

wwPDB X-ray Structure Validation Summary Report (i)

Oct 9, 2023 – 06:03 AM EDT

PDB ID	:	6WOY
Title	:	Thermus thermophilus RNA polymerase initially transcribing complex with
		3'dCTP
Authors	:	Shin, Y.; Murakami, K.S.
Deposited on	:	2020-04-26
Resolution	:	3.00 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	2092 (3.00-3.00)
Clashscore	141614	2416 (3.00-3.00)
Ramachandran outliers	138981	2333 (3.00-3.00)
Sidechain outliers	138945	2336 (3.00-3.00)
RSRZ outliers	127900	1990 (3.00-3.00)
RNA backbone	3102	1173 (3.30-2.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of c	hain	
1	А	315	24%	41%	7%	28%
1	В	315	28%	38%	5%	29%
2	С	1119	41%		51%	7% •
3	D	1505	44%		48%	7% •

Continued on next page...

Continued from previous page...

Mol	Chain	Length		Quality of chain		
4	Е	99	45%	43%)	6% 5%
5	F	423	3%	43%	6%	18%
6	G	22	14%	55%	9%	23%
7	Н	27	30%	59%		• 7%
8	Ι	3	33%	67%)	

2 Entry composition (i)

There are 11 unique types of molecules in this entry. The entry contains 28581 atoms, of which 12 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA-directed RNA polymerase subunit alpha.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	A 226	Total	С	Ν	Ο	S	0	0	0
1	A 24	220	1782	1138	310	332	2	0		
1	р	224	Total	С	Ν	0	S	0	0	0
	D	224	1767	1129	307	329	2	0	0	0

• Molecule 2 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	С	1111	Total 8770	C 5548	N 1564	O 1634	S 24	0	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase subunit beta'.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
3	D	1485	Total 11721	C 7431	N 2063	O 2192	S 35	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	86	LYS	ARG	conflict	UNP Q8RQE8

• Molecule 4 is a protein called DNA-directed RNA polymerase subunit omega.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	Е	94	Total 761	C 486	N 132	O 139	${S \atop 4}$	0	0	0

• Molecule 5 is a protein called RNA polymerase sigma factor SigA.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
5	F	346	Total 2807	C 1770	N 509	O 524	$\frac{S}{4}$	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	46	THR	ALA	conflict	UNP Q72L95

• Molecule 6 is a DNA chain called DNA (5'-D(P*TP*GP*CP*AP*TP*CP*CP*GP*TP*GP *AP*GP*TP*GP*CP*AP*G)-3').

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	G	17	Total 351	C 166	N 65	O 103	Р 17	0	0	0

• Molecule 7 is a DNA chain called DNA (25-MER).

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
7	Н	25	Total 516	C 246	N 99	0 147	Р 24	0	0	0

• Molecule 8 is a RNA chain called RNA (5'-R(*GP*CP*A)-3').

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
8	Ι	3	Total 62	C 29	N 13	0 18	Р 2	0	0	0

• Molecule 9 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	D	2	Total Mg 2 2	0	0

• Molecule 10 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	D	2	Total Zn 2 2	0	0

• Molecule 11 is 3'-DEOXY-CYTIDINE-5'-TRIPHOSPHATE (three-letter code: CH1) (formula: $C_9H_{16}N_3O_{13}P_3$).

Mol	Chain	Residues		A	Aton	ns			ZeroOcc	AltConf
11	Ι	1	Total 40	C 9	H 12	N 3	0 13	Р 3	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA-directed RNA polymerase subunit alpha

• Molecule 2: DNA-directed RNA polymerase subunit beta

Chair	ı C): 🗖				41	%										51%						7%	6•	
M1 E2 I3	F6 G7	R8 I9	K10 E11 V12	P16	P17 L18	E20	121 022	V23 E24 Gor	070	A29	L30 Q31	P35 P36	E37	R39	E40 N41	I 44 Q 45	A46	R49 E50	T51 F52		E56 G111	ASP LYS	GLY GLY	GLY GLY L64	V65 L66 D67 F68
L69 E70 Y71	G74 E75	P76	K84 E85 K86	D87 L88	091 00	P93	R97	198 199	1101	H1 02 K1 03	D104 T105 C106	L107	K109 F140	D111 D111	L115	G116 H117	1118 P119	L120 M121	T122 E123		1128 1128 1129	6131 6131	A132 D133	1136 V137	1140 1141 1142
S143 P144 G145 V146	T149	P150	K154	1162	1163 P164	L165 P166	K167 R168	1172 1172		E175 V176	E177 P178 N170	6180 6180 V181	V182	M184		R189 K190	F191 P192	L193 V194	L195 L196	L19/ R198 V100	L200 G201	Y202 D203	Q204 E205 8000	1206	E210 L211 G212 A213
Y214 G215 E216 L217	V218 Q219	G220 L221	M222 D223 E224	<mark>S225</mark> V226	F227 A228	M229 R230	E233	A234 L235	1230 R237	F238 F239	T240 L241	P244	D246	P24/ P248	R250	A2 <mark>53</mark> V254	L260	1261 A262	D263 P264	K205 R266 V767	D268 D268 1.269	G270 E271	K276	A277 E278 E279	K280 L281 G282 I283
R284 L285 L290	A291 R292	F293	E297 F298 K299	D300 E301	L304	T306	L307 R308	Y309 L310	F311 A312	G316	V317 P318 C310	H320 F321	V322 V322		H327	R331 R332	1333 R334	T335 V336	G337 E338	H340 M340 T341	D342 D343	F344 F345	L348	L351 A352	R353 G354 V355 R356
<mark>E357</mark> R358 M359 L360	M361 G362	8363 E364	1365 5366 L367	T368 P369	A370 K371		R376 P377	E379	A360	F384 F385	F386 S387 D388	8389 8389		0393 1393	r 395 K395 D396	E397	8402 8403	L404 R405	H406 K407	R408	A412 1.413	G414	L418 T419	R420 E421 R422	A423 G424 F425 D426
V427 R428 H431	R432 T433	H434 Y435	6436 R437 I438	E442	T443 P444	E445 G446	A447 N448	1449 G450	1451 1452	T453 S454		V461 V461		140/ R468	Y471 R470	R473 V474	T480	D481 E482	Y485	M480 T487	T489 F490	E491 D492	R493 Y494 m405	1495	A499 N500 T501 P502
L503 R507 I508	V513	V514 A515	K516 K517 K518	G519 E520	P521	V5.24	E528 V529	D533	8535	P536 K537	4539 V539 F540	5541 S541 V542	N543	1544 N545		E551 H552	D553 D554	R557	A558 L559	MERA	0565 0565 T566	1000 Q567 A568	V569 P570		P577 V578 <mark>V579</mark> M580
L583 E584 E585	R586 V587	V588 R589	0590 8591 1592	A593 A594	L595 Y596	E598	E599	E602 V603	K605	V606 D607	G608 N609 D610	0 TOV	R614 Vete	E616 E616	001 / G618 R619	Y623	R626	R627 F628	Y629 R630	8631 N632 D633		R640 P641	R642 V643	V 644 V 645 G 646	0647 R648 V649 R650
K651 L654 L655	A656	G664 F665	Lete AG67 L668	N671	V672 L673	V674 A675	F679	D680 G681	1682 N683	F684 E685	V689 TEOD	LOSO FRO3		R697	F699 F699 V700	T701 S702	1703 H704	I705 E706	R707 Y708	E/09 I710 E711	A712 R713	D714 D715 T715	K716 L717	G/18 P719 E720	R721 1722 T723 R724
D725 1726 P727 H728	L729 S730	D736	L(3) D738 E739	E740 G741	V742 V743	K/44 1745	G746 A747	E748 V749	P751	G752 D753	1754 L755 V756		S760 S760	r / 61 K762	S765 E766	P767 T768	P769 E770	E771 R772	L773 L774	6/18 S776 T777	E780	K781 A782	R783 D784	0787 8786 0787	T788 S789 L790 R791
V792 P793 E796	<mark>G797</mark> G798	1799 V800	V 801 R 802 T 803	V804 R805	L806 R807	6809 1809	D810 P811	6812 V813	E014 L815	K816	V819 R820 F821	E021 V822 V823	R824 R824	078 A	А 020 Ц829 К830	R831 K832	L833 0834	K838	N8 <mark>41</mark>	G844 Nove	K846	1852 L853	P854 V855	E856 D857 M858	L861 P862 D863
G864 T865 <mark>P866</mark> V867	D868 V869	1870 L871	N872 P873 L874	G875	S878 R879	M880 N881	L882 G883	1884 1885 1985	E887	T888 H889	L890 G891 1802	L092 A893	L897	0899 0899	Y901	S903 P904	1905 F906	D907 G908	A909 K910	1914 1915	E916	L918 A919	0920 4921	F926 G927	K928 R929 K930 G931
E932 G933 F934 G935	V936 D937	K938 R939	E940 V941 E942	V943 L944	R945 R946	E948	K949 L950	G951 L952 1055	T954	K957	T958 P959	E961	L963 L963	N904	0969 0969	K971	T979	I983 E984	G985 P986	198/ V988 V000	6990 1991	M992 F993	L997	1998 H999 M1000	V1001 E1002 D1003 K1004
M1005 H1006 A1007 R1008	S1009	P1012 Y1013	51014 L1015 I1016	01019	P1020 L1021	K1024	G1028	61029 01030	TEOLA	M1035 E1036	V1037 W1038	Y1043	A1045	A1046 H1047	M1052	T1054 L1055	D1058	D1059 I1060	E1061 G1062	K1063 N1064 A1066	A1066 Y1067	E1068 A1069	11070 11071 21070	K1072 G1073 E1074	P1077 E1078 P1079

S1080 E1085 F1085 F1085 F1085 F1085 F1085 F1085 F1086 F1089 F1099 F1108 F1108 F1112 F1112 F1115 F115 F1115 F115 F15

• Molecule 3: DNA-directed RNA polymerase subunit beta'

Chain D:	44%	48%	7% •
MET LYS K3 E4 K7 K7	V8 V8 110 110 111 111 111 1112 1113 1113 1113	130 137 137 138 139 139 143 144 144 144 144 144 144 144 144 144	Y555 1557 1557 1558 1559 1559 1662 1663 1665 1665 1665
670 673 674 78 879	V80 V80 K82 K83 K85 V88 V88 V88 V88 V88 V88 V88 V88 V88 V	V105 V105 V106 V110 V111 V1112 V112 V115 U116 U116 U116 U116 U116 U115 U118 U118 U118 U118 U118 U118 U118	L127 Y128 F129 S130 Y132 T133 T133 L133 L135 D136 D136 D136 D136
1141 L142 N143 G144 V145 P146 V147	R148 R149 0151 0151 1152 1153 1155 1155 1155 1156 1156 1156 1156	0175 0176 0176 0176 0178 0178 0178 0178 0188 0188 0188 0188	P193 P194 V195 V195 N196 R199 R199 C201 C201 P200 A203 A203 Y205
R206 F207 P208 R209 V211 V211	V216 K217 K217 K218 K219 K219 K220 A221 L225 L225 A226 K230 V231 K236 K236 K237 V236 K239 K239 K239 V236 K239 K239	1241 1241 1245 1245 1246 1246 1246 1246 1246 1246 1246 1246	E266 L270 L270 R274 E275 E277 E277 A280 T281 Y282
F283 L284 P285 V286 G287 M288 T289	P290 1291 1295 1296 1297 1296 1296 12300 12300 12300 12300 12300 12311 12311 12311 12313 12314 12315 12316 12316 12316 12316	R319 R319 A319 A324 E326 E326 E326 E326 E336 L333 L334 L333 L334 L335 L334 L335 L334 L335 L334 L335 L334 L335 L334 L335 L334 L335 L334 L335 L336 L335 L336 L335 L336 L335 L336 L335 L336 L336	K342 K345 D344 R345 V347 Q348 M351 N352 V352 V352 P356
E357 G358 A359 R360 V361 E362 A363	K366 1367 1368 1368 1369 1371 1371 1373 1375 1375 1376 1376 1378 1378 1378 1378 1378 1378 1378 1378	E389 1390 1391 1393 1391 1393 1395 1395 1395 1395	4409 8410 7411 6412 8414 8416 8416 8416 6418 0419 0419 0419 1421
A422 V427 K428 S429 D430 V431	7432 7435 7435 7435 7435 7435 7435 7445 7445	1450 1457 1462 1463 1465 1465 1465 1466 1466 1466 1473 1473 1473 1473 1473 1473 1473 1473	M481 M481 H483 P484 P485 R486 R486 R488 R488 R489 R489 R492 R495
L496 E497 V498 V499 R500 A501	N507 N509 E510 E510 1514 1524 1526 1526 1526 1528 N627 N627 N627 N627 N627 N627 N627 N627 N627 N627 N627 N627 N628 N628 N628 N628 N658 N6688 N668 N6688 N668 N6688 N6688 N66888 N6688 N6688 N668	1655 5538 5538 7544 7544 1546 1546 1546 15556 15556 15556 15556 15556 15556 15556 15556	1566 1566 R568 B569 B569 B570 K571 K571 R572 L574 C575 C575
L581 L582 L583 N584 G585 R586 R586	T592 R597 R598 R598 R601 R613 R613 R613 R613 R613 R613 R613 R613 R614 R615 R616 R617 R618 R621 R613 R622	D624 D624 S526 S526 S526 D624 L637 L633 L633 L633 L633 L634 C644 C644 C644 C644 C644 C644 C644 C	A649 L651 E652 F653 F653 F654 F655 F655 F655 F657 F657 K660 K660
E662 E663 K664 N669 A672	6673 8675 16675 16675 16675 16675 1667 1667 16	1034 1035 1695 1695 1695 1695 1695 1695 1700 1700 1700 1700 1700 1700 1700 1710 1711 1711 1711 1711 1711 1711	1713 4715 4715 15 1720 1724 1728 1728 1728 1728
F736 D741 G742 D743 D743 Q744	M745 A746 4746 4749 4749 7750 7756 7756 A756 A756 A756 A756 A756 A756	8771 6775 6775 8776 8776 8776 8776 8781 8782 8782 8782 8782 1798 1793 1793 1793 1793 1793	R796 R799 E798 R799 R800 R801 R801 R800 R801 R800 R803 R806 R806 R806 R806 R806 R806
E810 E811 A812 L813 A814 A815 H816	8817 8816 8816 6818 6818 6821 1827 1825 1825 1825 1825 7831 8832 8835 8835 8835 8835 8835 8835 8835	L 833 K840 Y 841 Y 842 Y 842 Y 844 Y 844 F 844 A 844 F 846 F 866 D 865 D	U864 1865 V866 V866 V866 N866 M869 M869 B873 E874 E874 E874 E874 E875 S875 S877 S877
G878 R879 1880 L881 F882 R882 R884	1885 V886 A887 A889 A889 A889 V890 V990 C12 B903 C12 C20 C20 C20 C20 C20 C20 C20 C20 C20 C2	1932 1922 1922 1922 1923 1924 1933 1933 1933 1933 1933 1933 1933 193	1943 1944 1948 1948 1952 1955 1956 1956

ESS5 L271 A357 L271 A357 A275 A357 A275 K366 C275 K366 C286 K370 E289 K370 E289 K377 K300 K376 K301 K377 K300 K377 K300 K377 K300 K377 K301 K377 K302 K376</t

• Molecule 6: DNA (5'-D(P*TP*GP*CP*AP*TP*CP*CP*GP*TP*GP*AP*GP*TP*GP*CP*A P*G)-3')

Chain G:	14%	55%	9%	23%
DC DC G4 C5 C8 C8 C8 C8	T11 612 612 613 616 616 616 619 619 619 00 00	DA		
• Molecule	7: DNA (25-MI	ER)		
Chain H:	30%	59%		• 7%
T1 A2 A4 A5 G7 G7	C12 113 114 115 115 115 115 115 115 115 115 120 120 120 122 122	C24 A25 DG		
• Molecule	8: RNA (5'-R(*	GP*CP*A)-3')		
Chain I:	33%		67%	
G1 A3 A3				

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	C 1 2 1	Depositor	
Cell constants	185.98Å 102.47Å 296.04Å	Depositor	
a, b, c, α , β , γ	90.00° 98.86° 90.00°	Depositor	
Bosolution (Å)	29.98 - 3.00	Depositor	
Resolution (A)	29.98 - 3.00	EDS	
% Data completeness	96.5(29.98-3.00)	Depositor	
(in resolution range)	96.5(29.98-3.00)	EDS	
R_{merge}	(Not available)	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$2.21 (at 3.00 \text{\AA})$	Xtriage	
Refinement program	PHENIX 1.15.2_3472	Depositor	
D D	0.206 , 0.219	Depositor	
Λ, Λ_{free}	0.207 , 0.221	DCC	
R_{free} test set	2002 reflections $(1.88%)$	wwPDB-VP	
Wilson B-factor $(Å^2)$	79.7	Xtriage	
Anisotropy	0.748	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.28 , 55.5	EDS	
L-test for $twinning^2$	$ < L >=0.49, < L^2>=0.32$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
F_o, F_c correlation	0.95	EDS	
Total number of atoms	28581	wwPDB-VP	
Average B, all atoms $(Å^2)$	84.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.27% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, CH1, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bo	ond angles
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.46	0/1814	0.67	0/2466
1	В	0.45	0/1799	0.63	0/2447
2	С	0.47	0/8937	0.63	1/12087~(0.0%)
3	D	0.51	1/11927~(0.0%)	0.66	0/16127
4	Е	0.43	0/775	0.58	0/1045
5	F	0.45	0/2852	0.61	0/3837
6	G	1.12	3/393~(0.8%)	1.11	3/605~(0.5%)
7	Н	0.98	0/580	1.02	1/895~(0.1%)
8	Ι	0.80	0/69	1.46	0/106
All	All	0.51	4/29146~(0.0%)	0.67	5/39615~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	2
2	С	0	2
3	D	0	6
All	All	0	11

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
3	D	301	GLY	C-N	7.26	1.50	1.34
6	G	12	DG	C3'-O3'	-5.67	1.36	1.44
6	G	13	DA	C3'-O3'	-5.53	1.36	1.44
6	G	14	DG	C3'-O3'	-5.10	1.37	1.44

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Н	5	DA	O4'-C1'-N9	6.27	112.39	108.00
6	G	16	DG	OP1-P-OP2	6.14	128.81	119.60
6	G	16	DG	O4'-C4'-C3'	-6.01	102.10	104.50
2	С	107	LEU	CA-CB-CG	5.90	128.87	115.30
6	G	13	DA	O4'-C4'-C3'	-5.80	102.18	104.50

All (5) bond angle outliers are listed below:

There are no chirality outliers.

5 of 11 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	46	SER	Peptide
1	В	46	SER	Peptide
1	В	58	ILE	Peptide
2	С	268	ASP	Peptide
2	С	766	GLU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1782	0	1834	173	0
1	В	1767	0	1816	186	0
2	С	8770	0	8874	732	1
3	D	11721	0	11941	967	2
4	Е	761	0	778	59	0
5	F	2807	0	2882	263	1
6	G	351	0	192	19	0
7	Н	516	0	283	28	0
8	Ι	62	0	34	3	0
9	D	2	0	0	0	0
10	D	2	0	0	0	0
11	Ι	28	12	11	2	0
All	All	28569	12	28645	2219	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 39.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
7:H:15:DT:H2"	7:H:16:DC:H5'	1.22	1.16
5:F:338:LEU:HD23	5:F:339:PRO:HD2	1.21	1.13
1:A:206:THR:HG22	1:A:209:GLU:HG3	1.24	1.11
3:D:203:ALA:HB1	3:D:393:ILE:HD11	1.31	1.10
2:C:1012:PRO:HB2	2:C:1021:LEU:HD13	1.32	1.08

The worst 5 of 2219 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:C:70:GLU:OE2	3:D:1151:ARG:NH1[3_545]	2.04	0.16
3:D:296:GLU:OE2	5:F:222:ARG:NH1[4_1149]	2.12	0.08

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	224/315~(71%)	183 (82%)	40 (18%)	1 (0%)	34	72
1	В	222/315~(70%)	187 (84%)	33 (15%)	2 (1%)	17	55
2	С	$1107/1119 \ (99\%)$	971 (88%)	133 (12%)	3 (0%)	41	76
3	D	1481/1505~(98%)	1302 (88%)	172 (12%)	7 (0%)	29	68
4	Е	92/99~(93%)	81 (88%)	11 (12%)	0	100	100
5	F	344/423~(81%)	293~(85%)	51 (15%)	0	100	100
All	All	3470/3776~(92%)	3017 (87%)	440 (13%)	13 (0%)	34	72

5 of 13 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	37	GLY
3	D	276	ASP
1	А	154	GLU
1	В	36	LEU
3	D	275	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	199/273~(73%)	166~(83%)	33~(17%)	2	11
1	В	197/273~(72%)	180 (91%)	17 (9%)	10	37
2	С	936/941~(100%)	823 (88%)	113 (12%)	5	21
3	D	1249/1265~(99%)	1115 (89%)	134 (11%)	6	26
4	Ε	83/88~(94%)	77~(93%)	6 (7%)	14	45
5	F	301/371~(81%)	268 (89%)	33 (11%)	6	25
All	All	2965/3211~(92%)	2629~(89%)	336 (11%)	6	24

 $5~{\rm of}~336$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	D	600	LEU
3	D	1394	VAL
3	D	679	ARG
3	D	982	PHE
4	Е	74	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 34 such sidechains are listed below:

Mol	Chain	Res	Type
3	D	1442	ASN
4	Е	86	GLN
5	F	248	ASN
2	С	834	GLN

Continued on next page...

Continued from previous page...

\mathbf{Mol}	Chain	\mathbf{Res}	Type
2	С	728	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
8	Ι	2/3~(66%)	0	0

There are no RNA backbone outliers to report.

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 4 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Tuno	Type Chain	Chain	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
	туре		nam res		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
11	CH1	Ι	101	9	24,29,29	3.05	9 (37%)	33,45,45	1.53	7 (21%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	CH1	Ι	101	9	-	5/22/34/34	0/2/2/2

The worst 5 of 9 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
11	Ι	101	CH1	C3'-C2'	-10.67	1.24	1.52
11	Ι	101	CH1	O4'-C1'	-5.91	1.28	1.42
11	Ι	101	CH1	O2-C2	-3.59	1.17	1.23
11	Ι	101	CH1	C2-N1	-3.33	1.32	1.40
11	Ι	101	CH1	C4-N4	3.26	1.41	1.33

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
11	Ι	101	CH1	O4'-C4'-C3'	-3.87	100.08	105.07
11	Ι	101	CH1	O4'-C1'-N1	3.51	116.38	108.36
11	Ι	101	CH1	PB-O3A-PA	-2.96	122.68	132.83
11	Ι	101	CH1	PB-O3B-PG	-2.20	125.28	132.83
11	Ι	101	CH1	C2'-C3'-C4'	2.06	106.82	102.94

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	Ι	101	CH1	C3'-C4'-C5'-O5'
11	Ι	101	CH1	O4'-C4'-C5'-O5'
11	Ι	101	CH1	PB-O3A-PA-O1A
11	Ι	101	CH1	PB-O3A-PA-O2A
11	Ι	101	CH1	C2'-C1'-N1-C2

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
11	Ι	101	CH1	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be

highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	226/315~(71%)	-0.53	0 100 100	58, 79, 98, 110	0
1	В	224/315~(71%)	-0.49	0 100 100	59, 85, 110, 122	0
2	С	1111/1119 (99%)	-0.41	2 (0%) 95 87	47, 81, 125, 144	0
3	D	1485/1505~(98%)	-0.44	0 100 100	40, 75, 122, 141	0
4	Е	94/99~(94%)	-0.43	0 100 100	57, 90, 116, 121	0
5	F	346/423~(81%)	-0.25	12 (3%) 44 18	57, 88, 138, 150	0
6	G	17/22~(77%)	-0.01	0 100 100	64, 92, 152, 155	0
7	Н	25/27~(92%)	-0.32	0 100 100	77, 106, 149, 157	0
8	Ι	3/3~(100%)	-0.79	0 100 100	72, 72, 73, 75	0
All	All	3531/3828~(92%)	-0.42	14 (0%) 92 79	40, 81, 126, 157	0

The worst 5 of 14 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
5	F	360	LYS	3.4
5	F	376	ILE	3.3
5	F	375	LEU	3.2
2	С	219	GLN	3.0
5	F	381	HIS	2.9

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
9	MG	D	2002	1/1	0.90	0.18	64,64,64,64	0
11	CH1	Ι	101	28/28	0.91	0.17	59,77,94,100	0
9	MG	D	2001	1/1	0.97	0.14	47,47,47,47	0
10	ZN	D	2004	1/1	0.98	0.17	76,76,76,76	0
10	ZN	D	2003	1/1	0.98	0.13	96,96,96,96	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

