wwPDB EM Validation Summary Report (i)

Oct 1, 2023 - 10:05 PM EDT

```
    PDB ID : 6N4U
EMDB ID : EMD-0343
Title : MicroED structure of Proteinase K at 2.75 A resolution from a single milled crystal.
Authors : Martynowycz, M.W.; Zhao, W.; Hattne, J.; Jensen, G.J.; Gonen, T.
Deposited on : 2018-11-20
Resolution : \(2.75 \AA\) (reported)
Based on initial model : 5I9S
```

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs\#types.

The following versions of software and data (see references (i)) were used in the production of this report:

```
        EMDB validation analysis : 0.0.1.dev50
                            Mogul : 1.8.5 (274361), CSD as541be (2020)
            MolProbity : FAILED
        Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
            MapQ : 1.9.9
    Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.35.1
```


1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: ELECTRON CRYSTALLOGRAPHY

The reported resolution of this entry is $2.75 \AA$.
There are no overall percentile quality scores available for this entry.
MolProbity failed to run properly - the sequence quality summary graphics cannot be shown.

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 2057 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Proteinase K.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	207	ASP	SER	conflict	UNP P06873

- Molecule 2 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms		AltConf
2	A	2	Total 2	Ca 2	0

- Molecule 3 is SULFATE ION (three-letter code: SO4) (formula: $\mathrm{O}_{4} \mathrm{~S}$).

Mol	Chain	Residues	Atoms			AltConf
3	A	1	Total 5 4 O	0		

- Molecule 4 is water.

| Mol | Chain | Residues | Atoms | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | A | 23 | Total
 23 O
 23 | 0 |

MolProbity failed to run properly - this section is therefore empty.

3 Experimental information (i)

Property	Value	Source
EM reconstruction method	CRYSTALLOGRAPHY	Depositor
Imposed symmetry	3D CRYSTAL, $a=67.46 \AA, \quad b=67.46 \AA$, $c=106.67 \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$, space group $=\mathrm{P} 43212$	Depositor
Number of images used	Not provided	
Resolution determination method	DIFFRACTION PATTERN/LAYERLINES	Depositor
CTF correction method	NONE; NONE	Depositor
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $\left(e^{-} / \AA^{2}\right)$	0.04	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI CETA (4k x 4k)	Depositor
Maximum map value	5.081	Depositor
Minimum map value	-3.936	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.980	Depositor
Recommended contour level	1.46937	Depositor
Map size (\AA)	67.46, 67.46, 106.67	wwPDB
Map dimensions	75, 79, 72	wwPDB
Map angles (${ }^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (A)	0.6746, 0.6746, 0.6666875	Depositor

4 Model quality (i)

4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 2 are monoatomic - leaving 1 for Mogul analysis.
In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond
length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
					Counts	RMSZ	$\#\|Z\|>2$	Counts	RMSZ	$\#\|Z\|>2$
3	SO4	A	303	-	$4,4,4$	0.14	0	$6,6,6$	0.11	0

There are no bond length outliers.
There are no bond angle outliers.
There are no chirality outliers.
There are no torsion outliers.
There are no ring outliers.
No monomer is involved in short contacts.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Map visualisation

This section contains visualisations of the EMDB entry EMD-0343. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

5.1 Orthogonal projections (i)

5.1.1 Primary map

X

Y

Z

The images above show the map projected in three orthogonal directions.

5.2 Central slices (i)

5.2.1 Primary map

X Index: 36

Y Index: 39

Z Index: 37

The images above show central slices of the map in three orthogonal directions.

5.3 Largest variance slices (i)

5.3.1 Primary map

X Index: 43

Y Index: 37

Z Index: 44

The images above show the largest variance slices of the map in three orthogonal directions.

5.4 Orthogonal standard-deviation projections (False-color)

5.4.1 Primary map

X

Y

Z

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

5.5 Orthogonal surface views (i)

5.5.1 Primary map

X

Y

Z

The images above show the 3D surface view of the map at the recommended contour level 1.46937. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

5.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

6 Map analysis (i)

This section contains the results of statistical analysis of the map.

6.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x -axis. The y -axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

6.2 Volume estimate (i)

The volume at the recommended contour level is $11 \mathrm{~nm}^{3}$; this corresponds to an approximate mass of 10 kDa .

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

6.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum is only generated for cubic maps.

7 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

8 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-0343 and PDB model 6N4U. Per-residue inclusion information can be found in section ?? on page ??.

8.1 Map-model overlay (i)

X

Y

The images above show the 3D surface view of the map at the recommended contour level 1.46937 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

8.2 Q-score mapped to coordinate model (i)

X

Y

Z

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

8.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (1.46937).

8.4 Atom inclusion (i)

At the recommended contour level, 77% of all backbone atoms, 72% of all non-hydrogen atoms, are inside the map.

8.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (1.46937) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7240	0.6420
A	0.7240	0.6420

