

wwPDB EM Validation Summary Report (i)

Mar 20, 2024 – 03:16 AM JST

PDB ID	:	6KWY
EMDB ID	:	EMD-0781
Title	:	human PA200-20S complex
Authors	:	Ouyang, S.; Hongxin, G.
Deposited on	:	2019-09-09
Resolution	:	2.72 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.72 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	(# Entries)	(#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	234	90%	• 8%
1	О	234	37%	•••
2	В	261	79%	• 19%
2	Р	261	94%	• 5%
3	С	248	83%	• 15%
3	Q	248	94%	6%
4	D	241	94%	6%
4	R	241	40% 96%	• •
5	Е	263	89%	• 9%

Continued on next page...

Mol	Chain	Length	Quality of chain	
~	C	000	32%	
G	5	263	90%	10%
6	F	255	93%	
			32%	
6	Т	255	92%	• 6%
7	G	246	20%	
•		- 10	48%	
7	U	246	98%	• •
0	п	977	11%	
0	П	211	18%	21%
8	V	277	79%	21%
0	т	005	9%	
9	1	205	98%	•
9	W	205	98%	
10	т	201	11%	
10	J	201	98%	•
10	Х	201	97%	·
			6%	
11	K	263	76%	24%
11	Y	263	75%	24%
	-	_00	13%	2170
12	L	241	86%	• 12%
12	Z	241	11%	1.20/
12		211		12 70
13	М	264	81%	18%
19	0	264	9%	
15	a	204	82%	18%
14	Ν	239	85%	15%
14	1	020	10%	
14	b	239	85%	15%
15	с	1878	92%	

Continued from previous page...

2 Entry composition (i)

There are 17 unique types of molecules in this entry. The entry contains 62505 atoms, of which 6 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Proteasome subunit alpha type-2.

Mol	Chain	Residues		Ate	AltConf	Trace			
1	А	215	Total 1671	C 1069	N 285	0 311	S 6	0	0
1	0	230	Total 1779	C 1136	N 301	O 336	S 6	0	0

• Molecule 2 is a protein called Proteasome subunit alpha type-4.

Mol	Chain	Residues		At		AltConf	Trace		
2	В	212	Total 1645	C 1040	N 277	0 319	S 9	0	0
2	Р	247	Total 1919	C 1211	N 326	0 371	S 11	2	0

• Molecule 3 is a protein called Proteasome subunit alpha type-7.

Mol	Chain	Residues		At	AltConf	Trace			
9	C	010	Total	С	Ν	0	S	0	0
	212	1641	1032	290	314	5	0		
9	0	024	Total	С	Ν	0	S	0	0
3 Q	Q	204	1817	1141	318	353	5	0	0

• Molecule 4 is a protein called Proteasome subunit alpha type-5.

Mol	Chain	Residues		At		AltConf	Trace		
4	D	227	Total 1741	C 1099	N 286	0 345	S 11	0	0
4	R	233	Total 1768	C 1112	N 294	0 351	S 11	0	0

• Molecule 5 is a protein called Proteasome subunit alpha type-1.

Mol	Chain	Residues		At		AltConf	Trace		
5	5 E	240	Total	С	Ν	Ο	\mathbf{S}	0	0
J E			1881	1180	339	350	12		0
5	q	228	Total	С	Ν	0	\mathbf{S}	3	0
5	U U	230	1871	1173	338	349	11	5	0

• Molecule 6 is a protein called Proteasome subunit alpha type-3.

Mol	Chain	Residues		At	AltConf	Trace			
6	Б	245	Total	С	Ν	Ο	\mathbf{S}	0	0
ОГ	240	1909	1210	326	361	12	0	U	
6	Т	240	Total	С	Ν	0	S	1	0
0 1	240	1867	1186	320	349	12	1	U	

• Molecule 7 is a protein called Proteasome subunit alpha type-6.

Mol	Chain	Residues		At		AltConf	Trace		
7	G	237	Total 1860	C 1183	N 309	O 355	S 13	1	0
7	U	244	Total 1885	C 1196	N 316	O 360	S 13	0	0

• Molecule 8 is a protein called Proteasome subunit beta type-7.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	Н	220	Total 1672	C 1053	N 286	O 320	S 13	2	0
8	V	220	Total 1655	C 1042	N 278	0 322	S 13	2	0

• Molecule 9 is a protein called Proteasome subunit beta type-3.

Mol	Chain	Residues	Atoms					AltConf	Trace
0	Т	204	Total	С	Ν	0	\mathbf{S}	6	0
9	9 1	204	1633	1039	274	301	19	0	0
0	W	204	Total	С	Ν	0	\mathbf{S}	9	0
9	vv	204	1604	1021	269	295	19		0

• Molecule 10 is a protein called Proteasome subunit beta type-2.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	J	196	Total 1561	C 1001	N 264	O 287	S 9	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
10	Х	196	Total 1574	C 1008	N 267	O 289	S 10	1	0

• Molecule 11 is a protein called Proteasome subunit beta type-5.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	K	201	Total	С	Ν	0	S	0	0
	IX	201	1543	974	267	293	9	0	0
11	v	100	Total	С	Ν	0	S	3	0
11	Ĩ	199	1564	988	275	291	10	5	

• Molecule 12 is a protein called Proteasome subunit beta type-1.

Mol	Chain	Residues	Atoms					AltConf	Trace	
19	т	012	Total	С	Ν	0	\mathbf{S}	2	0	
12 L		213	1656	1048	283	314	11	2	0	
19	7	012	Total	С	Ν	0	S	1	0	
12	Z	L	215	1644	1043	281	309	11		U

• Molecule 13 is a protein called Proteasome subunit beta type-4.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	М	216	Total	С	Ν	0	\mathbf{S}	0	0
10 10	111	210	1687	1064	291	320	12	0	0
12	0	216	Total	С	Ν	0	S	1	0
15	a	210	1688	1065	291	320	12		0

• Molecule 14 is a protein called Proteasome subunit beta type-6.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	N	202	Total	С	Ν	Ο	\mathbf{S}	1	0
14 1	202	1515	951	258	293	13	T	0	
14	h	203	Total	С	Ν	Ο	\mathbf{S}	1	0
14	U	203	1526	958	259	296	13	L	0

• Molecule 15 is a protein called Proteasome activator complex subunit 4.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	С	1811	Total 14643	C 9411	N 2500	O 2651	S 81	0	0

There are 37 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
с	-34	MET	-	initiating methionine	UNP Q14997
с	-33	GLY	-	expression tag	UNP Q14997
с	-32	THR	-	expression tag	UNP Q14997
с	-31	THR	-	expression tag	UNP Q14997
с	-30	ARG	-	expression tag	UNP Q14997
с	-29	SER	-	expression tag	UNP Q14997
с	-28	THR	-	expression tag	UNP Q14997
с	-27	MET	-	expression tag	UNP Q14997
с	-26	SER	-	expression tag	UNP Q14997
с	-25	TYR	-	expression tag	UNP Q14997
с	-24	TYR	-	expression tag	UNP Q14997
с	-23	HIS	-	expression tag	UNP Q14997
с	-22	HIS	-	expression tag	UNP Q14997
с	-21	HIS	-	expression tag	UNP Q14997
с	-20	HIS	-	expression tag	UNP Q14997
с	-19	HIS	-	expression tag	UNP Q14997
с	-18	HIS	-	expression tag	UNP Q14997
с	-17	ASP	-	expression tag	UNP Q14997
с	-16	TYR	-	expression tag	UNP Q14997
с	-15	ASP	-	expression tag	UNP Q14997
с	-14	ILE	-	expression tag	UNP Q14997
с	-13	PRO	-	expression tag	UNP Q14997
с	-12	THR	-	expression tag	UNP Q14997
с	-11	THR	-	expression tag	UNP Q14997
с	-10	GLU	-	expression tag	UNP Q14997
с	-9	ASN	-	expression tag	UNP Q14997
с	-8	LEU	-	expression tag	UNP Q14997
с	-7	TYR	-	expression tag	UNP Q14997
с	-6	PHE	-	expression tag	UNP Q14997
с	-5	GLN	-	expression tag	UNP Q14997
с	-4	GLY	-	expression tag	UNP Q14997
с	-3	ALA	-	expression tag	UNP Q14997
c	-2	MET	-	expression tag	UNP Q14997
с	-1	ASP	-	expression tag	UNP Q14997
с	0	PRO	-	expression tag	UNP Q14997
с	821	ILE	LEU	conflict	UNP Q14997
с	822	LEU	ILE	conflict	UNP Q14997

• Molecule 16 is [(1 {S},2 {R},3 {R},4 {S},5 {S},6 {R})-2-[oxidanyl(phosphonooxy)phospho ryl]oxy-3,4,5,6-tetraphosphonooxy-cyclohexyl] phosphono hydrogen phosphate (three-letter code: K0W) (formula: $C_6H_{20}O_{30}P_8$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	AltConf			
16	C	1	Total	С	Ο	Р	0
10	U	1	44	6	30	8	0

• Molecule 17 is INOSITOL HEXAKISPHOSPHATE (three-letter code: IHP) (formula: $C_6H_{18}O_{24}P_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		AltConf				
17	с	1	Total 42	C 6	Н 6	0 24	Р 6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Proteasome subunit alpha type-2

• Molecule 4: Proteasome subunit alpha type-5

• Molecule 5: Proteasome subunit alpha type-1

• Molecule 5: Proteasome subunit alpha type-1

• Molecule 6: Proteasome subunit alpha type-3

21%

• •

93%

R13 00 R13 D17 7223 R19 7223 R19 7223 R19 7221 R19 7223 R19 7223 R14 7223 R14 7223 R14 7223 R42 7223 R42 7233 R11 7233 R11 7234 R11 7235 R44 7234 R11 7235 R44 7234 R11 7235 R44 7236 R11 7237 R14 7238 R114 856 R114 857 R144 858 R114 858 R146 858 R146 858 R144 </

• Molecule 6: Proteasome subunit alpha type-3

• Molecule 7: Proteasome subunit alpha type-6

• Molecule 7: Proteasome subunit alpha type-6

• Molecule 8: Proteasome subunit beta type-7

GLU GLU • Molecule 13: Proteasome subunit beta type-4 Chain a: 82% 18% S21 GLY GLU GLU • Molecule 14: Proteasome subunit beta type-6 8% Chain N: 85% 15% <mark>L20:</mark> PRO PRO ALA • Molecule 14: Proteasome subunit beta type-6 10% Chain b: 85% 15% • Molecule 15: Proteasome activator complex subunit 4 32% Chain c: 92%

F26 V27 K30 K36 K36 K36 K43 K43 L44 M43 L44 M5 M5 L44 M5 L44 M5 K36 K36 K36 K36 K36 K36 K36 K36 K36 K36	A53 L59 G60 R61 A52 V63 Q64 G65 C65 L68 L68 L68	W69 (672) 672 (672) 1/73 (672) 884 (692) 892 (692) 893 (692) 893 (6104)	L1.05 8107 8107 1108 1110 1111 1113 1113 8114 8114 8114	4117 6118 8121 M125 K128
Et 31 Et 33 Et 43 D1 47 Et 50 Et 50 Et 50 Et 50	H159 H167 E170 H171 H172 D187 D204 E226 L226	1233 1246 1246 1246 1250 1250 1250 1250 1270	N1288 N1288 S293 S294 Q295 Q295 V296 V298 V298 P299	Faor Lao2 Na04 Aa05
Y306 D307 D307 P322 S322 K324 K324 L325 K325 K325 K325 K324 K324 K324 K324 K324 K324 K324 K324	Ra59 + Ra72 + Ra75 + Ra72 + Ra75 + Ra75 + Ra75 + Ra75 + Ra77 + Ra77 + Ra77 + Ra77 + Ra77 + Ra78 + Ra	D390 D395 Q402 C413 C413 C413 C413 C413 C413 C413 C413	E430 E430 E445 E445 1447 1461 C465 A464 A464	G470 ↔ G471 ↔ B472 ↔ B473 ↔ F474 ↔
P475 E476 6477 H480 N481 L482 R487 A488 A488 A488	P495 F497 P497 P497 P497 P513 P513 P518	L523 4 6524 5 8524 5 8526 7 8526 7 8526 7 1520 1528 1530 1530 1530 1530 1530 1530 1530 1530	E535 E535 C537 C537 S538 A539 A541 A541 A541 F543 F543 F543 F543 F544	0549 ◆ 0552 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0553 ◆ 0554 ◆ 0554 ◆ 0554 ◆
R567 E568 E568 E569 T570 E571 E571 E573 K574 H577 L578 E579	S580 L584 C585 C597 C597 S598 K599 E600 E600 E600	H616 R621 V622 A623 A623 K636 K636 C637 C638 F639	E641 E641 E641 C653 C653 C655 C665 M659 M659 N660 D661 D662	V663 L664 N665 E666 E666 E666 L669
D670 V685 V685 V686 C687 G687 K690 K690 K690 K695 K695 K695 C695 C697	L702 9703 8704 H704 H707 K711 K711 K726 E735	6741 ♦ 6742 ♦ 6743 ♦ 7743 ♦ 7745 ♦ 7746 ♦ 7748 ♦ 7750 ♦ 7750 ♦	1765 K754 W756 W756 W756 K757 F756 F756 F756 F760 G760 D761 L762 W763	N/64 L765 C766 1767 C776 C776 S774 E776 E776
A780 F781 L784 D785 E791 E791 E791 E791 K802 K802	L803 E804 E804 B808 C825 C825 L827 L827 L827 L827 C833 C833 C833 C833	E834 1838 1838 1838 1839 1838 1838 1838 1838	L844 1848 1849 1851 1851 2854 2854 2855 2855 2855 2855 2855 2855	S860 R861 B862 R865 R865 E866
R873 + R873 + B881 + B881 + B884 + B886 + B886 + B886 + B886 + B986 + B9	H907 K908 H909 E910 F911 K914 K915 K915 S917 S917 S917	L920 L920 K923 M925 E926 E926 H927 H930 C931 K932 K932	K933 1934 1935 1935 1936 1941 1941 1950 1951	L 9 6 3 19 5 4 19 5 4 19 5 7 29 5 7 29 5 8 29 5 9 59 59 59 59
K962 1963 D966 R976 P970 C981 C981 C981	G995 4 N998 8 N998 6 C1000 0 C1001 8 N1002 1 11005 1 E1010 1	L1012 F1013 P1014 D1015 R1016 R1016 R1016 R1019 P1020 P1020 P1022 P1022 P1022 P1022 P1022 P1022 P1012 P102	H1035 11037 11037 11042 11043 11044 11061 11061 11061 11063	s1066 L1067 E1068 K1069 P1070 S1071
11072 ♦ V1073 R1074 ♦ D1077 ♦ D1078 ♦ L1079 Å A1080 E1081 ♦ H1084 ♦ D1093 ♦	T1095 F1096 F1096 S1098 C1100 V1101 E1102 A1104 E1102 A1104 E1102	q1109 81110 81111 11112 81114 11115 91117 11118 11118 11118 11118 11118	51121 91122 E1123 E1123 K1124 K1126 E1127 G1128 K1130 K1130 N1132	q1133 E1134 K1135 N1136 A1157 D1138 R1141
E:1144 ← D:152 ← N:156 ← N:175 ← D:177 ← D:177 ← D:177 ← N:178 ←	R1 187 ↔ E1 191 ↔ N1 192 L1 193 D1 196 ↔ K1 220 ↔ P1 226 ↔ P1 225	E1228 11229 51230 61231 61232 71233 71235 71235 71235 71235 71235 71238	D1 242 ↔ D1 245 ↔ N1 246 ↔ V1 246 ↔ L1 249 ↔ D1 252 ↔ S1 253 ↔	11256
v1263 E1264 ♦ \$1265 ♦ \$1266 ♦ V1284 ♦ V1284 ♦ V1285 € E1290 ♦ E1291 ♦ K1294 ♦	L1295 d1296 s1296 s1298 s1298 e1300 b1301 m1302 t1303 e1306 g1307	01315 P1316 P1316 K1317 K1317 E1320 E1320 D1330 D1330	K1331 (1332 (1332 (1335 (1335 (1335 (1335 (1335 D1354 D1354 D1354	L1357
D1370 \$1371 H1372 E1373 E1373 E1373 E1396 K1400	E1403 L1404 R1410 E1419 S1431 E1433 S1433 E1433	L1440 L1443 L1447 L1448 E1449 E1449 S1452 S1453 S1455 S1455 S1455 S1455	1461 1461 1466 1468 1480 1480 1481 1481	L 1495 11495 01496 V 1497

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	87000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.179	Depositor
Minimum map value	-0.101	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	374.4, 374.4, 374.4	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.04, 1.04, 1.04	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: IHP, $\rm K0W$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.55	0/1706	0.67	0/2314
1	0	0.46	0/1818	0.60	2/2467~(0.1%)
2	В	0.49	0/1666	0.69	0/2248
2	Р	0.44	0/1955	0.61	0/2642
3	С	0.46	0/1660	0.69	0/2240
3	Q	0.40	0/1842	0.58	0/2496
4	D	0.49	0/1767	0.67	0/2386
4	R	0.42	0/1795	0.58	1/2424~(0.0%)
5	Е	0.52	0/1917	0.69	0/2592
5	S	0.43	0/1915	0.60	0/2589
6	F	0.50	0/1944	0.70	0/2617
6	Т	0.47	0/1905	0.65	2/2567~(0.1%)
7	G	0.53	0/1897	0.68	0/2566
7	U	0.43	0/1919	0.61	1/2596~(0.0%)
8	Н	0.49	0/1705	0.67	1/2307~(0.0%)
8	V	0.47	0/1688	0.65	1/2288~(0.0%)
9	Ι	0.51	0/1668	0.70	4/2247~(0.2%)
9	W	0.49	0/1636	0.69	3/2205~(0.1%)
10	J	0.49	0/1593	0.61	0/2156
10	Х	0.49	0/1609	0.61	0/2176
11	Κ	0.53	0/1574	0.66	0/2128
11	Y	0.53	0/1604	0.68	0/2165
12	L	0.50	0/1692	0.71	3/2281~(0.1%)
12	Z	0.51	0/1677	0.69	2/2260~(0.1%)
13	М	0.52	0/1720	0.63	0/2328
13	a	0.54	0/1724	0.66	0/2334
14	N	0.49	0/1544	0.61	0/2090
14	b	0.50	0/1556	0.64	0/2107
15	с	0.47	0/14985	0.79	39/20326~(0.2%)
All	All	0.48	0/63681	0.69	59/86142~(0.1%)

There are no bond length outliers.

The worst 5 of 59 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
15	с	1353	ASP	CB-CG-OD1	10.30	127.57	118.30
15	с	516	LEU	CA-CB-CG	8.78	135.49	115.30
15	с	1177	ASP	CB-CG-OD1	8.73	126.15	118.30
15	с	1468	LEU	CA-CB-CG	8.20	134.15	115.30
15	с	302	LEU	CA-CB-CG	8.04	133.79	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	213/234~(91%)	203~(95%)	10 (5%)	0	100	100
1	Ο	228/234~(97%)	219 (96%)	9 (4%)	0	100	100
2	В	208/261~(80%)	198~(95%)	10 (5%)	0	100	100
2	Р	247/261~(95%)	238 (96%)	9 (4%)	0	100	100
3	С	208/248~(84%)	189 (91%)	19 (9%)	0	100	100
3	Q	230/248~(93%)	220 (96%)	9 (4%)	1 (0%)	34	58
4	D	223/241~(92%)	207 (93%)	16 (7%)	0	100	100
4	R	231/241~(96%)	219 (95%)	11 (5%)	1 (0%)	34	58
5	Е	238/263~(90%)	223 (94%)	15 (6%)	0	100	100
5	S	239/263~(91%)	232 (97%)	7 (3%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
6	F	243/255~(95%)	229~(94%)	13 (5%)	1 (0%)	34	58
6	Т	239/255~(94%)	232 (97%)	7 (3%)	0	100	100
7	G	236/246~(96%)	227~(96%)	9 (4%)	0	100	100
7	U	242/246~(98%)	237~(98%)	5 (2%)	0	100	100
8	Н	220/277~(79%)	213~(97%)	7(3%)	0	100	100
8	V	220/277~(79%)	209~(95%)	11 (5%)	0	100	100
9	Ι	208/205~(102%)	199 (96%)	9 (4%)	0	100	100
9	W	204/205~(100%)	194 (95%)	9 (4%)	1 (0%)	29	53
10	J	194/201~(96%)	185~(95%)	9~(5%)	0	100	100
10	Х	195/201~(97%)	186 (95%)	9~(5%)	0	100	100
11	K	199/263~(76%)	192 (96%)	7~(4%)	0	100	100
11	Y	200/263~(76%)	192 (96%)	8 (4%)	0	100	100
12	L	213/241~(88%)	208 (98%)	5 (2%)	0	100	100
12	Z	212/241~(88%)	206 (97%)	6 (3%)	0	100	100
13	М	214/264~(81%)	202 (94%)	12 (6%)	0	100	100
13	a	215/264~(81%)	203 (94%)	12 (6%)	0	100	100
14	Ν	201/239~(84%)	197 (98%)	4 (2%)	0	100	100
14	b	202/239~(84%)	195 (96%)	7 (4%)	0	100	100
15	с	1807/1878~(96%)	1634 (90%)	167 (9%)	6 (0%)	41	65
All	All	7929/8754~(91%)	7488 (94%)	431 (5%)	10 (0%)	54	77

Continued from previous page...

5 of 10 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	R	130	PRO
9	W	30	GLN
15	с	325	LEU
15	с	477	GLY
15	с	962	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	173/191~(91%)	169~(98%)	4 (2%)	50	77
1	Ο	184/191~(96%)	182~(99%)	2(1%)	73	89
2	В	175/221~(79%)	168~(96%)	7 (4%)	31	58
2	Р	201/221~(91%)	198~(98%)	3(2%)	65	85
3	С	173/211 (82%)	168 (97%)	5(3%)	42	70
3	Q	190/211 (90%)	190 (100%)	0	100	100
4	D	192/203~(95%)	191 (100%)	1 (0%)	88	95
4	R	192/203~(95%)	192 (100%)	0	100	100
5	Е	202/224~(90%)	197~(98%)	5 (2%)	47	75
5	S	202/224~(90%)	201 (100%)	1 (0%)	88	95
6	F	201/212~(95%)	194 (96%)	7 (4%)	36	63
6	Т	194/212~(92%)	191 (98%)	3 (2%)	65	85
7	G	204/210~(97%)	202 (99%)	2 (1%)	76	90
7	U	204/210~(97%)	202 (99%)	2 (1%)	76	90
8	Н	183/228 (80%)	183 (100%)	0	100	100
8	V	180/228~(79%)	178 (99%)	2 (1%)	73	89
9	Ι	178/174~(102%)	178 (100%)	0	100	100
9	W	174/174~(100%)	174 (100%)	0	100	100
10	J	165/171~(96%)	165 (100%)	0	100	100
10	Х	168/171~(98%)	167 (99%)	1 (1%)	86	94
11	K	153/202~(76%)	152 (99%)	1 (1%)	84	93
11	Y	157/202~(78%)	152 (97%)	5 (3%)	39	67
12	L	179/199~(90%)	174 (97%)	5 (3%)	43	71
12	Z	176/199~(88%)	174 (99%)	2 (1%)	73	89
13	М	179/215~(83%)	178 (99%)	1 (1%)	86	94
13	a	179/215~(83%)	179 (100%)	0	100	100
14	Ν	157/181 (87%)	157 (100%)	0	100	100
14	b	159/181~(88%)	158 (99%)	1 (1%)	86	94
15	с	1650/1705~(97%)	1610 (98%)	40 (2%)	49	76
All	All	6724/7389~(91%)	6624 (98%)	100 (2%)	68	85

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

5 of 100 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
12	Ζ	124	PHE
15	с	527	ASN
15	с	1835	LEU
14	b	112	TYR
15	с	250	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 88 such sidechains are listed below:

Mol	Chain	Res	Type
15	с	250	GLN
15	с	907	HIS
15	с	310	HIS
15	с	789	GLN
15	с	1132	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

2 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	В	ond ang	les
WIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
17	IHP	с	1902	-	36,36,36	0.72	0	$54,\!60,\!60$	0.94	0
16	K0W	с	1901	-	40,44,44	1.27	4 (10%)	66,74,74	1.25	8 (12%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
17	IHP	с	1902	-	-	2/30/54/54	0/1/1/1
16	K0W	с	1901	-	-	8/42/66/66	0/1/1/1

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
16	с	1901	K0W	PA3-O13	3.45	1.65	1.59
16	с	1901	K0W	PA6-O16	2.92	1.64	1.59
16	с	1901	K0W	PA4-014	2.77	1.64	1.59
16	с	1901	K0W	PA2-012	2.74	1.64	1.59

The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
16	с	1901	K0W	O77-PA5-O15	3.39	109.33	102.48
16	с	1901	K0W	C5-C6-C1	3.37	117.78	110.41
16	с	1901	K0W	C5-C4-C3	2.78	116.50	110.41
16	с	1901	K0W	PA1-O76-PB1	-2.68	123.61	132.83
16	с	1901	K0W	C4-C3-C2	2.61	116.12	110.41

There are no chirality outliers.

5 of 10 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
16	с	1901	K0W	C4-C3-O13-PA3
16	с	1901	K0W	C2-O12-PA2-O22
17	с	1902	IHP	C3-O13-P3-O43
16	с	1901	K0W	C6-O11-PA1-O76
16	с	1901	K0W	C3-O13-PA3-O23

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-0781. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 180

Z Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 207

Y Index: 208

Z Index: 177

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 159 $\rm nm^3;$ this corresponds to an approximate mass of 144 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.368 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.368 $Å^{-1}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.72	-	-
Author-provided FSC curve	2.86	3.27	2.93
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-0781 and PDB model 6KWY. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 67% of all backbone atoms, 56% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.5570	0.5760	
А	0.6300	0.5930	
В	0.5170	0.5580	
С	0.5130	0.5580	
D	0.5360	0.5700	
Е	0.6560	0.5960	
F	0.5950	0.5860	
G	0.5860	0.5790	
Н	0.6530	0.6070	
Ι	0.6750	0.6190	
J	0.6810	0.6120	
Κ	0.6970	0.6150	
L	0.6160	0.5970	
М	0.6840	0.6110	
N	0.7030	0.6210	
0	0.4510	0.5560	
Р	0.3660	0.5440	
Q	0.3640	0.5450	
R	0.4600	0.5740	
S	0.4930	0.5700	
Т	0.5090	0.5630	
U	0.3960	0.5460	
V	0.5760	0.5770	
W	0.6500	0.6110	
Х	0.6730	0.6090	
Y	0.6800	0.6150	
Z	0.6350	0.6100	
a	0.6790	0.6120	
b	0.6680	0.6120	
С	0.4890	0.5400	

1.0

