1a2l Citations

Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization.

Structure 6 757-67 (1998)
Related entries: 1a2j, 1a2m, 1ac1, 1acv, 1dsb, 1fvj, 1fvk

Cited: 100 times
EuropePMC logo PMID: 9655827

Abstract

Background

The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins. The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes.

Results

We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond.

Conclusion

The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states. Instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.

Reviews - 1a2l mentioned but not cited (2)

  1. Mechanisms of oxidative protein folding in the bacterial cell envelope. Kadokura H, Beckwith J. Antioxid Redox Signal 13 1231-1246 (2010)
  2. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Denoncin K, Collet JF. Antioxid Redox Signal 19 63-71 (2013)

Articles - 1a2l mentioned but not cited (10)

  1. The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes. Paxman JJ, Borg NA, Horne J, Thompson PE, Chin Y, Sharma P, Simpson JS, Wielens J, Piek S, Kahler CM, Sakellaris H, Pearce M, Bottomley SP, Rossjohn J, Scanlon MJ. J Biol Chem 284 17835-17845 (2009)
  2. A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence. Reardon-Robinson ME, Osipiuk J, Jooya N, Chang C, Joachimiak A, Das A, Ton-That H. Mol Microbiol 98 1037-1050 (2015)
  3. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. Acta Crystallogr D Biol Crystallogr 69 1981-1994 (2013)
  4. Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classes. Kurth F, Rimmer K, Premkumar L, Mohanty B, Duprez W, Halili MA, Shouldice SR, Heras B, Fairlie DP, Scanlon MJ, Martin JL. PLoS One 8 e80210 (2013)
  5. Disulfide conformation and design at helix N-termini. Indu S, Kumar ST, Thakurela S, Gupta M, Bhaskara RM, Ramakrishnan C, Varadarajan R. Proteins 78 1228-1242 (2010)
  6. Remote thioredoxin recognition using evolutionary conservation and structural dynamics. Tang GW, Altman RB. Structure 19 461-470 (2011)
  7. Disulfide Chaperone Knockouts Enable In Vivo Double Spin Labeling of an Outer Membrane Transporter. Nilaweera TD, Nyenhuis DA, Nakamoto RK, Cafiso DS. Biophys J 117 1476-1484 (2019)
  8. An extended active-site motif controls the reactivity of the thioredoxin fold. Mavridou DA, Saridakis E, Kritsiligkou P, Mozley EC, Ferguson SJ, Redfield C. J Biol Chem 289 8681-8696 (2014)
  9. Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria. Um SH, Kim JS, Song S, Kim NA, Jeong SH, Ha NC. Mol Cells 38 715-722 (2015)
  10. Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model. Salsbury FR, Poole LB, Fetrow JS. Proteins 80 2583-2591 (2012)


Reviews citing this publication (21)

  1. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Hatahet F, Ruddock LW. Antioxid Redox Signal 11 2807-2850 (2009)
  2. Protein disulfide bond formation in prokaryotes. Kadokura H, Katzen F, Beckwith J. Annu Rev Biochem 72 111-135 (2003)
  3. IgG4 breaking the rules. Aalberse RC, Schuurman J. Immunology 105 9-19 (2002)
  4. Roles of thiol-redox pathways in bacteria. Ritz D, Beckwith J. Annu Rev Microbiol 55 21-48 (2001)
  5. Oxidative protein folding in bacteria. Collet JF, Bardwell JC. Mol Microbiol 44 1-8 (2002)
  6. Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Nakamoto H, Bardwell JC. Biochim Biophys Acta 1694 111-119 (2004)
  7. How proteins form disulfide bonds. Depuydt M, Messens J, Collet JF. Antioxid Redox Signal 15 49-66 (2011)
  8. Pathways of disulfide bond formation in Escherichia coli. Messens J, Collet JF. Int J Biochem Cell Biol 38 1050-1062 (2006)
  9. Disulfide-linked protein folding pathways. Mamathambika BS, Bardwell JC. Annu Rev Cell Dev Biol 24 211-235 (2008)
  10. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Antioxid Redox Signal 14 1729-1760 (2011)
  11. Disulfide bond formation in prokaryotes: history, diversity and design. Hatahet F, Boyd D, Beckwith J. Biochim Biophys Acta 1844 1402-1414 (2014)
  12. Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Jensen KS, Hansen RE, Winther JR. Antioxid Redox Signal 11 1047-1058 (2009)
  13. Mechanisms of colicin binding and transport through outer membrane porins. Cao Z, Klebba PE. Biochimie 84 399-412 (2002)
  14. Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine. Inaba K, Ito K. Biochim Biophys Acta 1783 520-529 (2008)
  15. The analysis of time resolved protein fluorescence in multi-tryptophan proteins. Engelborghs Y. Spectrochim Acta A Mol Biomol Spectrosc 57 2255-2270 (2001)
  16. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Netto LE, de Oliveira MA, Tairum CA, da Silva Neto JF. Free Radic Res 50 206-245 (2016)
  17. Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitors. McMahon RM, Premkumar L, Martin JL. Biochim Biophys Acta 1844 1391-1401 (2014)
  18. Cellular disulfide bond formation in bioactive peptides and proteins. Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Int J Mol Sci 16 1791-1805 (2015)
  19. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur Biophys J 39 723-755 (2010)
  20. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. Bushweller JH. J Mol Biol 432 5091-5103 (2020)
  21. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Comput Struct Biotechnol J 19 4725-4737 (2021)

Articles citing this publication (67)

  1. Structural basis of the redox switch in the OxyR transcription factor. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE. Cell 105 103-113 (2001)
  2. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K. Cell 127 789-801 (2006)
  3. The 'fingerprint' that X-rays can leave on structures. Ravelli RB, McSweeney SM. Structure 8 315-328 (2000)
  4. The CXXC motif is more than a redox rheostat. Quan S, Schneider I, Pan J, Von Hacht A, Bardwell JCA. J Biol Chem 282 28823-28833 (2007)
  5. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. Hennecke J, Sebbel P, Glockshuber R. J Mol Biol 286 1197-1215 (1999)
  6. Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Lennon BW, Williams CH, Ludwig ML. Protein Sci 8 2366-2379 (1999)
  7. Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme. Warwicker J. Protein Sci 13 2793-2805 (2004)
  8. Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Tooth D, Sadler PJ. FEBS J 272 353-362 (2005)
  9. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins. Foloppe N, Sagemark J, Nordstrand K, Berndt KD, Nilsson L. J Mol Biol 310 449-470 (2001)
  10. The origami of thioredoxin-like folds. Pan JL, Bardwell JC. Protein Sci 15 2217-2227 (2006)
  11. Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. Erlendsson LS, Hederstedt L. J Bacteriol 184 1423-1429 (2002)
  12. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. Jonda S, Huber-Wunderlich M, Glockshuber R, Mössner E. EMBO J 18 3271-3281 (1999)
  13. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. Grimshaw JP, Stirnimann CU, Brozzo MS, Malojcic G, Grütter MG, Capitani G, Glockshuber R. J Mol Biol 380 667-680 (2008)
  14. Defining the domain boundaries of the human protein disulfide isomerases. Alanen HI, Salo KE, Pekkala M, Siekkinen HM, Pirneskoski A, Ruddock LW. Antioxid Redox Signal 5 367-374 (2003)
  15. Chloroplast NADP-malate dehydrogenase: structural basis of light-dependent regulation of activity by thiol oxidation and reduction. Carr PD, Verger D, Ashton AR, Ollis DL. Structure 7 461-475 (1999)
  16. All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade. Messens J, Martins JC, Van Belle K, Brosens E, Desmyter A, De Gieter M, Wieruszeski JM, Willem R, Wyns L, Zegers I. Proc Natl Acad Sci U S A 99 8506-8511 (2002)
  17. Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM. J Mol Biol 399 268-282 (2010)
  18. The glutaredoxin -C-P-Y-C- motif: influence of peripheral residues. Foloppe N, Nilsson L. Structure 12 289-300 (2004)
  19. Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis. Lafaye C, Iwema T, Carpentier P, Jullian-Binard C, Kroll JS, Collet JF, Serre L. J Mol Biol 392 952-966 (2009)
  20. On the functional interchangeability, oxidant versus reductant, of members of the thioredoxin superfamily. Debarbieux L, Beckwith J. J Bacteriol 182 723-727 (2000)
  21. Prediction of pKa and redox properties in the thioredoxin superfamily. Moutevelis E, Warwicker J. Protein Sci 13 2744-2752 (2004)
  22. Direct NMR observation of the Cys-14 thiol proton of reduced Escherichia coli glutaredoxin-3 supports the presence of an active site thiol-thiolate hydrogen bond. Nordstrand K, Aslund F, Meunier S, Holmgren A, Otting G, Berndt KD. FEBS Lett 449 196-200 (1999)
  23. Mechanism of the electron transfer catalyst DsbB from Escherichia coli. Grauschopf U, Fritz A, Glockshuber R. EMBO J 22 3503-3513 (2003)
  24. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function. Weininger U, Haupt C, Schweimer K, Graubner W, Kovermann M, Brüser T, Scholz C, Schaarschmidt P, Zoldak G, Schmid FX, Balbach J. J Mol Biol 387 295-305 (2009)
  25. Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Kurz M, Iturbe-Ormaetxe I, Jarrott R, Shouldice SR, Wouters MA, Frei P, Glockshuber R, O'Neill SL, Heras B, Martin JL. Antioxid Redox Signal 11 1485-1500 (2009)
  26. NMR structure of oxidized glutaredoxin 3 from Escherichia coli. Nordstrand K, Sandström A, Aslund F, Holmgren A, Otting G, Berndt KD. J Mol Biol 303 423-432 (2000)
  27. Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. Crow A, Lewin A, Hecht O, Carlsson Möller M, Moore GR, Hederstedt L, Le Brun NE. J Biol Chem 284 23719-23733 (2009)
  28. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways. Segatori L, Paukstelis PJ, Gilbert HF, Georgiou G. Proc Natl Acad Sci U S A 101 10018-10023 (2004)
  29. Structure and function of the oxidoreductase DsbA1 from Neisseria meningitidis. Vivian JP, Scoullar J, Rimmer K, Bushell SR, Beddoe T, Wilce MC, Byres E, Boyle TP, Doak B, Simpson JS, Graham B, Heras B, Kahler CM, Rossjohn J, Scanlon MJ. J Mol Biol 394 931-943 (2009)
  30. Oxidized and synchrotron cleaved structures of the disulfide redox center in the N-terminal domain of Salmonella typhimurium AhpF. Roberts BR, Wood ZA, Jönsson TJ, Poole LB, Karplus PA. Protein Sci 14 2414-2420 (2005)
  31. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study. Stirnimann CU, Rozhkova A, Grauschopf U, Böckmann RA, Glockshuber R, Capitani G, Grütter MG. J Mol Biol 358 829-845 (2006)
  32. Isolation and characterization of a chromosomally encoded disulphide oxidoreductase from Salmonella enterica serovar Typhimurium. Turcot I, Ponnampalam TV, Bouwman CW, Martin NL. Can J Microbiol 47 711-721 (2001)
  33. Redox-active cyclic bis(cysteinyl)peptides as catalysts for in vitro oxidative protein folding. Cabrele C, Fiori S, Pegoraro S, Moroder L. Chem Biol 9 731-740 (2002)
  34. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. Chim N, Harmston CA, Guzman DJ, Goulding CW. BMC Struct Biol 13 23 (2013)
  35. Position-dependent interactions between cysteine residues and the helix dipole. Miranda JJ. Protein Sci 12 73-81 (2003)
  36. Structural basis of cellular redox regulation by human TRP14. Woo JR, Kim SJ, Jeong W, Cho YH, Lee SC, Chung YJ, Rhee SG, Ryu SE. J Biol Chem 279 48120-48125 (2004)
  37. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants. Foloppe N, Nilsson L. J Mol Biol 372 798-816 (2007)
  38. Active-site properties of the oxidized and reduced C-terminal domain of DsbD obtained by NMR spectroscopy. Mavridou DA, Stevens JM, Ferguson SJ, Redfield C. J Mol Biol 370 643-658 (2007)
  39. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. Chim N, Riley R, The J, Im S, Segelke B, Lekin T, Yu M, Hung LW, Terwilliger T, Whitelegge JP, Goulding CW. J Mol Biol 396 1211-1226 (2010)
  40. A novel member of the protein disulfide oxidoreductase family from Aeropyrum pernix K1: structure, function and electrostatics. D'Ambrosio K, Pedone E, Langella E, De Simone G, Rossi M, Pedone C, Bartolucci S. J Mol Biol 362 743-752 (2006)
  41. Probing the flexibility of the DsbA oxidoreductase from Vibrio cholerae--a 15N - 1H heteronuclear NMR relaxation analysis of oxidized and reduced forms of DsbA. Horne J, d'Auvergne EJ, Coles M, Velkov T, Chin Y, Charman WN, Prankerd R, Gooley PR, Scanlon MJ. J Mol Biol 371 703-716 (2007)
  42. n→π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins. Kilgore HR, Raines RT. J Am Chem Soc 140 17606-17611 (2018)
  43. Crystal structure of the oxidized form of the periplasmic mercury-binding protein MerP from Ralstonia metallidurans CH34. Serre L, Rossy E, Pebay-Peyroula E, Cohen-Addad C, Covès J. J Mol Biol 339 161-171 (2004)
  44. Monitoring Oxidative Folding of a Single Protein Catalyzed by the Disulfide Oxidoreductase DsbA. Kahn TB, Fernández JM, Perez-Jimenez R. J Biol Chem 290 14518-14527 (2015)
  45. Electrostatic stabilization and general base catalysis in the active site of the human protein disulfide isomerase a domain monitored by hydrogen exchange. Hernández G, Anderson JS, LeMaster DM. Chembiochem 9 768-778 (2008)
  46. Salmonella enterica serovar typhimurium rdoA is growth phase regulated and involved in relaying Cpx-induced signals. Suntharalingam P, Spencer H, Gallant CV, Martin NL. J Bacteriol 185 432-443 (2003)
  47. Crystal structures of a poxviral glutaredoxin in the oxidized and reduced states show redox-correlated structural changes. Bacik JP, Hazes B. J Mol Biol 365 1545-1558 (2007)
  48. Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant. Ondo-Mbele E, Vivès C, Koné A, Serre L. J Mol Biol 347 555-563 (2005)
  49. Rheostat re-wired: alternative hypotheses for the control of thioredoxin reduction potentials. Bewley KD, Dey M, Bjork RE, Mitra S, Chobot SE, Drennan CL, Elliott SJ. PLoS One 10 e0122466 (2015)
  50. Solution nuclear magnetic resonance structure of a protein disulfide oxidoreductase from Methanococcus jannaschii. Cave JW, Cho HS, Batchelder AM, Yokota H, Kim R, Wemmer DE. Protein Sci 10 384-396 (2001)
  51. Fluorescence quenching in the DsbA protein from Escherichia coli: complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan. Sillen A, Hennecke J, Roethlisberger D, Glockshuber R, Engelborghs Y. Proteins 37 253-263 (1999)
  52. Randomization of the entire active-site helix alpha 1 of the thiol-disulfide oxidoreductase DsbA from Escherichia coli. Philipps B, Glockshuber R. J Biol Chem 277 43050-43057 (2002)
  53. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field. Sperling LJ, Nieuwkoop AJ, Lipton AS, Berthold DA, Rienstra CM. J Biomol NMR 46 149-155 (2010)
  54. Structural and redox properties of the leaderless DsbE (CcmG) protein: both active-site cysteines of the reduced form are involved in its function in the Escherichia coli periplasm. Li Q, Hu HY, Wang WQ, Xu GJ. Biol Chem 382 1679-1686 (2001)
  55. The influence of His94 and Pro149 in modulating the activity of V. cholerae DsbA. Blank J, Kupke T, Lowe E, Barth P, Freedman RB, Ruddock LW. Antioxid Redox Signal 5 359-366 (2003)
  56. Intramembrane Thiol Oxidoreductases: Evolutionary Convergence and Structural Controversy. Li S, Shen G, Li W. Biochemistry 57 258-266 (2018)
  57. Description of the topographical changes associated to the different stages of the DsbA catalytic cycle. Vinci F, Couprie J, Pucci P, Quéméneur E, Moutiez M. Protein Sci 11 1600-1612 (2002)
  58. Structural and Biochemical Characterization of Chlamydia trachomatis DsbA Reveals a Cysteine-Rich and Weakly Oxidising Oxidoreductase. Christensen S, Grøftehauge MK, Byriel K, Huston WM, Furlong E, Heras B, Martin JL, McMahon RM. PLoS One 11 e0168485 (2016)
  59. 3d interaction homology: The structurally known rotamers of tyrosine derive from a surprisingly limited set of information-rich hydropathic interaction environments described by maps. Ahmed MH, Koparde VN, Safo MK, Neel Scarsdale J, Kellogg GE. Proteins 83 1118-1136 (2015)
  60. Evidence for proton shuffling in a thioredoxin-like protein during catalysis. Narzi D, Siu SW, Stirnimann CU, Grimshaw JP, Glockshuber R, Capitani G, Böckmann RA. J Mol Biol 382 978-986 (2008)
  61. Backbone and side chain 1H, 15N and 13C assignments for the reduced form of the oxidoreductase protein DsbA from Vibrio cholerae. Horne J, Scanlon MJ. Biomol NMR Assign 1 75-76 (2007)
  62. Identification of the Primary Factors Determining theSpecificity of Human VKORC1 Recognition by Thioredoxin-Fold Proteins. Stolyarchuk M, Ledoux J, Maignant E, Trouvé A, Tchertanov L. Int J Mol Sci 22 E802 (2021)
  63. Backbone and side chain 1H, 15N and 13C assignments for the oxidised and reduced forms of the oxidoreductase protein DsbA from Staphylococcus aureus. Williams ML, Chalmers DK, Martin JL, Scanlon MJ. Biomol NMR Assign 4 25-28 (2010)
  64. Compactness of Protein Folds Alters Disulfide-Bond Reducibility by Three Orders of Magnitude: A Comprehensive Kinetic Case Study on the Reduction of Differently Sized Tryptophan Cage Model Proteins. Horváth D, Taricska N, Keszei E, Stráner P, Farkas V, Tóth GK, Perczel A. Chembiochem 21 681-695 (2020)
  65. A Buried Water Network Modulates the Activity of the Escherichia coli Disulphide Catalyst DsbA. Wang G, Qin J, Verderosa AD, Hor L, Santos-Martin C, Paxman JJ, Martin JL, Totsika M, Heras B. Antioxidants (Basel) 12 380 (2023)
  66. A cryptic oxidoreductase safeguards oxidative protein folding in Corynebacterium diphtheriae. Reardon-Robinson ME, Nguyen MT, Sanchez BC, Osipiuk J, Rückert C, Chang C, Chen B, Nagvekar R, Joachimiak A, Tauch A, Das A, Ton-That H. Proc Natl Acad Sci U S A 120 e2208675120 (2023)
  67. Group II truncated haemoglobin YjbI prevents reactive oxygen species-induced protein aggregation in Bacillus subtilis. Imai T, Tobe R, Honda K, Tanaka M, Kawamoto J, Mihara H. Elife 11 e70467 (2022)


Related citations provided by authors (4)

  1. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.. Guddat LW, Bardwell JC, Glockshuber R, Huber-Wunderlich M, Zander T, Martin JL Protein Sci 6 1893-900 (1997)
  2. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding.. Guddat LW, Bardwell JC, Zander T, Martin JL Protein Sci 6 1148-56 (1997)
  3. Crystal structure of the DsbA protein required for disulphide bond formation in vivo.. Martin JL, Bardwell JC, Kuriyan J Nature 365 464-8 (1993)
  4. Crystallization of DsbA, an Escherichia coli protein required for disulphide bond formation in vivo.. Martin JL, Waksman G, Bardwell JC, Beckwith J, Kuriyan J J Mol Biol 230 1097-100 (1993)