

wwPDB EM Validation Summary Report (i)

Sep 16, 2021 - 03:12 pm BST

PDB ID	:	701V
EMDB ID	:	EMD-12697
Title	:	Structure of a Minimal Photosystem I
Authors	:	Nelson, N.; Caspy, I.; Lambrev, P.
Deposited on	:	2021-03-30
Resolution	:	4.31 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.31 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	739	81%	19%
2	В	729	82%	17% •
3	С	80	76%	24%
4	D	141	77%	22% •
5	Е	69	81%	19%
6	K	80	88%	12%
7	М	31	81%	19%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-

ria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
8	CLA	А	1011	Х	_	-	-
8	CLA	А	1012	Х	_	-	-
8	CLA	А	1013	Х	_	-	-
8	CLA	А	1101	Х	_	-	-
8	CLA	А	1102	Х	_	-	_
8	CLA	А	1103	Х	-	_	-
8	CLA	А	1104	Х	-	_	-
8	CLA	А	1105	Х	-	-	-
8	CLA	А	1106	Х	-	_	-
8	CLA	А	1107	Х	-	-	-
8	CLA	А	1108	Х	-	-	-
8	CLA	А	1109	Х	-	-	-
8	CLA	А	1110	Х	-	-	-
8	CLA	А	1111	Х	-	-	-
8	CLA	А	1112	Х	-	-	-
8	CLA	А	1113	Х	-	-	-
8	CLA	А	1114	Х	-	-	-
8	CLA	А	1115	Х	-	-	-
8	CLA	А	1116	Х	-	-	-
8	CLA	А	1117	Х	-	-	-
8	CLA	А	1118	Х	-	-	-
8	CLA	А	1119	Х	-	-	-
8	CLA	А	1120	X	-	-	-
8	CLA	А	1121	Х	-	-	-
8	CLA	А	1122	X	-	-	-
8	CLA	А	1123	Х	-	-	-
8	CLA	А	1124	Х	-	-	-
8	CLA	А	1125	X	-	-	-
8	CLA	А	1126	Х	-	-	-
8	CLA	A	1127	X	-	-	-
8	CLA	A	1128	X	-	-	-
8	CLA	Ā	1129	X		-	-
8	CLA	A	1130	X	-	-	-
8	CLA	A	1131	X	-	_	-
8	CLA	A	1132	X	-	-	-
8	CLA	A	1133	X	-	-	-
8	CLA	A	1134	X	-	-	-
8	CLA	A	1135	X	-	-	-
8	CLA	A	1136	X	-	-	-
8	CLA	A	1137	X	-	-	-
8	CLA	A	1138	X	-	-	-
8	CLA	A	$11\overline{39}$	X	-		-

Conti	nued from	m previoi	is page.				
Mol	Type	Chain	\mathbf{Res}	Chirality	Geometry	Clashes	Electron density
8	CLA	А	1140	Х	_	-	_
8	CLA	А	1801	Х	_	-	-
8	CLA	В	1021	Х	_	-	-
8	CLA	В	1022	X	-	-	-
8	CLA	В	1023	Х	_	-	-
8	CLA	В	1201	X	-	-	-
8	CLA	В	1202	X	-	-	-
8	CLA	В	1203	X	-	-	-
8	CLA	В	1204	Х	-	-	-
8	CLA	В	1205	Х	-	-	-
8	CLA	В	1206	Х	-	-	-
8	CLA	В	1207	Х	-	-	-
8	CLA	В	1208	Х	-	-	-
8	CLA	В	1209	Х	-	-	-
8	CLA	В	1210	Х	-	-	-
8	CLA	В	1211	Х	-	-	-
8	CLA	В	1212	Х	-	-	-
8	CLA	В	1213	Х	_	-	-
8	CLA	В	1214	Х	_	-	_
8	CLA	В	1215	Х	_	-	-
8	CLA	В	1216	Х	_	-	_
8	CLA	В	1217	Х	_	-	-
8	CLA	В	1218	Х	_	-	-
8	CLA	В	1219	Х	_	-	_
8	CLA	В	1220	Х	-	-	-
8	CLA	В	1221	Х	-	-	-
8	CLA	В	1222	Х	-	-	-
8	CLA	В	1223	X	-	-	-
8	CLA	В	1224	X	-	-	-
8	CLA	В	1225	X	-	-	-
8	CLA	В	1226	X	-	-	-
8	CLA	В	1227	Х	-	-	-
8	CLA	В	1228	X	-		-
8	CLA	В	1229	X	-	_	-
8	CLA	В	1230	X	-	-	-
8	CLA	В	1231	X	-	-	-
8	CLA	В	1232	X	_	_	_
8	CLA	В	1234	X	_	-	_
8	CLA	В	1235	X	_	_	_
8	CLA	В	1236	X	_	-	_
8	CLA	В	1237	X	_		_
8	CLA	В	1238	X	-	_	-

 α 1 C

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
8	CLA	В	1239	Х	-	-	-
8	CLA	В	1240	Х	-	-	-
8	CLA	K	1401	Х	-	-	-
8	CLA	K	1402	Х	-	-	-

Continued from previous page...

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 20914 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Photosystem I P700 chlorophyll a apoprotein A1.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	739	Total 5787	C 3791	N 984	O 985	S 27	0	0

• Molecule 2 is a protein called Photosystem I P700 chlorophyll a apoprotein A2.

Mol	Chain	Residues		At	AltConf	Trace			
2	В	729	Total 5770	C 3798	N 967	O 990	${ m S}$ 15	0	0

• Molecule 3 is a protein called Photosystem I iron-sulfur center.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
3	С	80	Total 600	C 369	N 103	0 117	S 11	0	0

• Molecule 4 is a protein called Photosystem I reaction center subunit II.

Mol	Chain	Residues		At	oms		AltConf	Trace	
4	D	141	Total 1102	${ m C} { m 697}$	N 190	0 211	$\frac{S}{4}$	0	0

• Molecule 5 is a protein called Photosystem I reaction center subunit IV.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
5	Ε	69	Total 543	$C \\ 340$	N 96	O 107	0	0

• Molecule 6 is a protein called Photosystem I reaction center subunit PsaK 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	K	80	Total 579	C 378	N 93	O 102	S 6	1	0

• Molecule 7 is a protein called Photosystem I reaction center subunit XII.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	М	31	Total 238	C 159	N 36	0 42	${ m S}$ 1	0	0

 $\bullet\,$ Molecule 8 is CHLOROPHYLL A (three-letter code: CLA) (formula: $\rm C_{55}H_{72}MgN_4O_5).$

Mol	Chain	Residues		A	toms			AltConf
0	Δ	1	Total	С	Mg	Ν	Ο	0
0	A	L	2446	2006	44	176	220	0
0	Δ	1	Total	С	Mg	Ν	Ο	0
0	л	L	2446	2006	44	176	220	0
8	Λ	1	Total	С	Mg	Ν	Ο	0
0	Л	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
8	Δ	1	Total	\mathbf{C}	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
8	Δ	1	Total	\mathbf{C}	Mg	Ν	Ο	0
	11	1	2446	2006	44	176	220	U
8	Δ	1	Total	$\overline{\mathrm{C}}$	Mg	N	Ō	0
		L	2446	2006	44	176	220	

Continued from previous page...

Mol	Chain	Residues		At	toms			AltConf
0	Λ	1	Total	С	Mg	Ν	Ο	0
0	A	L	2446	2006	44	176	220	0
0	Δ	1	Total	С	Mg	Ν	Ο	0
0	A	L	2446	2006	44	176	220	0
0	Δ	1	Total	С	Mg	Ν	Ο	0
0	A	L	2446	2006	44	176	220	0
0	Λ	1	Total	С	Mg	Ν	Ο	0
0	A	L	2446	2006	44	176	220	0
0	Λ	1	Total	С	Mg	Ν	Ο	0
0	A	L	2446	2006	44	176	220	0
0	Δ	1	Total	С	Mg	Ν	Ο	0
0	A	T	2446	2006	44	176	220	0
0	Δ	1	Total	С	Mg	Ν	Ο	0
0	л	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Л	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
Q	Λ	1	Total	С	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
8	Δ	1	Total	\mathbf{C}	Mg	Ν	Ο	0
0	Π	T	2446	2006	44	176	220	0
8	Δ	1	Total	\mathbf{C}	Mg	Ν	Ο	0
0	11	T	2446	2006	44	176	220	0
8	Δ	1	Total	\mathbf{C}	Mg	Ν	Ο	0
		Ť	2446	2006	44	176	220	0
8	А	1	Total	\mathbf{C}	Mg	Ν	Ο	0
		*	2446	2006	44	176	220	0
8	А	1	Total	\mathbf{C}	Mg	Ν	Ο	0
	**	-	2446	2006	44	176	220	0
8	А	1	Total	\mathbf{C}	Mg	Ν	Ο	0
	**	-	2446	2006	44	176	220	0
8	А	1	Total	\mathbf{C}	Mg	Ν	Ο	0
	**	-	2446	2006	44	176	220	
8	А	1	Total	С	Mg	Ν	0	0
		-	2446	2006	44	176	220	
8	A	1	Total	С	Mg	Ν	0	0
		-	2446	2006	44	176	220	
8	A	1	Total	С	Mg	Ν	0	0
	**	*	2446	2006	44	176	220	
8	A	1	Total	С	Mg	Ν	0	0
		*	2446	2006	44	176	220	

Continued from previous page...

Mol	Chain	Residues		At	toms			AltConf
0	٨	1	Total	С	Mg	Ν	Ο	0
0	A	1	2446	2006	44	176	220	0
0	٨	1	Total	С	Mg	Ν	Ο	0
8	A	1	2446	2006	44	176	220	0
0	٨	1	Total	С	Mg	Ν	Ο	0
0	A	1	2446	2006	44	176	220	0
0	٨	1	Total	С	Mg	Ν	Ο	0
0	A	1	2446	2006	44	176	220	0
0	Λ	1	Total	С	Mg	Ν	Ο	0
0	A	1	2446	2006	44	176	220	0
0	Λ	1	Total	С	Mg	Ν	Ο	0
0	А	T	2446	2006	44	176	220	0
0	Λ	1	Total	С	Mg	Ν	Ο	0
0	Л	I	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Л	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Л	L	2446	2006	44	176	220	0
Q	Λ	1	Total	С	Mg	Ν	Ο	0
0	Л	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	Л	T	2446	2006	44	176	220	0
8	Δ	1	Total	С	Mg	Ν	Ο	0
0	11	L	2446	2006	44	176	220	0
8	Δ	1	Total	\mathbf{C}	Mg	Ν	Ο	0
		L	2446	2006	44	176	220	0
8	В	1	Total	\mathbf{C}	Mg	Ν	Ο	0
		1	2482	2062	42	168	210	0
8	В	1	Total	С	Mg	Ν	Ο	0
	D	1	2482	2062	42	168	210	0
8	В	1	Total	\mathbf{C}	Mg	Ν	Ο	0
		1	2482	2062	42	168	210	0
8	В	1	Total	\mathbf{C}	Mg	Ν	Ο	0
	D	1	2482	2062	42	168	210	Ŭ
8	В	1	Total	\mathbf{C}	Mg	Ν	Ο	0
		1	2482	2062	42	168	210	
8	В	1	Total	С	Mg	Ν	Ο	0
		*	2482	2062	42	168	210	
8	В	1	Total	\mathbf{C}	Mg	Ν	Ο	0
		1	2482	2062	42	168	210	
8	В	1	Total	С	Mg	Ν	Ο	0
		*	2482	2062	42	168	210	

Continued from previous page...

Mol	Chain	Residues		At	toms			AltConf
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	I	2482	2062	42	168	210	0
Q	В	1	Total	С	Mg	Ν	Ο	0
0	D	I	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	L	2482	2062	42	168	210	0
Q	В	1	Total	С	Mg	Ν	Ο	0
0	D	T	2482	2062	42	168	210	0
Q	В	1	Total	С	Mg	Ν	Ο	0
0	D	I	2482	2062	42	168	210	0
8	B	1	Total	С	Mg	Ν	Ο	0
0	D	T	2482	2062	42	168	210	0
8	R	1	Total	С	Mg	Ν	0	0
		L	2482	2062	42	168	210	U
8	R	1	Total	С	Mg	Ν	0	0
		L	2482	2062	42	168	210	0
Q	R	1	Total	C	Mg	Ν	0	0
		L	2482	2062	42	168	210	U
Q	B	1	Total	С	Mg	Ν	0	0
0		L 1	2482	2062	42	168	210	U

Mol	Chain	Residues		At	oms			AltConf
0	п	-1	Total	С	Mg	Ν	Ο	0
8	В	1	2482	2062	42^{-}	168	210	0
0	D	-1	Total	С	Mg	Ν	Ο	0
8	В	1	2482	2062	42	168	210	0
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	1	2482	2062	42	168	210	0
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	1	2482	2062	42	168	210	0
0	D	1	Total	С	Mg	Ν	Ο	0
0	D	1	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	1	2482	2062	42	168	210	0
0	р	1	Total	С	Mg	Ν	Ο	0
0	D	1	2482	2062	42	168	210	0
8	В	1	Total	С	Mg	Ν	Ο	0
0	D	I	2482	2062	42	168	210	0
8	В	1	Total	С	Mg	Ν	Ο	0
0	D	I	2482	2062	42	168	210	0
Q	В	1	Total	С	Mg	Ν	Ο	0
0	D	I	2482	2062	42	168	210	0
0	В	1	Total	С	Mg	Ν	Ο	0
0	D	I	2482	2062	42	168	210	0
8	R	1	Total	С	Mg	Ν	Ο	0
0	D	T	2482	2062	42	168	210	0
8	B	1	Total	С	Mg	Ν	Ο	0
0	D	T	2482	2062	42	168	210	0
8	K	1	Tota	l C	Mg	Ν	0	0
0	17	T	130	110	2	8	10	0
8	K	1	Tota	C	Mg	N	0	0
0	17	Ţ	130	110	2	8	10	U

• Molecule 9 is PHYLLOQUINONE (three-letter code: PQN) (formula: $C_{31}H_{46}O_2$).

Mol	Chain	Residues	Atoms	AltConf
0	Λ	1	Total C O	0
9 A	Л	I	33 31 2	0
0	р	1	Total C O	0
9	D	T	33 31 2	0

• Molecule 10 is BETA-CAROTENE (three-letter code: BCR) (formula: $\mathrm{C}_{40}\mathrm{H}_{56}).$

Mol	Chain	Residues	Atoms	AltConf
10	А	1	Total C 280 280	0
10	А	1	Total C 280 280	0

Mol	Chain	Residues	Atoms	AltConf
10	А	1	Total C 280 280	0
10	А	1	Total C 280 280	0
10	А	1	Total C 280 280	0
10	А	1	Total C 280 280	0
10	А	1	Total C 280 280	0
10	В	1	Total C 280 280	0
10	В	1	Total C 280 280	0
10	В	1	Total C 280 280	0
10	В	1	Total C 280 280	0
10	В	1	Total C 280 280	0
10	В	1	Total C 280 280	0
10	В	1	Total C 280 280	0
10	K	1	$\begin{array}{c c} \hline Total & C \\ 40 & 40 \end{array}$	0

• Molecule 11 is 1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE (three-letter code: LHG) (formula: C₃₈H₇₅O₁₀P).

Mol	Chain	Residues	A	Aton	ns		AltConf
11	11 A	1	Total	С	Ο	Р	0
	Л	T	98	76	20	2	0
11	Δ	1	Total	С	Ο	Р	0
	Л	T	98	76	20	2	0
11	В	1	Total	С	Ο	Р	0
	D	T	73	51	20	2	0
11	В	1	Total	С	Ο	Р	0
	D	L	73	51	20	2	0
11	М	1	Total	С	0	Р	0
	111	T	49	38	10	1	0

• Molecule 12 is 1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE (three-letter code: LMG) (formula: C₄₅H₈₆O₁₀).

Mol	Chain	Residues	Atoms	AltConf
19	Δ	1	Total C O	0
12	Л	T	50 40 10	0
19	В	1	Total C O	0
12	D	T	86 66 20	0
19	В	1	Total C O	0
12	D	T	86 66 20	0
12	K	1	Total C O	0
12	17		55 45 10	0

• Molecule 13 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
13	А	1	Total Fe S 8 4 4	0
13	С	1	TotalFeS1688	0
13	С	1	TotalFeS1688	0

• Molecule 14 is beta, beta-caroten-4-one (three-letter code: ECH) (formula: $C_{40}H_{54}O$).

M	Iol	Chain	Residues	Atoms	AltConf
1	14	В	1	Total C O 41 40 1	0
1	4	М	1	Total C O 41 40 1	0

• Molecule 15 is 1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSY L]-SN-GLYCEROL (three-letter code: SQD) (formula: $C_{41}H_{78}O_{12}S$).

Mol	Chain	Residues	Atoms				AltConf
15	D	1	Total	С	Ο	S	0
61	D		54	41	12	1	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Photosystem I P700 chlorophyll a apoprotein A1

• Molecule 2: Photosystem I P700 chlorophyll a apoprotein A2

 \bullet Molecule 3: Photosystem I iron-sulfur center

Chain C:

24%

• Molecule 4: Photosystem I reaction center subunit II

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	74303	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	43.6	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: LHG, BCR, CLA, SF4, ECH, SQD, LMG, PQN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	B	ond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.32	0/5985	0.59	2/8158~(0.0%)
2	В	0.31	0/5981	0.61	9/8178~(0.1%)
3	С	0.33	0/610	0.74	0/826
4	D	0.31	0/1126	0.67	1/1517~(0.1%)
5	Е	0.27	0/552	0.59	0/745
6	K	0.30	0/590	0.64	0/797
7	М	0.29	0/241	0.80	1/326~(0.3%)
All	All	0.31	0/15085	0.61	13/20547~(0.1%)

There are no bond length outliers.

The worst 5 of 13 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	614	MET	CG-SD-CE	-7.51	88.18	100.20
2	В	150	LEU	CA-CB-CG	6.68	130.68	115.30
7	М	17	LEU	CA-CB-CG	6.57	130.41	115.30
1	А	310	MET	CA-CB-CG	5.86	123.26	113.30
2	В	659	MET	CG-SD-CE	-5.67	91.12	100.20

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5787	0	5646	114	0
2	В	5770	0	5547	106	0
3	С	600	0	581	17	0
4	D	1102	0	1101	20	0
5	Е	543	0	525	10	0
6	Κ	579	0	601	7	0
7	М	238	0	260	4	0
8	А	2446	0	2250	95	0
8	В	2482	0	2461	109	0
8	Κ	130	0	142	2	0
9	А	33	0	46	4	0
9	В	33	0	46	1	0
10	А	280	0	370	23	0
10	В	280	0	371	24	0
10	Κ	40	0	53	4	0
11	А	98	0	148	13	0
11	В	73	0	92	5	0
11	М	49	0	74	1	0
12	А	50	0	73	0	0
12	В	86	0	118	9	0
12	Κ	55	0	86	0	0
13	А	8	0	0	1	0
13	С	16	0	0	1	0
14	В	41	0	54	6	0
14	М	41	0	54	2	0
15	В	54	0	77	0	0
All	All	20914	0	20776	412	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

The worst 5 of 412 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:58:CYS:HB2	13:C:3003:SF4:S4	2.03	0.98
8:B:1220:CLA:HAB	8:B:1227:CLA:HAC1	1.59	0.84
1:A:72:ILE:HG22	1:A:76:HIS:CE1	2.14	0.82
2:B:582:ASN:C	2:B:582:ASN:HD22	1.82	0.82
8:B:1236:CLA:H43	10:B:4010:BCR:H10C	1.61	0.81

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	737/739~(100%)	693~(94%)	43~(6%)	1 (0%)	51	85
2	В	727/729~(100%)	695~(96%)	32~(4%)	0	100	100
3	С	78/80~(98%)	76 (97%)	2(3%)	0	100	100
4	D	139/141~(99%)	133~(96%)	6 (4%)	0	100	100
5	Е	67/69~(97%)	62 (92%)	5 (8%)	0	100	100
6	K	79/80~(99%)	67~(85%)	12 (15%)	0	100	100
7	М	29/31~(94%)	29 (100%)	0	0	100	100
All	All	1856/1869~(99%)	1755 (95%)	100 (5%)	1 (0%)	54	85

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	107	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	593/593~(100%)	593~(100%)	0	100	100
2	В	582/582~(100%)	578~(99%)	4 (1%)	84	90
3	С	68/68~(100%)	68~(100%)	0	100	100
4	D	116/116~(100%)	116~(100%)	0	100	100
5	Е	58/58~(100%)	58 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
6	K	60/60~(100%)	60~(100%)	0	100	100
7	М	25/25~(100%)	25~(100%)	0	100	100
All	All	1502/1502~(100%)	1498 (100%)	4 (0%)	92	95

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	В	7	LYS
2	В	85	ARG
2	В	533	LYS
2	В	582	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	297	HIS
1	А	608	HIS
2	В	582	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

120 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond length (or angles).

Mol	Type	Chain	Bos	Link	Bo	ond leng	\mathbf{ths}	Bond angles			
	туре		1105		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
8	CLA	В	1203	-	56,73,73	1.30	6 (10%)	$55,\!113,\!113$	1.85	7 (12%)	
8	CLA	А	1139	-	$37,\!54,\!73$	1.59	6 (16%)	$32,\!90,\!113$	2.28	<mark>6 (18%)</mark>	
8	CLA	Κ	1401	-	56,73,73	1.29	7 (12%)	$55,\!113,\!113$	2.00	10 (18%)	
8	CLA	А	1120	-	40,57,73	1.54	6 (15%)	$34,\!93,\!113$	2.42	7 (20%)	
8	CLA	А	1109	-	$51,\!68,\!73$	1.34	6 (11%)	49,107,113	2.06	10 (20%)	
8	CLA	В	1235	-	$51,\!68,\!73$	1.32	5 (9%)	49,107,113	2.13	12 (24%)	
8	CLA	А	1105	-	41,58,73	1.51	6 (14%)	$37,\!95,\!113$	2.26	8 (21%)	
8	CLA	А	1113	-	33,53,73	1.67	7 (21%)	27,89,113	2.52	<mark>8 (29%)</mark>	
8	CLA	В	1227	-	46,63,73	1.40	6 (13%)	43,101,113	2.01	9 (20%)	
8	CLA	В	1237	-	56,73,73	1.29	6 (10%)	55,113,113	2.09	11 (20%)	
10	BCR	В	4005	-	41,41,41	1.83	4 (9%)	56, 56, 56	4.38	15 (26%)	
10	BCR	K	4001	-	41,41,41	1.83	4 (9%)	56, 56, 56	4.26	14 (25%)	
8	CLA	А	1111	-	46,63,73	1.42	6 (13%)	43,101,113	2.20	10 (23%)	
8	CLA	А	1112	-	41,58,73	1.48	6 (14%)	37,95,113	2.35	9 (24%)	
8	CLA	В	1226	-	56,73,73	1.24	6 (10%)	55,113,113	2.12	12 (21%)	
8	CLA	В	1230	-	56,73,73	1.31	6 (10%)	55,113,113	2.07	11 (20%)	
8	CLA	В	1213	-	56,73,73	1.29	6 (10%)	55,113,113	2.22	13 (23%)	
8	CLA	В	1223	-	51,68,73	1.37	6 (11%)	49,107,113	2.11	9 (18%)	
8	CLA	В	1234	-	56,73,73	1.26	5 (8%)	55,113,113	2.09	11 (20%)	
10	BCR	А	4002	-	41,41,41	1.82	4 (9%)	56, 56, 56	4.40	17 (30%)	
8	CLA	А	1121	-	41,58,73	1.52	6 (14%)	$37,\!95,\!113$	2.41	10 (27%)	
8	CLA	А	1124	-	46,63,73	1.43	6 (13%)	43,101,113	2.14	8 (18%)	
8	CLA	В	1224	-	53,70,73	1.31	6 (11%)	$51,\!109,\!113$	2.06	12 (23%)	
8	CLA	В	1215	-	56,73,73	1.26	5 (8%)	$55,\!113,\!113$	2.09	10 (18%)	
8	CLA	А	1801	-	37,54,73	1.58	6 (16%)	$32,\!90,\!113$	2.25	<mark>6 (18%)</mark>	
8	CLA	В	1202	-	56,73,73	1.27	6 (10%)	55,113,113	1.91	<mark>9 (16%)</mark>	
8	CLA	А	1123	-	56,73,73	1.30	5 (8%)	$55,\!113,\!113$	2.14	11 (20%)	
10	BCR	В	4011	-	41,41,41	1.88	4 (9%)	56, 56, 56	4.36	17 (30%)	
8	CLA	А	1127	-	56,73,73	1.26	6 (10%)	$55,\!113,\!113$	2.02	14 (25%)	
8	CLA	А	1129	-	37,54,73	1.57	6 (16%)	32,90,113	2.28	6 (18%)	
8	CLA	В	1240	-	56,73,73	1.30	5 (8%)	55,113,113	2.03	10 (18%)	

Mal	Turna	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	Bond angles			
	Type	Chan	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
8	CLA	В	1238	-	56,73,73	1.28	6 (10%)	55,113,113	1.94	10 (18%)	
8	CLA	А	1133	-	56,73,73	1.29	6 (10%)	55,113,113	1.92	7 (12%)	
8	CLA	В	1211	-	37, 54, 73	1.56	5 (13%)	32,90,113	2.23	7 (21%)	
8	CLA	В	1208	-	$33,\!53,\!73$	1.68	6 (18%)	27,89,113	2.32	7 (25%)	
10	BCR	В	4010	-	41,41,41	1.83	4 (9%)	56, 56, 56	4.41	21 (37%)	
10	BCR	В	4004	-	41,41,41	1.85	4 (9%)	56, 56, 56	4.38	17(30%)	
8	CLA	А	1104	-	56,73,73	1.28	<mark>6 (10%)</mark>	$55,\!113,\!113$	1.95	10 (18%)	
8	CLA	В	1231	-	56,73,73	1.29	6 (10%)	55,113,113	1.93	9 (16%)	
12	LMG	А	5002	-	50, 50, 55	1.03	5 (10%)	58,58,63	1.08	2(3%)	
8	CLA	А	1103	-	$51,\!68,\!73$	1.34	6 (11%)	49,107,113	2.10	11 (22%)	
8	CLA	В	1219	-	56,73,73	1.29	6 (10%)	55,113,113	1.94	10 (18%)	
10	BCR	А	4003	-	41,41,41	1.79	4 (9%)	56, 56, 56	<mark>3.95</mark>	16 (28%)	
8	CLA	В	1229	-	56,73,73	1.31	7 (12%)	55,113,113	1.93	9 (16%)	
10	BCR	А	4012	-	41,41,41	1.86	4 (9%)	56, 56, 56	4.35	16 (28%)	
8	CLA	K	1402	-	56,73,73	1.30	6 (10%)	55,113,113	1.98	10 (18%)	
8	CLA	В	1023	-	$51,\!68,\!73$	1.31	6 (11%)	49,107,113	2.13	11 (22%)	
8	CLA	В	1207	-	46,63,73	1.42	6 (13%)	43,101,113	2.11	9 (20%)	
10	BCR	А	4001	-	41,41,41	1.87	4 (9%)	56, 56, 56	<mark>4.36</mark>	17 (30%)	
8	CLA	В	1209	-	56,73,73	1.30	6 (10%)	55,113,113	2.01	8 (14%)	
10	BCR	А	4019	-	41,41,41	1.85	4 (9%)	56, 56, 56	4.40	16 (28%)	
8	CLA	А	1013	-	46,63,73	1.33	5 (10%)	43,101,113	2.42	12 (27%)	
10	BCR	В	4014	-	41,41,41	1.90	4 (9%)	56, 56, 56	<mark>4.51</mark>	18 (32%)	
8	CLA	В	1214	-	56,73,73	1.29	6 (10%)	55,113,113	1.99	11 (20%)	
8	CLA	В	1217	-	56,73,73	1.29	6 (10%)	55,113,113	1.98	7 (12%)	
8	CLA	А	1126	-	$51,\!68,\!73$	1.34	6 (11%)	49,107,113	2.12	10 (20%)	
14	ECH	В	4006	-	42,42,42	0.86	1 (2%)	55,58,58	2.19	16 (29%)	
8	CLA	В	1228	-	56,73,73	1.31	6 (10%)	55,113,113	1.89	9 (16%)	
8	CLA	А	1115	-	37, 54, 73	1.53	5 (13%)	32,90,113	2.33	7 (21%)	
13	SF4	С	3003	3	$0,\!12,\!12$	0.00	-	-			
8	CLA	А	1117	-	56,73,73	1.27	6 (10%)	55,113,113	2.13	12 (21%)	
8	CLA	А	1130	-	46,63,73	1.44	6 (13%)	43,101,113	2.14	9 (20%)	
10	BCR	А	4007	-	41,41,41	1.82	4 (9%)	56, 56, 56	4.30	18 (32%)	
14	ECH	М	4021	_	$42,\!42,\!42$	0.78	0	55,58,58	2.09	16 (29%)	
8	CLA	A	1136	-	56,73,73	1.29	6 (10%)	$55,\!113,\!113$	1.95	9 (16%)	
8	CLA	В	1220	-	48,65,73	1.39	6 (12%)	45,103,113	2.19	11 (24%)	

Mal	Turne	Chain	Dog	Tink	Bo	ond leng	ths	Bond angles			
	туре	Chan	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
8	CLA	А	1108	-	33,53,73	1.71	6 (18%)	27,89,113	2.38	6 (22%)	
15	SQD	В	5008	-	53, 54, 54	0.79	0	$62,\!65,\!65$	0.90	2(3%)	
12	LMG	В	5002	-	55, 55, 55	1.13	6 (10%)	$63,\!63,\!63$	1.04	3 (4%)	
8	CLA	В	1221	-	46,63,73	1.39	5 (10%)	43,101,113	2.24	12 (27%)	
8	CLA	В	1201	-	37,54,73	1.59	6 (16%)	32,90,113	2.27	5 (15%)	
8	CLA	В	1218	-	41,58,73	1.48	6 (14%)	37,95,113	2.38	10 (27%)	
8	CLA	А	1128	-	51,68,73	1.32	6 (11%)	49,107,113	2.14	13 (26%)	
8	CLA	А	1137	-	41,58,73	1.51	6 (14%)	37,95,113	2.29	12 (32%)	
8	CLA	А	1132	-	41,58,73	1.50	<mark>6 (14%)</mark>	37,95,113	2.31	8 (21%)	
8	CLA	В	1222	-	46,63,73	1.41	<mark>6 (13%)</mark>	43,101,113	2.24	11 (25%)	
8	CLA	А	1102	-	46,63,73	1.43	6 (13%)	43,101,113	2.33	11 (25%)	
11	LHG	В	5006	-	23,23,48	0.53	0	26, 29, 54	1.37	3 (11%)	
8	CLA	А	1011	-	51,68,73	1.33	6 (11%)	49,107,113	2.15	10 (20%)	
8	CLA	А	1110	-	51,68,73	1.39	<mark>6 (11%)</mark>	49,107,113	2.12	9 (18%)	
8	CLA	В	1021	-	51,68,73	1.30	6 (11%)	49,107,113	2.24	12 (24%)	
11	LHG	А	5003	-	48,48,48	0.40	0	51,54,54	1.04	3 (5%)	
10	BCR	А	4008	-	41,41,41	1.80	4 (9%)	56, 56, 56	4.23	14 (25%)	
8	CLA	В	1205	-	46,63,73	1.43	6 (13%)	43,101,113	2.30	9 (20%)	
11	LHG	М	5001	-	48,48,48	0.40	0	51,54,54	1.05	3 (5%)	
8	CLA	А	1012	-	46,63,73	1.45	6 (13%)	43,101,113	2.13	12 (27%)	
8	CLA	А	1114	-	33,53,73	1.69	6 (18%)	27,89,113	2.40	6 (22%)	
8	CLA	А	1131	-	46,63,73	1.43	<mark>6 (13%)</mark>	43,101,113	2.19	9 (20%)	
8	CLA	В	1210	-	56,73,73	1.29	<mark>6 (10%)</mark>	55,113,113	2.06	13 (23%)	
11	LHG	А	5001	-	48,48,48	0.39	0	51,54,54	1.09	3 (5%)	
8	CLA	В	1212	-	33,53,73	1.67	6 (18%)	27,89,113	2.44	7 (25%)	
13	SF4	А	3001	1,2	0,12,12	0.00	-	-			
8	CLA	В	1239	-	56,73,73	1.30	6 (10%)	55,113,113	1.99	11 (20%)	
8	CLA	В	1204	-	37,54,73	1.58	6 (16%)	$32,\!90,\!113$	2.19	6 (18%)	
8	CLA	А	1134	-	37,54,73	1.60	6 (16%)	$32,\!90,\!113$	2.31	6 (18%)	
8	CLA	A	1119	-	56,73,73	1.30	6 (10%)	$55,\!113,\!113$	1.92	8 (14%)	
8	CLA	A	1138	-	56,73,73	1.30	6 (10%)	$55,\!113,\!11\overline{3}$	2.04	10 (18%)	
8	CLA	В	1232	-	41,58,73	1.54	7 (17%)	$37,\!95,\!113$	2.32	9 (24%)	
8	CLA	A	1122	-	$51,\!68,\!73$	1.34	6 (11%)	49,107,113	2.18	10 (20%)	
8	CLA	В	1225	-	56,73,73	1.26	5 (8%)	$55,\!113,\!113$	2.04	13 (23%)	
12	LMG	K	5009	-	55,55,55	1.14	6 (10%)	$63,\!63,\!63$	1.03	2(3%)	

Mal	Tune	Chain	Dog	Link	Bo	ond leng	ths	Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
9	PQN	А	2001	-	34,34,34	0.37	0	42,45,45	1.11	5 (11%)	
11	LHG	В	5004	-	48,48,48	0.39	0	51,54,54	1.01	3 (5%)	
8	CLA	А	1107	-	41,58,73	1.52	6 (14%)	37,95,113	<mark>2.35</mark>	8 (21%)	
8	CLA	А	1116	-	45,62,73	1.45	6 (13%)	41,99,113	2.25	13 (31%)	
8	CLA	А	1106	-	$51,\!68,\!73$	1.31	6 (11%)	49,107,113	2.11	11 (22%)	
8	CLA	А	1125	-	43,60,73	1.50	5 (11%)	39,97,113	<mark>2.39</mark>	14 (35%)	
8	CLA	А	1101	-	56,73,73	1.30	6 (10%)	55,113,113	1.95	9 (16%)	
10	BCR	В	4018	-	41,41,41	1.86	4 (9%)	56, 56, 56	4.18	18 (32%)	
8	CLA	В	1206	-	46,63,73	1.43	6 (13%)	43,101,113	<mark>2.35</mark>	11 (25%)	
8	CLA	В	1236	-	41,58,73	1.50	6 (14%)	37,95,113	2.22	11 (29%)	
9	PQN	В	2002	-	34,34,34	0.36	0	42,45,45	1.17	3 (7%)	
8	CLA	В	1216	-	46,63,73	1.42	6 (13%)	43,101,113	2.17	10 (23%)	
12	LMG	В	5005	-	31, 31, 55	0.54	0	39,39,63	1.10	2(5%)	
8	CLA	А	1118	-	37,54,73	1.55	6 (16%)	32,90,113	<mark>2.33</mark>	7 (21%)	
8	CLA	А	1135	-	56,73,73	1.27	6 (10%)	55,113,113	2.02	11 (20%)	
8	CLA	В	1022	-	51,68,73	1.37	5 (9%)	49,107,113	2.02	10 (20%)	
10	BCR	В	4017	-	41,41,41	1.86	5 (12%)	56, 56, 56	4.52	19 (33%)	
13	SF4	С	3002	3	0,12,12	0.00	-	-			
8	CLA	А	1140	-	56,73,73	1.30	6 (10%)	55,113,113	1.95	8 (14%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	CLA	В	1203	-	1/1/15/20	16/37/115/115	-
8	CLA	А	1139	-	1/1/11/20	6/15/93/115	-
8	CLA	Κ	1401	-	1/1/15/20	16/37/115/115	-
8	CLA	А	1120	-	1/1/11/20	8/18/96/115	-
8	CLA	А	1109	-	1/1/14/20	14/31/109/115	-
8	CLA	В	1235	-	1/1/14/20	16/31/109/115	_
8	CLA	А	1105	-	1/1/12/20	7/19/97/115	-
8	CLA	А	1113	-	1/1/11/20	4/11/91/115	-
8	CLA	В	1227	-	1/1/13/20	14/25/103/115	-
8	CLA	В	1237	-	1/1/15/20	16/37/115/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
10	BCR	В	4005	-	-	8/29/63/63	0/2/2/2
10	BCR	K	4001	-	_	8/29/63/63	0/2/2/2
8	CLA	А	1111	-	1/1/13/20	12/25/103/115	-
8	CLA	А	1112	-	1/1/12/20	11/19/97/115	_
8	CLA	В	1226	-	1/1/15/20	$\boxed{15/37/115/115}$	-
8	CLA	В	1230	-	1/1/15/20	18/37/115/115	-
8	CLA	В	1213	-	1/1/15/20	12/37/115/115	-
8	CLA	В	1223	-	1/1/14/20	15/31/109/115	-
8	CLA	В	1234	-	1/1/15/20	21/37/115/115	_
10	BCR	А	4002	-	_	11/29/63/63	0/2/2/2
8	CLA	А	1121	-	1/1/12/20	7/19/97/115	-
8	CLA	А	1124	-	1/1/13/20	5/25/103/115	-
8	CLA	В	1224	-	1/1/14/20	19/34/112/115	-
8	CLA	В	1215	-	1/1/15/20	21/37/115/115	-
8	CLA	А	1801	-	1/1/11/20	6/15/93/115	-
8	CLA	В	1202	-	1/1/15/20	15/37/115/115	_
8	CLA	А	1123	-	1/1/15/20	24/37/115/115	_
10	BCR	В	4011	-	_	16/29/63/63	0/2/2/2
8	CLA	А	1127	-	1/1/15/20	22/37/115/115	-
8	CLA	А	1129	-	1/1/11/20	7/15/93/115	-
8	CLA	В	1240	-	1/1/15/20	17/37/115/115	-
8	CLA	В	1238	-	1/1/15/20	17/37/115/115	-
8	CLA	А	1133	-	1/1/15/20	15/37/115/115	-
8	CLA	В	1211	-	1/1/11/20	3/15/93/115	-
8	CLA	В	1208	-	1/1/11/20	3/11/91/115	-
10	BCR	В	4010	_	-	12/29/63/63	0/2/2/2
10	BCR	В	4004	-	_	12/29/63/63	0/2/2/2
8	CLA	А	1104	-	1/1/15/20	18/37/115/115	-
8	CLA	В	1231	-	1/1/15/20	12/37/115/115	-
12	LMG	А	5002	-	-	19/45/65/70	0/1/1/1
8	CLA	А	1103	-	1/1/14/20	16/31/109/115	-
8	CLA	В	1219	-	1/1/15/20	20/37/115/115	_
10	BCR	А	4003	-	-	13/29/63/63	0/2/2/2
8	CLA	В	1229	-	1/1/15/20	16/37/115/115	-

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
10	BCR	А	4012	-	-	11/29/63/63	0/2/2/2
8	CLA	K	1402	-	1/1/15/20	18/37/115/115	-
8	CLA	В	1023	-	1/1/14/20	13/31/109/115	-
8	CLA	В	1207	-	1/1/13/20	7/25/103/115	-
10	BCR	А	4001	-	-	11/29/63/63	0/2/2/2
8	CLA	В	1209	-	1/1/15/20	23/37/115/115	-
10	BCR	А	4019	-	-	9/29/63/63	0/2/2/2
8	CLA	А	1013	-	1/1/13/20	13/25/103/115	-
10	BCR	В	4014	-	-	12/29/63/63	0/2/2/2
8	CLA	В	1214	-	1/1/15/20	16/37/115/115	-
8	CLA	В	1217	-	1/1/15/20	17/37/115/115	-
8	CLA	А	1126	-	1/1/14/20	18/31/109/115	-
14	ECH	В	4006	-	-	10/29/66/66	0/2/2/2
8	CLA	В	1228	-	1/1/15/20	21/37/115/115	-
8	CLA	А	1115	-	1/1/11/20	6/15/93/115	-
13	SF4	С	3003	3	-	-	0/6/5/5
8	CLA	А	1117	-	1/1/15/20	20/37/115/115	-
8	CLA	А	1130	-	1/1/13/20	11/25/103/115	-
10	BCR	А	4007	-	-	7/29/63/63	0/2/2/2
14	ECH	М	4021	-	-	17/29/66/66	0/2/2/2
8	CLA	А	1136	-	1/1/15/20	17/37/115/115	-
8	CLA	В	1220	-	1/1/13/20	9/28/106/115	-
8	CLA	А	1108	-	1/1/11/20	7/11/91/115	-
15	SQD	В	5008	-	-	10/49/69/69	0/1/1/1
12	LMG	В	5002	-	-	13/50/70/70	0/1/1/1
8	CLA	В	1221	-	1/1/13/20	9/25/103/115	-
8	CLA	В	1201	-	1/1/11/20	13/15/93/115	-
8	CLA	В	1218	-	1/1/12/20	10/19/97/115	-
8	CLA	А	1128	-	1/1/14/20	15/31/109/115	-
8	CLA	А	1137	-	1/1/12/20	8/19/97/115	-
8	CLA	А	1132	-	1/1/12/20	8/19/97/115	-
8	CLA	В	1222	-	1/1/13/20	7/25/103/115	_
8	CLA	А	1102	-	1/1/13/20	7/25/103/115	_
11	LHG	В	5006	_	_	17/28/28/53	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	CLA	А	1011	-	1/1/14/20	16/31/109/115	_
8	CLA	А	1110	-	1/1/14/20	16/31/109/115	_
8	CLA	В	1021	-	1/1/14/20	20/31/109/115	_
11	LHG	А	5003	-	_	29/53/53/53	_
10	BCR	А	4008	-	-	17/29/63/63	0/2/2/2
8	CLA	В	1205	-	1/1/13/20	10/25/103/115	-
11	LHG	М	5001	-	-	34/53/53/53	-
8	CLA	А	1012	-	1/1/13/20	10/25/103/115	-
8	CLA	А	1114	-	1/1/11/20	5/11/91/115	-
8	CLA	А	1131	-	1/1/13/20	13/25/103/115	_
8	CLA	В	1210	-	1/1/15/20	23/37/115/115	-
11	LHG	А	5001	-	_	30/53/53/53	_
8	CLA	В	1212	-	1/1/11/20	5/11/91/115	-
13	SF4	А	3001	1,2	-	-	0/6/5/5
8	CLA	В	1239	-	1/1/15/20	12/37/115/115	-
8	CLA	В	1204	-	1/1/11/20	6/15/93/115	-
8	CLA	А	1134	-	1/1/11/20	11/15/93/115	-
8	CLA	А	1119	-	1/1/15/20	14/37/115/115	-
8	CLA	А	1138	-	1/1/15/20	17/37/115/115	-
8	CLA	В	1232	-	1/1/12/20	9/19/97/115	-
8	CLA	А	1122	-	1/1/14/20	14/31/109/115	-
8	CLA	В	1225	-	1/1/15/20	13/37/115/115	_
12	LMG	K	5009	-	_	16/50/70/70	0/1/1/1
9	PQN	А	2001	-	_	8/23/43/43	0/2/2/2
11	LHG	В	5004	-	-	28/53/53/53	_
8	CLA	А	1107	-	1/1/12/20	4/19/97/115	_
8	CLA	А	1116	-	1/1/12/20	12/24/102/115	_
8	CLA	А	1106	-	1/1/14/20	13/31/109/115	_
8	CLA	А	1125	-	1/1/12/20	9/22/100/115	_
8	CLA	А	1101	-	1/1/15/20	15/37/115/115	_
10	BCR	В	4018	-	-	9/29/63/63	0/2/2/2
8	CLA	В	1206	-	1/1/13/20	9/25/103/115	_
8	CLA	В	1236	-	1/1/12/20	10/19/97/115	_
9	PQN	В	2002	-	-	9/23/43/43	0/2/2/2

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	CLA	В	1216	-	1/1/13/20	15/25/103/115	-
12	LMG	В	5005	-	-	6/26/46/70	0/1/1/1
8	CLA	А	1118	-	1/1/11/20	8/15/93/115	-
8	CLA	А	1135	-	1/1/15/20	17/37/115/115	-
8	CLA	В	1022	-	1/1/14/20	12/31/109/115	-
10	BCR	В	4017	-	-	10/29/63/63	0/2/2/2
13	SF4	С	3002	3	-	-	0/6/5/5
8	CLA	А	1140	-	1/1/15/20	14/37/115/115	-

The worst 5 of 599 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
10	В	4014	BCR	C10-C9	7.60	1.45	1.35
10	В	4011	BCR	C10-C9	7.41	1.45	1.35
10	А	4012	BCR	C10-C9	7.35	1.45	1.35
10	А	4019	BCR	C10-C9	7.23	1.45	1.35
10	В	4018	BCR	C10-C9	7.23	1.45	1.35

The worst 5 of 1164 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
10	В	4017	BCR	C10-C11-C12	18.17	179.92	123.22
10	А	4008	BCR	C10-C11-C12	17.82	178.84	123.22
10	А	4001	BCR	C10-C11-C12	17.71	178.50	123.22
10	В	4011	BCR	C10-C11-C12	17.58	178.09	123.22
10	А	4019	BCR	C10-C11-C12	17.52	177.90	123.22

5 of 88 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
8	А	1011	CLA	ND
8	А	1012	CLA	ND
8	А	1101	CLA	ND
8	А	1102	CLA	ND
8	А	1103	CLA	ND

5 of 1541 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms			
8	А	1011	CLA	C2A-CAA-CBA-CGA			

Mol	Chain	Res	Type	Atoms
8	А	1011	CLA	CHA-CBD-CGD-O1D
8	А	1011	CLA	CHA-CBD-CGD-O2D
8	А	1011	CLA	CBD-CGD-O2D-CED
8	А	1101	CLA	CHA-CBD-CGD-O1D

There are no ring outliers.

104 monomers are involved in 248 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
8	В	1203	CLA	1	0
8	А	1139	CLA	1	0
8	K	1401	CLA	1	0
8	А	1120	CLA	1	0
8	А	1109	CLA	6	0
8	В	1235	CLA	5	0
8	А	1105	CLA	2	0
8	В	1227	CLA	9	0
10	В	4005	BCR	3	0
10	K	4001	BCR	4	0
8	А	1111	CLA	2	0
8	А	1112	CLA	5	0
8	В	1226	CLA	4	0
8	В	1230	CLA	3	0
8	В	1213	CLA	4	0
8	В	1223	CLA	2	0
8	В	1234	CLA	5	0
10	А	4002	BCR	5	0
8	А	1124	CLA	4	0
8	В	1224	CLA	4	0
8	В	1215	CLA	4	0
8	В	1202	CLA	6	0
8	А	1123	CLA	1	0
10	В	4011	BCR	2	0
8	А	1127	CLA	5	0
8	А	1129	CLA	2	0
8	В	1240	CLA	1	0
8	B	1238	CLA	3	0
8	A	1133	CLA	3	0
8	В	1211	CLA	2	0
8	В	1208	CLA	1	0
10	В	4010	BCR	4	0
10	В	4004	BCR	4	0

8 A 1104 CLA 1 0 8 B 1231 CLA 4 0 8 B 1219 CLA 4 0 10 A 4003 BCR 2 0 8 B 1229 CLA 4 0 10 A 4012 BCR 3 0 8 B 1229 CLA 1 0 10 A 4011 BCR 3 0 8 B 1023 CLA 1 0 10 A 4019 BCR 2 0 8 A 1013 CLA 3 0 8 B 1217 CLA 4 0 8 B 1217 CLA 4 0 8 A 1126 CLA 1 0 13 C 3003 SF4 1 <th>\mathbf{Mol}</th> <th>Chain</th> <th>Res</th> <th>Type</th> <th>Clashes</th> <th>Symm-Clashes</th>	\mathbf{Mol}	Chain	Res	Type	Clashes	Symm-Clashes
8 B 1231 CLA 4 0 8 A 1103 CLA 5 0 8 B 1219 CLA 4 0 10 A 4003 BCR 2 0 8 B 1229 CLA 4 0 10 A 4012 BCR 3 0 8 B 1023 CLA 1 0 10 A 4001 BCR 3 0 10 A 4019 BCR 2 0 8 B 1209 CLA 1 0 10 A 4019 BCR 2 0 8 B 1217 CLA 3 0 10 B 4006 ECH 6 0 13 C 3003 SF4 1 0 13 C 3003 SF4 0	8	А	1104	CLA	1	0
8 A 1103 CLA 5 0 8 B 1219 CLA 4 0 10 A 4003 BCR 2 0 8 B 1229 CLA 4 0 10 A 4012 BCR 3 0 8 K 1402 CLA 1 0 10 A 4001 BCR 3 0 10 A 4019 BCR 2 0 8 B 1209 CLA 1 0 10 A 4019 BCR 2 0 8 B 1217 CLA 3 0 8 B 1228 CLA 4 0 8 A 1115 CLA 1 0 13 C 3003 SF4 1 0 14 M 4021 ECH 2<	8	В	1231	CLA	4	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	А	1103	CLA	5	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1219	CLA	4	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	А	4003	BCR	2	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1229	CLA	4	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	А	4012	BCR	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	K	1402	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1023	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	А	4001	BCR	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1209	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	А	4019	BCR	2	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	А	1013	CLA	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	В	4014	BCR	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1214	CLA	5	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1217	CLA	4	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	А	1126	CLA	6	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	В	4006	ECH	6	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1228	CLA	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	А	1115	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	С	3003	SF4	1	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	А	1117	CLA	5	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	А	1130	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	А	4007	BCR	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	М	4021	ECH	2	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	А	1136	CLA	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1220	CLA	3	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	A	1108	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	В	5002	LMG	9	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1221	CLA	4	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1218	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	A	1128	CLA	4	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	A	1137	CLA	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	A	1132	CLA	2	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	В	1222	CLA	4	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	A	1102	CLA	2	0
8 B 1021 CLA 6 0 11 A 5003 LHG 4 0 10 A 4008 BCR 5 0 8 B 1205 CLA 4 0 11 M 5001 LHG 1 0 Continued on next page	8	A	1011	CLA	2	0
11 A 5003 LHG 4 0 10 A 4008 BCR 5 0 8 B 1205 CLA 4 0 11 M 5001 LHG 1 0 Continued on next page	8	В	1021	CLA	6	0
10 A 4008 BCR 5 0 8 B 1205 CLA 4 0 11 M 5001 LHG 1 0 Continued on next page	11	A	5003	LHG	4	0
8 B 1205 CLA 4 0 11 M 5001 LHG 1 0 Continued on next page	10	A	4008	BCR	5	0
11 M 5001 LHG 1 0 Continued on next page	8	В	1205	CLA	4	0
Continued on next page	11	М	5001	LHG	1	0
		<u> </u>		1	Continu	ued on next page

Mol	Chain	Res	Type	Clashes	Symm-Clashes
8	А	1012	CLA	4	0
8	А	1131	CLA	1	0
8	В	1210	CLA	3	0
11	А	5001	LHG	9	0
8	В	1212	CLA	1	0
13	А	3001	SF4	1	0
8	В	1239	CLA	4	0
8	В	1204	CLA	2	0
8	А	1119	CLA	2	0
8	А	1138	CLA	4	0
8	В	1232	CLA	2	0
8	А	1122	CLA	3	0
8	В	1225	CLA	6	0
9	А	2001	PQN	4	0
11	В	5004	LHG	5	0
8	А	1107	CLA	2	0
8	А	1116	CLA	4	0
8	А	1106	CLA	4	0
8	А	1101	CLA	1	0
10	В	4018	BCR	4	0
8	В	1206	CLA	2	0
8	В	1236	CLA	4	0
9	В	2002	PQN	1	0
8	В	1216	CLA	5	0
8	A	1118	CLA	2	0
8	A	1135	CLA	2	0
8	В	1022	CLA	3	0
10	В	4017	BCR	5	0
8	A	1140	CLA	5	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

