

Full wwPDB NMR Structure Validation Report (i)

Jun 6, 2020 - 06:13 am BST

:	6RIO
:	Imidazole Polyamide-DNA complex NMR structure (5'-CGATGTACATCG-
	3')
:	Padroni, G.; Withers, J.M.; Taladriz-Sender, A.; Reichenbach, L.F.; Parkin-
	son, J.A.; Burley, G.A.
:	2019-04-24
	:

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

NmrClust MolProbity Mogul buster-report Percentile statistics RCI PANAV ShiftChecker Ideal geometry (proteins) Ideal geometry (DNA, RNA)	1.8.5 (274361), CSD as541be (2020) 1.1.7 (2018)
Ideal geometry (DNA, RNA) Validation Pipeline (wwPDB-VP)	Parkinson et al. (1996) 2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION \ NMR$

The overall completeness of chemical shifts assignment is 41%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value
Clashscore		0
	Worse	Better
	Percentile relative to all structures	
	Percentile relative to all NMR structures	
	Whole archive NMB archive	

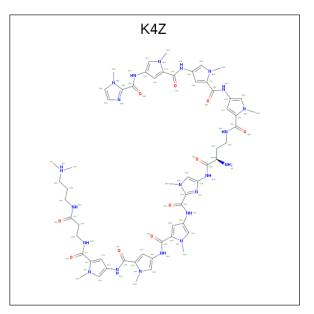
Metric	$egin{array}{llllllllllllllllllllllllllllllllllll$	${f NMR} { m archive} \ (\#{ m Entries})$
Clashscore	158937	12864

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chai	n
1	А	12	8% 67%	25%
1	В	12	8% 75%	17%

2 Ensemble composition and analysis (i)

This entry contains 10 models. This entry does not contain polypeptide chains, therefore identification of well-defined residues and clustering analysis are not possible. All residues are included in the validation scores.


3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 924 atoms, of which 348 are hydrogens and 0 are deuteriums.

• Molecule 1 is a DNA chain called DNA (5'-(*(DC5)P*GP*AP*TP*GP*TP*AP*CP*AP*T P*CP*(DG3))-3').

Mol	Chain	Residues		1	Atom	S			Trace
1	1 A	19	Total	С	Η	Ν	Ο	Р	0
		12	380	117	137	45	70	11	0
1	1 B	12	Total	С	Η	Ν	Ο	Р	0
		12	380	117	137	45	70	11	0

• Molecule 2 is 3-[3-[[4-[[4-[[4-[[(2 {R})-2-azaniumyl-4-[[1-methyl-4-[1-methyl-4-[[1-methyl-4-[[1-methyl-4-[[1-methyl-4-[[1-methyl-4-[[1-methyl-4-[1-methyl-4-[[1-methyl-4-[1-methyl-4-[[1-methyl-4-[1-methyl-4-[1-methyl-4-[1-methyl-4-[1-methyl-4-[[1-methyl-4-[1-methyl

Mol	Chain	Residues	Atoms				
	Λ	1	Total	С	Η	Ν	0
	2 A		164	58	74	22	10

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: DNA (5'-(*(DC5)P*GP*AP*TP*GP*TP*AP*CP*AP*TP*CP*(DG3))-3')

Chain A:	8%	67%	25%	
71 74 75 75 75 75 75 75 75 75 75 75	A 90 110 611 612			
• Molecule	e 1: DNA (5'-(*(DC5)P*	GP*AP*TP*GP*TP*AP	*CP*AP*TP*CP*(]	DG3))-3')
Chain B:	8%	75%	17%	
713 614 716 617 617 718 718	A 21 172 172 123 123 123 123			

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

Chain A:	8%	58%	33%
71 14 14 14 14 14 14 14 14 14 14 14 14 14	A9 T10 G11 G12		
• Molecule	1: DNA (5'-(*(DC5)	P*GP*AP*TP*GP*TP*AP*	CP*AP*TP*CP*(DG3))-3')
Chain B:	8%	58%	33%
<mark>713</mark> 614 716 617 718 718 718 718 720	A21 122 C23 G24 G24		

4.2.2 Score per residue for model 2

Chain A: 8%	50%	42%	
61110 6110 610 6	3070	42.70	
• Molecule 1: DNA (5	o'-(*(DC5)P*GP*AP*T	`P*GP*TP*AP*CP*AP*T	P*CP*(DG3))-3'
Chain B: 8%	58%	33%	_
713 614 615 716 617 718 718 720 723 722 723 624 624			
4.2.3 Score per re	sidue for model 3		
• Molecule 1: DNA (5	o'-(*(DC5)P*GP*AP*T	P*GP*TP*AP*CP*AP*T	CP*CP*(DG3))-3')
Chain A: 8%	58%	33%	_
<mark>21</mark> 62 62 63 65 74 87 749 0110 0110 0111 0111			
• Molecule 1: DNA (5	5'-(*(DC5)P*GP*AP*T	P*GP*TP*AP*CP*AP*T	CP*CP*(DG3))-3')
Chair D.			
Chain B: 8%	75%	17%	
13 14 15 14 15 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 12 <th12< th=""> 12 12 12<!--</td--><td></td><td></td><td></td></th12<>			
4.2.4 Score per re	sidue for model 4		
• Molecule 1: DNA (5	5'-(*(DC5)P*GP*AP*T	P*GP*TP*AP*CP*AP*T	CP*CP*(DG3))-3')
Chain A: 8%	58%	33%	
<mark>13</mark> 88 88 88 89 89 80 89 110 82 110 88 88 88 88 88 88 88 88 88 88 88 88 88			
• Molecule 1: DNA (5	5'-(*(DC5)P*GP*AP*T	P*GP*TP*AP*CP*AP*T	CP*CP*(DG3))-3')
Chain B: 8%	67%	25%	_
713 614 716 716 719 719 719 720 723 723 723 723 723 723			

4.2.5 Score per residue for model 5

Chain A: 8%	58%	33%	•
71 62 63 65 74 76 75 79 61 710 612 612			
• Molecule 1: DNA (5'-	(*(DC5)P*GP*AP*TP*	GP*TP*AP*CP*AP*TP	*CP*(DG3))-3')
Chain B: 8%	75%	17%	-
713 614 116 116 116 116 118 118 120 123 122 123 123 123			
4.2.6 Score per resi	due for model 6		
• Molecule 1: DNA (5'-	(*(DC5)P*GP*AP*TP*	GP*TP*AP*CP*AP*TP	*CP*(DG3))-3')
Chain A: 8%	67%	25%	-
21 82 85 85 87 85 87 80 81 80 81 81 81 81 81 81 81 81 81 81 81 81 81			
• Molecule 1: DNA (5'-	(*(DC5)P*GP*AP*TP*	GP*TP*AP*CP*AP*TP'	*CP*(DG3))-3')
Chain B: 25%	58%	17%	-
713 614 116 116 117 116 719 719 720 720 723 723 723 723 723 723			
4.2.7 Score per resi	due for model 7		
• Molecule 1: DNA (5'-	(*(DC5)P*GP*AP*TP*	GP*TP*AP*CP*AP*TP	*CP*(DG3))-3')
Chain A: 8%	75%	17%	-
22 23 23 23 23 23 23 23 23 23 23 23 23 2			
• Molecule 1: DNA (5'-	(*(DC5)P*GP*AP*TP*	GP*TP*AP*CP*AP*TP'	*CP*(DG3))-3')
Chain B: 8%	83%	8%	•
718 116 116 116 116 116 117 122 122 122 122 122 122 122			

4.2.8 Score per residue for model 8

• Molecule 1: DNA (5'-(*(DC5)P*GP*AP*TP*GP*TP*AP*CP*AP*TP*CP*(DG3))-3')

Chain A:	17%	58%	25%		
21 62 65 65 75 82 83 83 83 83 83 83 83 83 83 83 83 83 83	T10 C11 C12				
• Molecule	1: DNA (§	5'-(*(DC5)P*GP*AP*TP*GP*TP	*AP*CP*AP*TP*CP*(DG3))-	3')	
Chain B:	8%	83%	8%		
713 713 713 714 714 715 714 716 717 716 717 717 713 <th 713<="" td="" th<=""><td>A21 722 623 624</td><td></td><td></td><td></td></th>	<td>A21 722 623 624</td> <td></td> <td></td> <td></td>	A21 722 623 624			
4.2.9 Sco		esidue for model 9			
4.2.9 500	bre per re	islaue for model 9			
• Molecule	1: DNA (5	5'-(*(DC5)P*GP*AP*TP*GP*TP	*AP*CP*AP*TP*CP*(DG3))-	3')	
Chain A:	8%	75%	17%		
<mark>31</mark> 116 116 116 117 117 117 117 117 117 117	49 C11 G12 G12				

• Molecule 1: DNA (5'-(*(DC5)P*GP*AP*TP*GP*TP*AP*CP*AP*TP*CP*(DG3))-3')

Chain B: 8%	75%	17%
213 614 615 614 615 617 718 718 718 721 722 723 723 723 723 723 723 723		

4.2.10 Score per residue for model 10

Chain A:	8%	67%	25%
<mark>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 </mark>	AD 7110 011 012 012		
• Molecule	e 1: DNA (5'-(*(DC5)P*	GP*AP*TP*GP*TP*AP*CP	*AP*TP*CP*(DG3))-3')
Chain B:	8%	83%	8%
713 614 715 716 717 718 719 719 719	81 122 123 124 122 124 122 122 122 122 122 122 122		

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: molecular dynamics, matrix relaxation.

Of the 2000 calculated structures, 10 were deposited, based on the following criterion: *structures with the least restraint violations*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
Amber	refinement	
Amber	structure calculation	
MARDIGRAS	structure calculation	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 6 of this report.

Chemical shift file(s)	input_cs.cif
Number of chemical shift lists	1
Total number of shifts	255
Number of shifts mapped to atoms	254
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	1
Assignment completeness (well-defined parts)	41%

No validations of the models with respect to experimental NMR restraints is performed at this time.

COVALENT-GEOMETRY INFOmissingINFO

5.1 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	243	137	137	0±0
2	А	90	74	0	0±0
All	All	5760	3480	2740	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

Atom-1	Atom-2	n-2 Clash(Å) Distance(Å)		Models		
Atom-1	Atom-2	Clash(A) Distance(A)	Worst	Total		
1:A:8:DC:H1'	2:A:101:K4Z:C63	0.41	2.46	1	1	

All unique clashes are listed below, sorted by their clash magnitude.

5.2 Torsion angles (i)

5.2.1 Protein backbone (i)

There are no protein molecules in this entry.

5.2.2 Protein sidechains (i)

There are no protein molecules in this entry.

5.2.3 RNA (i)

There are no RNA molecules in this entry.

5.3 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

Mol	Turne	Chain	Dec	Res Link Bond lengths		ths	
	туре	Chain	nes		Counts	RMSZ	#Z>2
1	DCZ	А	1	1	15,17,17	$0.94{\pm}0.02$	0±0 (0±0%)
1	DCZ	В	13	1	$15,\!17,\!17$	$0.96 {\pm} 0.02$	0±0 (0±0%)

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of

the bond angles.

Mal	Tuno	Chain	Pos	Tink	Bond angles		
WIOI	туре	Chain	nes	LINK	Counts	RMSZ	$\#Z{>}2$
1	DCZ	А	1	1	17,24,24	$0.87 {\pm} 0.04$	0±0 (0±0%)
1	DCZ	В	13	1	17,24,24	$0.88 {\pm} 0.05$	0±0 (0±0%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
1	DCZ	В	13	1	-	$0\pm0,3,18,18$	$0\pm0,2,2,2$
1	DCZ	А	1	1	-	$0\pm0,3,18,18$	$0\pm0,2,2,2$

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

5.4 Carbohydrates (i)

There are no carbohydrates in this entry.

LIGAND-GEOMETRY INFOmissingINFO

5.5 Other polymers (i)

There are no such molecules in this entry.

5.6 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 41% for the well-defined parts and 41% for the entire structure.

6.1 Chemical shift list 1

File name: input_cs.cif

Chemical shift list name: $starch_output$

6.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	255
Number of shifts mapped to atoms	254
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	1
Number of shift outliers (ShiftChecker)	7

The following assigned chemical shifts were not mapped to the molecules present in the coordinate file.

• No matching atoms found in structure. The only occurrence is reported below.

Chain	Dog	Turne	Atom		Shift Dat	a
Chain	nes	туре	Atom	Value	Shift Dat Uncertainty	Ambiguity
A	101	K4Z	H941	2.249	0.002	1

6.1.2 Chemical shift referencing (i)

No chemical shift referencing corrections were calculated (not enough data).

6.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 41%, i.e. 179 atoms were assigned a chemical shift out of a possible 434. 0 out of 0 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	0/0~(%)	0/0~(-%)	$0/0 \ (-\%)$	$0/0 \ (\%)$
Sidechain	0/0 (%)	0/0~(-%)	0/0 (%)	$0/0 \ (-\%)$
Aromatic	$0/0 \ (\%)$	0/0~(-%)	$0/0 \ (-\%)$	$0/0 \ (-\%)$
Overall	179/434~(41%)	179/258~(69%)	0/148~(0%)	0/28~(0%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 41%, i.e. 179 atoms were assigned a chemical shift out of a possible 434. 0 out of 0 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	0/0~(-%)	0/0~(-%)	0/0 (%)	0/0 (%)
Sidechain	0/0~(-%)	0/0~(-%)	0/0 (%)	0/0 (-%)
Aromatic	0/0~(-%)	0/0~(-%)	0/0 (%)	0/0 (%)
Overall	179/434~(41%)	179/258~(69%)	0/148~(0%)	0/28~(0%)

6.1.4 Statistically unusual chemical shifts (i)

The following table lists the statistically unusual chemical shifts. These are statistical measures, and large deviations from the mean do not necessarily imply incorrect assignments. Molecules containing paramagnetic centres or hemes are expected to give rise to anomalous chemical shifts.

Mol	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
1	В	18	DT	H4'	2.08	5.65 - 2.55	-6.5
1	А	6	DT	H4'	2.14	5.65 - 2.55	-6.3
1	А	8	DC	H4'	1.95	5.92 - 2.32	-6.0
1	В	19	DA	H4'	2.49	5.86 - 2.76	-5.9
1	А	7	DA	H4'	2.49	5.86 - 2.76	-5.9
1	А	9	DA	H4'	2.55	5.86 - 2.76	-5.7
1	В	20	DC	H4'	2.18	5.92 - 2.32	-5.4

6.1.5 Random Coil Index (RCI) plots (1)

No random coil index (RCI) plot could be generated from the current chemical shift list (starch_output). RCI is only applicable to proteins.

