-2716 (2008)
  19. Genetic and biochemical analysis of the functional domains of yeast tRNA ligase. Sawaya R, Schwer B, Shuman S. J Biol Chem 278 43928-43938 (2003)
  20. Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and circularization of introns. Salgia SR, Singh SK, Gurha P, Gupta R. RNA 9 319-330 (2003)
  21. Cleavage of pre-tRNAs by the splicing endonuclease requires a composite active site. Trotta CR, Paushkin SV, Patel M, Li H, Peltz SW. Nature 441 375-377 (2006)
  22. Human RNA 5'-kinase (hClp1) can function as a tRNA splicing enzyme in vivo. Ramirez A, Shuman S, Schwer B. RNA 14 1737-1745 (2008)
  23. Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Bini E, Dikshit V, Dirksen K, Drozda M, Blum P. RNA 8 1129-1136 (2002)
  24. Solution structure of a substrate for the archaeal pre-tRNA splicing endonucleases: the bulge-helix-bulge motif. Diener JL, Moore PB. Mol Cell 1 883-894 (1998)
  25. Discovery of permuted and recently split transfer RNAs in Archaea. Chan PP, Cozen AE, Lowe TM. Genome Biol 12 R38 (2011)
  26. Crystal structure of a dimeric archaeal splicing endonuclease. Li H, Abelson J. J Mol Biol 302 639-648 (2000)
  27. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP. Renalier MH, Joseph N, Gaspin C, Thebault P, Mougin A. RNA 11 1051-1063 (2005)
  28. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Englert M, Latz A, Becker D, Gimple O, Beier H, Akama K. Biochimie 89 1351-1365 (2007)
  29. Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. Biswas I, Obmolova G, Takahashi M, Herr A, Newman MA, Yang W, Hsieh P. J Mol Biol 305 805-816 (2001)
  30. Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5' and 3' tRNA halves. Fujishima K, Sugahara J, Tomita M, Kanai A. PLoS One 3 e1622 (2008)
  31. Identification of a new family of putative PD-(D/E)XK nucleases with unusual phylogenomic distribution and a new type of the active site. Feder M, Bujnicki JM. BMC Genomics 6 21 (2005)
  32. PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase. Blanga-Kanfi S, Amitsur M, Azem A, Kaufmann G. Nucleic Acids Res 34 3209-3219 (2006)
  33. Euryarchaeal beta-CASP proteins with homology to bacterial RNase J Have 5'- to 3'-exoribonuclease activity. Clouet-d'Orval B, Rinaldi D, Quentin Y, Carpousis AJ. J Biol Chem 285 17574-17583 (2010)
  34. In silico analysis of the tRNA:m1A58 methyltransferase family: homology-based fold prediction and identification of new members from Eubacteria and Archaea. Bujnicki JM. FEBS Lett 507 123-127 (2001)
  35. Letter Mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. Schwer B, Aronova A, Ramirez A, Braun P, Shuman S. RNA 14 204-210 (2008)
  36. Junction phosphate is derived from the precursor in the tRNA spliced by the archaeon Haloferax volcanii cell extract. Zofallova L, Guo Y, Gupta R. RNA 6 1019-1030 (2000)
  37. Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause Pontocerebellar Hypoplasia and Progressive Microcephaly. Breuss MW, Sultan T, James KN, Rosti RO, Scott E, Musaev D, Furia B, Reis A, Reis A, Sticht H, Al-Owain M, Alkuraya FS, Reuter MS, Abou Jamra R, Trotta CR, Gleeson JG. Am J Hum Genet 99 228-235 (2016)
  38. Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease. Yoshinari S, Itoh T, Hallam SJ, DeLong EF, Yokobori S, Yamagishi A, Oshima T, Kita K, Watanabe Y. Biochem Biophys Res Commun 346 1024-1032 (2006)
  39. Disrupted tRNA gene diversity and possible evolutionary scenarios. Sugahara J, Fujishima K, Morita K, Tomita M, Kanai A. J Mol Evol 69 497-504 (2009)
  40. Structural characterization of the catalytic subunit of a novel RNA splicing endonuclease. Calvin K, Hall MD, Xu F, Xue S, Li H. J Mol Biol 353 952-960 (2005)
  41. Large-scale tRNA intron transposition in the archaeal order Thermoproteales represents a novel mechanism of intron gain. Fujishima K, Sugahara J, Tomita M, Kanai A. Mol Biol Evol 27 2233-2243 (2010)
  42. Global analysis of mRNA decay in Halobacterium salinarum NRC-1 at single-gene resolution using DNA microarrays. Hundt S, Zaigler A, Lange C, Soppa J, Klug G. J Bacteriol 189 6936-6944 (2007)
  43. Cis- and trans-splicing of mRNAs mediated by tRNA sequences in eukaryotic cells. Di Segni G, Gastaldi S, Tocchini-Valentini GP. Proc Natl Acad Sci U S A 105 6864-6869 (2008)
  44. Cleavage of non-tRNA substrates by eukaryal tRNA splicing endonucleases. Fruscoloni P, Baldi MI, Tocchini-Valentini GP. EMBO Rep 2 217-221 (2001)
  45. Detection of anticodon nuclease residues involved in tRNALys cleavage specificity. Meidler R, Morad I, Amitsur M, Inokuchi H, Kaufmann G. J Mol Biol 287 499-510 (1999)
  46. Individual gvp transcript segments in Haloferax mediterranei exhibit varying half-lives, which are differentially affected by salt concentration and growth phase. Jäger A, Samorski R, Pfeifer F, Klug G. Nucleic Acids Res 30 5436-5443 (2002)
  47. An archaeal endoribonuclease catalyzes cis- and trans- nonspliceosomal splicing in mouse cells. Deidda G, Rossi N, Tocchini-Valentini GP. Nat Biotechnol 21 1499-1504 (2003)
  48. An inactivated nuclease-like domain in RecC with novel function: implications for evolution. Rigden DJ. BMC Struct Biol 5 9 (2005)
  49. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Batot G, Michalska K, Ekberg G, Irimpan EM, Joachimiak G, Jedrzejczak R, Babnigg G, Hayes CS, Joachimiak A, Goulding CW. Nucleic Acids Res 45 5013-5025 (2017)
  50. Crystal structure of the RNA 2'-phosphotransferase from Aeropyrum pernix K1. Kato-Murayama M, Bessho Y, Shirouzu M, Yokoyama S. J Mol Biol 348 295-305 (2005)
  51. RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited--bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. Bujnicki JM, Rychlewski L. BMC Bioinformatics 3 10 (2002)
  52. A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity. Fujishima K, Sugahara J, Miller CS, Baker BJ, Di Giulio M, Takesue K, Sato A, Tomita M, Banfield JF, Kanai A. Nucleic Acids Res 39 9695-9704 (2011)
  53. The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity. Uyen NT, Park SY, Choi JW, Lee HJ, Nishi K, Kim JS. Nucleic Acids Res 37 6960-6969 (2009)
  54. Cleavage of intron from the standard or non-standard position of the precursor tRNA by the splicing endonuclease of Aeropyrum pernix, a hyper-thermophilic Crenarchaeon, involves a novel RNA recognition site in the Crenarchaea specific loop. Hirata A, Kitajima T, Hori H. Nucleic Acids Res 39 9376-9389 (2011)
  55. Identification of two catalytic subunits of tRNA splicing endonuclease from Arabidopsis thaliana. Akama K, Junker V, Beier H. Gene 257 177-185 (2000)
  56. Structural comparison of tRNA m(1)A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions. Guelorget A, Barraud P, Tisné C, Golinelli-Pimpaneau B. BMC Struct Biol 11 48 (2011)
  57. Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Sekulovski S, Devant P, Panizza S, Gogakos T, Pitiriciu A, Heitmeier K, Ramsay EP, Barth M, Schmidt C, Tuschl T, Baas F, Weitzer S, Martinez J, Trowitzsch S. Nat Commun 12 5610 (2021)
  58. Functional reconstitution of a crenarchaeal splicing endonuclease in vitro. Yoshinari S, Fujita S, Masui R, Kuramitsu S, Yokobori S, Kita K, Watanabe Y. Biochem Biophys Res Commun 334 1254-1259 (2005)
  59. Substrate requirements for a novel archaeal endonuclease that cleaves within the 5' external transcribed spacer of Sulfolobus acidocaldarius precursor rRNA. Russell AG, Ebhardt H, Dennis PP. Genetics 152 1373-1385 (1999)
  60. A conserved lysine residue in the crenarchaea-specific loop is important for the crenarchaeal splicing endonuclease activity. Okuda M, Shiba T, Inaoka DK, Kita K, Kurisu G, Mineki S, Harada S, Watanabe Y, Yoshinari S. J Mol Biol 405 92-104 (2011)
  61. Molecular architecture of the human tRNA ligase complex. Kroupova A, Ackle F, Asanović I, Weitzer S, Boneberg FM, Faini M, Leitner A, Chui A, Aebersold R, Martinez J, Jinek M. Elife 10 e71656 (2021)
  62. Letter Prediction of a common fold for all four subunits of the yeast tRNA splicing endonuclease: implications for the evolution of the EndA/Sen family. Bujnicki JM, Rychlewski L. FEBS Lett 486 328-329 (2000)
  63. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales. Jay ZJ, Inskeep WP. Biol Direct 10 35 (2015)
  64. Comparative analysis ofCas6b processing and CRISPR RNA stability. Richter H, Lange SJ, Backofen R, Randau L. RNA Biol 10 700-707 (2013)
  65. Sulfolobus shibatae CCA-adding enzyme forms a tetramer upon binding two tRNA molecules: A scrunching-shuttling model of CCA specificity. Li F, Wang J, Steitz TA. J Mol Biol 304 483-492 (2000)
  66. The dawn of dominance by the mature domain in tRNA splicing. Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. Proc Natl Acad Sci U S A 104 12300-12305 (2007)
  67. Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold. Song J, Markley JL. J Mol Biol 366 155-164 (2007)
  68. Unusual evolutionary history of the tRNA splicing endonuclease EndA: relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases. Bujnicki JM, Rychlewski L. Protein Sci 10 656-660 (2001)
  69. Splicing Endonuclease Is an Important Player in rRNA and tRNA Maturation in Archaea. Schwarz TS, Berkemer SJ, Bernhart SH, Weiß M, Ferreira-Cerca S, Stadler PF, Marchfelder A. Front Microbiol 11 594838 (2020)
  70. Novel mutations in TSEN54 in pontocerebellar hypoplasia type 2. Battini R, D'Arrigo S, Cassandrini D, Guzzetta A, Fiorillo C, Pantaleoni C, Romano A, Alfei E, Cioni G, Santorelli FM. J Child Neurol 29 520-525 (2014)
  71. Structural basis of substrate recognition by human tRNA splicing endonuclease TSEN. Sekulovski S, Sušac L, Stelzl LS, Tampé R, Trowitzsch S. Nat Struct Mol Biol 30 834-840 (2023)
  72. Possible involvement of ActVI-ORFA in transcriptional regulation of actVI tailoring-step genes for actinorhodin biosynthesis. Taguchi T, Okamoto S, Lezhava A, Li A, Ochi K, Ebizuka Y, Ichinose K. FEMS Microbiol Lett 269 234-239 (2007)
  73. Structural basis for pre-tRNA recognition and processing by the human tRNA splicing endonuclease complex. Hayne CK, Butay KJU, Stewart ZD, Krahn JM, Perera L, Williams JG, Petrovitch RM, Deterding LJ, Matera AG, Borgnia MJ, Stanley RE. Nat Struct Mol Biol 30 824-833 (2023)
  74. Small antisense RNA to cyclin D1 generated by pre-tRNA splicing inhibits growth of human hepatoma cells. Lai D, Weng S, Wang C, Qi L, Yu C, Fu L, Chen W. FEBS Lett 576 481-486 (2004)
  75. The RNA-splicing endonuclease from the euryarchaeaon Methanopyrus kandleri is a heterotetramer with constrained substrate specificity. Kaneta A, Fujishima K, Morikazu W, Hori H, Hirata A. Nucleic Acids Res 46 1958-1972 (2018)
  76. tRNA-isoleucine-tryptophan composite gene. Ghosh Z, Chakrabarti J, Mallick B, Das S, Sahoo S, Sethi HS. Biochem Biophys Res Commun 339 37-40 (2006)
  77. Achieving specific RNA cleavage activity by an inactive splicing endonuclease subunit through engineered oligomerization. Calvin K, Li H. J Mol Biol 366 642-649 (2007)
  78. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus. Lopes-Kulishev CO, Alves IR, Valencia EY, Pidhirnyj MI, Fernández-Silva FS, Rodrigues TR, Guzzo CR, Galhardo RS. DNA Repair (Amst) 33 78-89 (2015)
  79. Crystal structure and initial characterization of a novel archaeal-like Holliday junction-resolving enzyme from Thermus thermophilus phage Tth15-6. Ahlqvist J, Linares-Pastén JA, Håkansson M, Jasilionis A, Kwiatkowska-Semrau K, Friðjónsson ÓH, Kaczorowska AK, Dabrowski S, Ævarsson A, Hreggviðsson GÓ, Al-Karadaghi S, Kaczorowski T, Nordberg Karlsson E. Acta Crystallogr D Struct Biol 78 212-227 (2022)
  80. Highly efficient, in vivo optimized, archaeal endonuclease for controlled RNA splicing in mammalian cells. Putti S, Calandra P, Rossi N, Scarabino D, Deidda G, Tocchini-Valentini GP. FASEB J 27 3466-3477 (2013)
  81. Long-distance splicing. Anderson AM, Staley JP. Proc Natl Acad Sci U S A 105 6793-6794 (2008)
  82. Archaeal tRNA-Splicing Endonuclease as an Effector for RNA Recombination and Novel Trans-Splicing Pathways in Eukaryotes. Tocchini-Valentini GD, Tocchini-Valentini GP. J Fungi (Basel) 7 1069 (2021)
  83. Captured: the elusive eukaryotic tRNA splicing enzyme. Hopper AK, Zhang J. Nat Struct Mol Biol 30 711-713 (2023)
  84. Recognition and cleavage mechanism of intron-containing pre-tRNA by human TSEN endonuclease complex. Yuan L, Han Y, Zhao J, Zhang Y, Sun Y. Nat Commun 14 6071 (2023)