

wwPDB EM Validation Summary Report i

Jun 16, 2025 – 04:46 PM JST

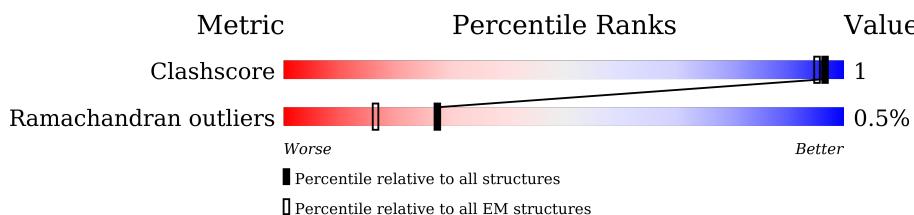
PDB ID : 5ZRV / pdb_00005zrv
EMDB ID : EMD-6944
Title : Structure of human mitochondrial trifunctional protein, octamer
Authors : Liang, K.; Li, N.; Dai, J.; Wang, X.; Liu, P.; Chen, X.; Wang, C.; Gao, N.; Xiao, J.
Deposited on : 2018-04-25
Resolution : 7.70 Å (reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
<https://www.wwpdb.org/validation/2017/EMValidationReportHelp>
with specific help available everywhere you see the i symbol.

The types of validation reports are described at
<http://www.wwpdb.org/validation/2017/FAQs#types>.

The following versions of software and data (see [references](#) i) were used in the production of this report:


EMDB validation analysis : 0.0.1.dev118
MolProbit : 4-5-2 with Phenix2.0rc1
Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ : 1.9.13
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.44

1 Overall quality at a glance

The following experimental techniques were used to determine the structure:
ELECTRON MICROSCOPY

The reported resolution of this entry is 7.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	EM structures (#Entries)
Clashscore	210492	15764
Ramachandran outliers	207382	16835

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for ≥ 3 , 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$. The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

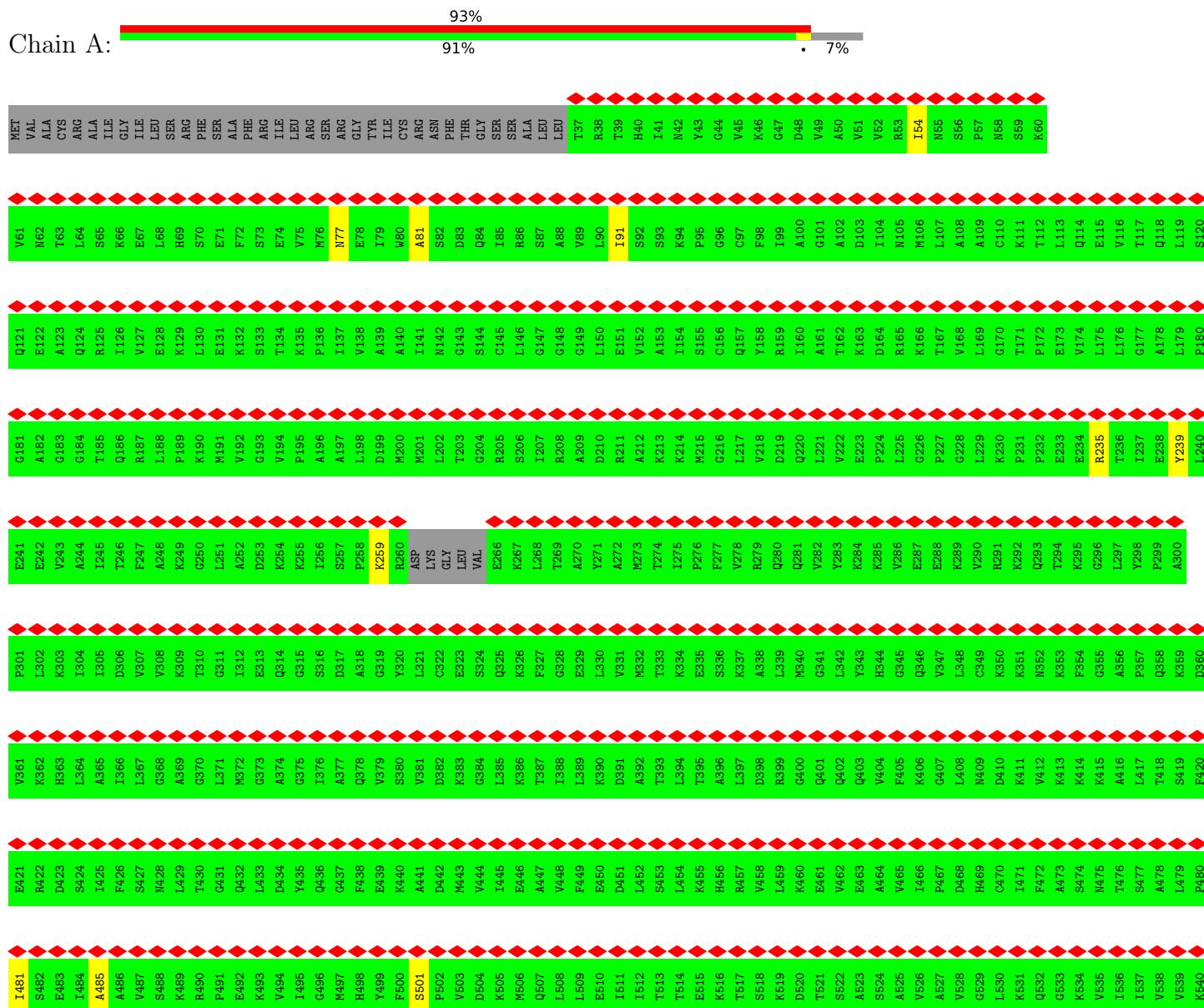
2 Entry composition [\(i\)](#)

There are 2 unique types of molecules in this entry. The entry contains 18096 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Trifunctional enzyme subunit alpha, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	A	711	Total	C	N	O	0	0
			2844	1422	711	711		
1	C	711	Total	C	N	O	0	0
			2844	1422	711	711		
1	E	711	Total	C	N	O	0	0
			2844	1422	711	711		
1	G	711	Total	C	N	O	0	0
			2844	1422	711	711		

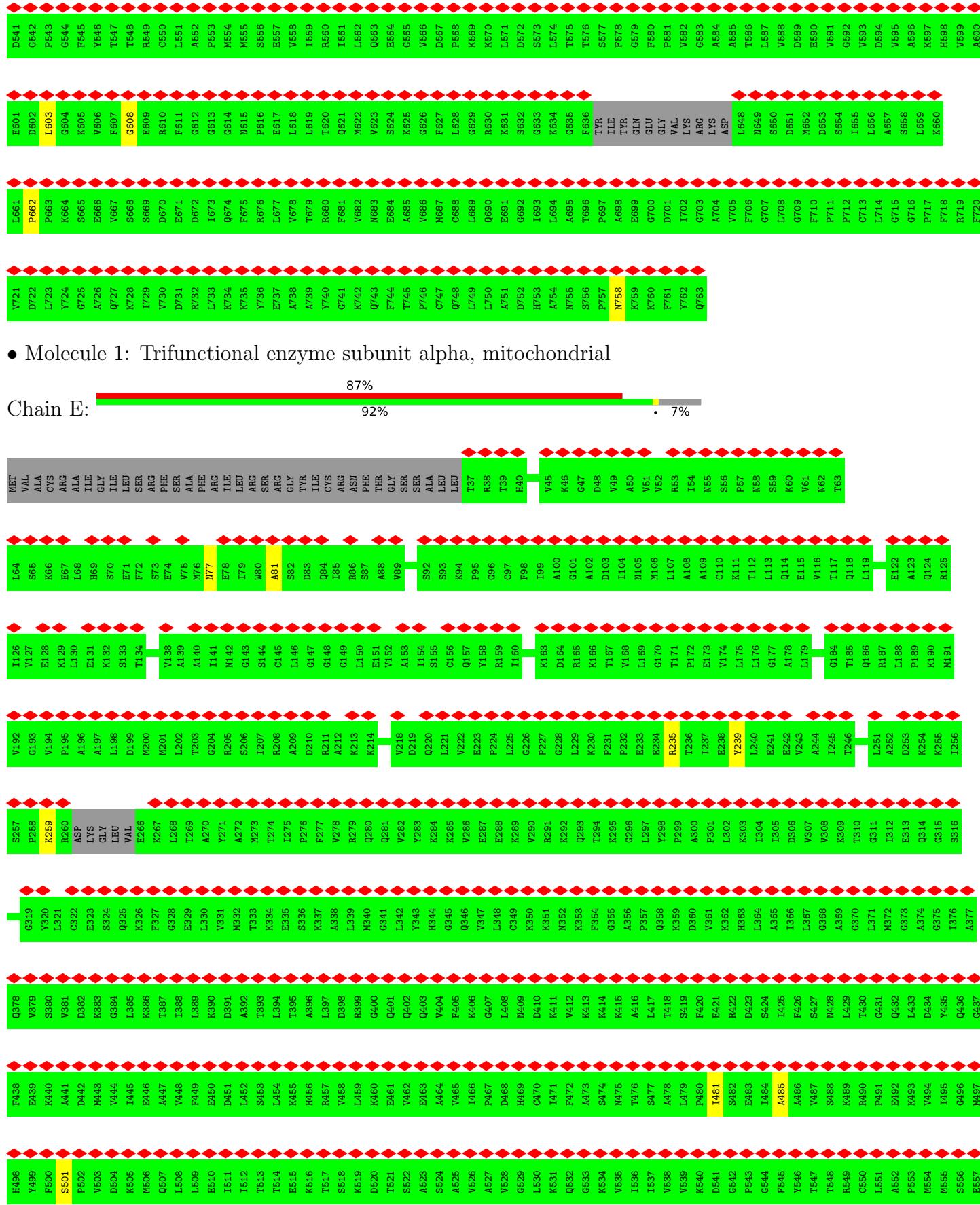

- Molecule 2 is a protein called Trifunctional enzyme subunit beta, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	B	420	Total	C	N	O	0	0
			1680	840	420	420		
2	D	420	Total	C	N	O	0	0
			1680	840	420	420		
2	F	420	Total	C	N	O	0	0
			1680	840	420	420		
2	H	420	Total	C	N	O	0	0
			1680	840	420	420		

3 Residue-property plots

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Trifunctional enzyme subunit alpha, mitochondrial



E421	V361	Q121	W61	MET
R422	K362	E122	M62	VAL
D423	H363	A123	T63	ALA
I484	S424	I364	A244	CYS
A485	I425	A365	T245	ARG
R486	F426	I366	T246	ILE
W487	S427	L367	F247	GLY
S488	M28	G368	A248	ILE
K489	L429	A369	K249	LEU
V494	D434	A374	K190	LEU
R490	T430	G370	G250	PHE
I495	Y435	G375	K195	SER
P491	G431	L371	L251	ALA
E492	Q432	M372	A252	ALA
K493	L433	G373	D253	PHE
V494	D434	A374	G193	SER
R495	T435	G375	K194	ARG
G496	Q436	I376	K191	ILE
M497	G437	A377	I256	LEU
H498	F438	Q378	I257	LEU
Y499	E439	V379	S133	LEU
P500	K440	S380	K192	LEU
S501	A441	V381	L321	GLY
P502	D442	D382	C322	TYR
V503	M443	K383	E323	ILE
D504	V444	G384	S324	VAL
K505	E445	L385	Q325	VAL
M506	E446	K386	E266	VAL
Q507	A447	T387	F205	VAL
L508	V448	I388	R206	VAL
L509	F449	L389	A209	VAL
E510	E450	K390	Y271	VAL
I511	D451	D391	V331	VAL
I512	L452	A392	K267	VAL
T513	S453	T393	I268	VAL
T514	L454	L394	F207	VAL
E515	K455	T395	K267	VAL
K516	H456	A396	I268	VAL
T517	R457	L397	K273	VAL
S518	V458	D398	T274	VAL
K519	L459	R399	K275	VAL
D520	K460	G400	A209	VAL
T521	E461	Q401	G341	VAL
S522	V462	Q402	L342	VAL
A523	E463	Q403	L348	VAL
S524	A464	V404	H344	VAL
A525	V465	F405	G345	VAL
V526	I466	K406	Q346	VAL
A527	P467	G407	V347	VAL
V528	D468	L408	E288	VAL
A529	H469	N409	K284	VAL
K530	C470	D410	M350	VAL
K531	I471	K411	K351	VAL
Q532	F472	V412	N352	VAL
A533	A473	K413	K353	VAL
K534	S474	K414	F354	VAL
V535	M475	K415	G355	VAL
I536	T476	P467	A356	VAL
I537	S477	A477	P357	VAL
V538	A478	A478	Q358	VAL
V539	L479	S419	K359	VAL
			P420	VAL

- Molecule 1: Trifunctional enzyme subunit alpha, mitochondrial

W61	MET
M62	VAL
A63	ALA
T63	CYS
K64	ARG
S65	ALA
R65	ILE
K66	GLY
E66	ILE
V66	LEU
F67	ILE
G67	LEU
S68	LEU
K69	LEU
S69	LEU
K70	PHE
T70	ILE
E71	LEU
D71	LEU
R72	LEU
S73	LEU
I673	LEU
G613	LEU
G614	LEU
N615	LEU
M616	LEU
S616	LEU
P617	LEU
E617	LEU
V618	LEU
L619	LEU
T678	LEU
A738	LEU
K734	LEU
K735	LEU
T736	LEU
E737	LEU
A738	LEU
K739	LEU
V680	LEU
Q681	LEU
K741	LEU
F746	LEU
V686	LEU
K742	LEU
V682	LEU
M622	LEU
S623	LEU
Q683	LEU
S624	LEU
E684	LEU
F744	LEU
T745	LEU
A685	LEU
S625	LEU
V686	LEU
K746	LEU
R687	LEU
F747	LEU
M627	LEU
D628	LEU
C628	LEU
E629	LEU
K629	LEU
Q630	LEU
E631	LEU
S632	LEU
G692	LEU
T657	LEU
S653	LEU
S654	LEU
K655	LEU
V656	LEU
D657	LEU
F657	LEU
T658	LEU
G659	LEU
K659	LEU
R660	LEU
E691	LEU
K631	LEU
L571	LEU
D572	LEU
T657	LEU
N658	LEU
S659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
E659	LEU
T658	LEU
G659	LEU
K659	LEU
T659	LEU
N659	LEU
S659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T658	LEU
G659	LEU
K659	LEU
T659	LEU
N659	LEU
S659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T658	LEU
G659	LEU
K659	LEU
T659	LEU
N659	LEU
S659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	LEU
I658	LEU
A659	LEU
K659	LEU
T656	LEU
F656	LEU
T657	LEU
P657	

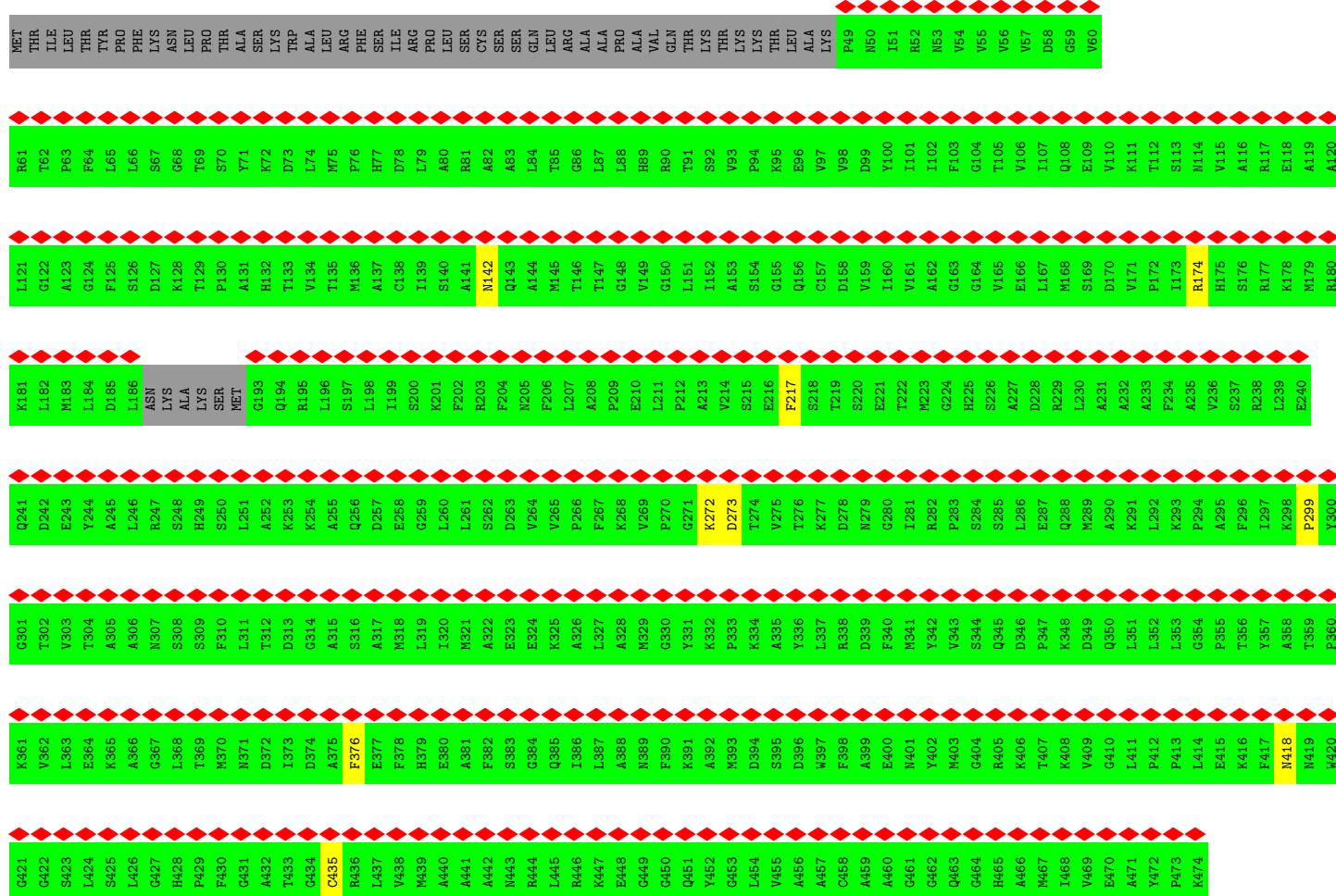
- Molecule 1: Trifunctional enzyme subunit alpha, mitochondrial

MET	VAL	ALA	CYS	ARG	ALA	ILE	GLY	ILE	LEU	SER	ARG	PHE	SER	ALA	PHE	ARG	ILE	LEU	ARG	SER	ARG	GLY	TYR	ILE	CYS	ASN	PHE	THR	GLY	SER	SER	ALA	LEU	LEU	T37	R38	T39	H40	V45	K46	N42	Y43	G44	V45	V51	V52	R53	T54	M55	S56	P57	N58	S59	K60
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

VB1	NS2	TS3	LS4	SR5	KG6	ES7	LG8	HR9	ST0	ET1	FT2	ST3	ET4	VT5	HT6	WT7	ET8	FT9	SR0	AS1	SR2	DS3	QR4	IR5	RS6	SB7	AS8	VR9	IR0	IR1	SP2	SR3	K94	PS6	CS6	CS7	FB8	IR9	AI00	GI01	AI02	DI03	II04	NI05	MI06	LI07	AI08	AI09	CI10	K11	TI12	LI13	Q114	E115	V116	TI17	Q118	SI19	SL20
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	-----	------	------	------	------	------	------	------	------	------

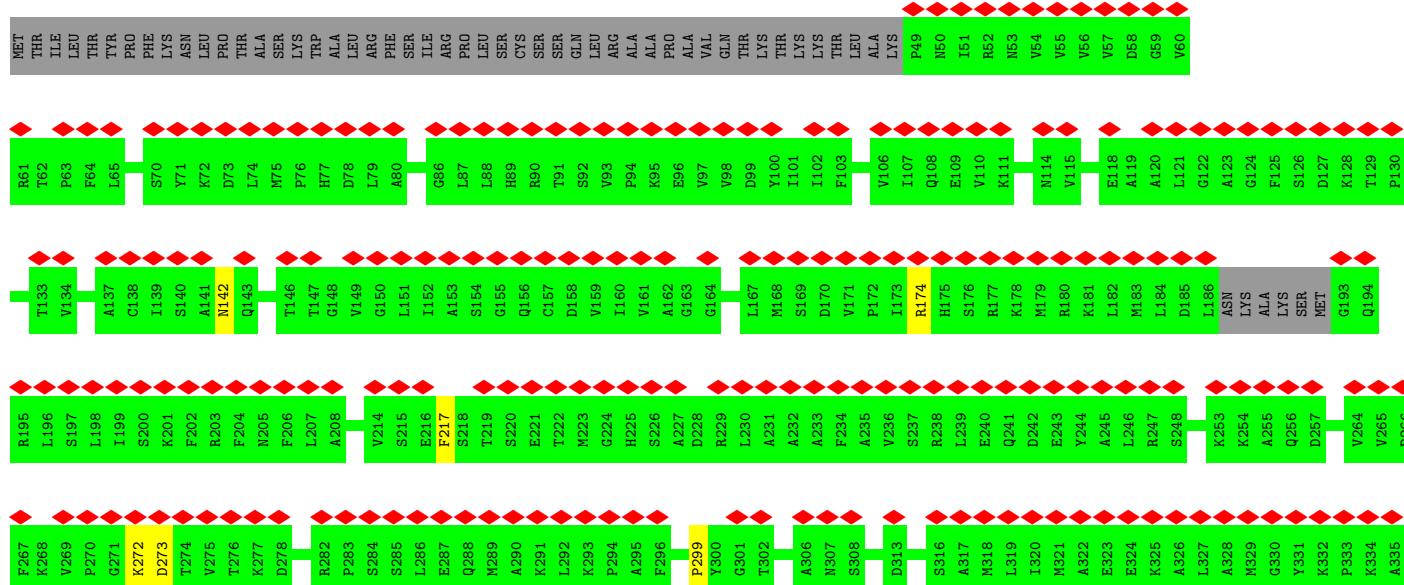
Q121 E122 E123 A123 Q124 R125 I126 V127 E128 K129 L130 E131 K132 S133 T134 K135 P136 I137 V138 A139 E140 I141 N142 G143 S144 C145 L146 G147 G148 G149 L150 E151 V152 A153 I154 S155 C156 Q157 Y158 R159 I160 A161 T162 K163 D164 R165 K166 T167 V168 L169 E173 V174 L175 L176 G177 A178 P180

G181	A182	G183	G184	T185	Q186	L188	P189	K190	M191	V192	G193	V194	P195	A196	A197	L198	D199	M200	M201	L202	T203	G204	A209	R205	S206	T207	R208	K213	K214	M215	G216	L217	V218	D219	D220	Q220	L221	V222	E223	P224	L225	G226	P227	G228	L229	K230	P231	P232	E233	E234	R235	T236	T237	Y238	L240
------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------

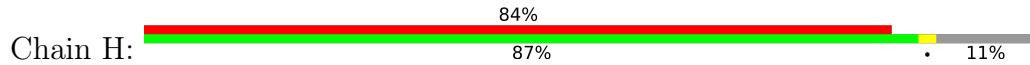

P301 L302 Y303 I304 T305 D306 V307 V308 K309 T310 G311 I312 E313 Q314 G315 S316 D317 A318 Q319 Y320 L321 C322 E323 S324 Q325 K326 F327 G328 E329 L330 V331 M332 T333 K334 E335 S336 K337 A338 L339 M340 G341 I342 Y343 H344 G345 Q346 V347 L348 K349 K350 K351 N352 K353 F354 G355 A356 P357 Q358 K359 D360

V361
K362
H363
L364
A365
I366
L367
G368
A369
G370
L371
M372
G373
A374
G375
I376
A377
Q378
V379
S380
V381
D382
K383
G384
L385
K386
T387
I388
L389
K390
D391
A392
T393
L394
T395
A396
L397
D398
R399
G400
Q401
Q402
Q403
V404
F405
K406
G407
L408
N409
D410
K411
V412
K413
K414
K415
A416
F417
I418
S419
F420

E421 R422 D423 S424 I425 F426 S427 N428 L429 D434 Y435 Q436 Q437 F438 E439 K440 A441 D442 M443 V444 F449 E450 D451 A452 S453 L454 K455 H456 R457 V458 L459 K460 E461 V462 E463 A464 V465 I466 P467 F472 A473 S474 M475 T476 S477 A478 L479 P480


I481 S482 E483 I484 A485 A486 V487 S488 K489 R490 P491 E492 Y493 V494 I495 C496 M497 H498 Y499 F500 S501 P502 V503 D504 K505 M506 Q507 L508 L509 E510 I511 T512 T513 T514 E515 Y516 T517 S518 K519 D520 T521 S522 A523 S524 A525 V526 A527 V528 G529 L530 K531 Q532 G533 K534 V535 I536 T537 V538 V539 K540

D541	K181	R81	MET
G421	T361	L182	THR
G422	V362	G122	ILE
S423	L363	A123	LEU
L424	E364	Y244	G124
S425	K365	A245	F125
L426	A366	L246	S126
G427	G367	N307	ASN
H428	L368	S308	S248
P429	T369	H249	K128
F430	M370	S250	K129
G431	N371	A251	T129
A432	D372	T312	D129
T433	I373	D313	F125
G434	D374	G314	R195
C435	A375	A315	K254
R436	F376	S316	L196
L437	E377	A317	T133
V438	F378	M318	V134
M439	H379	L319	S135
A440	E380	I320	T135
A441	A381	M321	L197
A442	F382	A322	M136
A443	S383	E323	H137
R444	G384	E324	D258
L445	K385	K325	G259
R446	T386	A326	S260
K447	L387	L327	K201
E448	A388	A328	F202
G449	N389	M329	A141
G450	F390	G330	R203
Q451	K391	Y331	N142
A452	A392	K332	F204
G453	M393	P333	D263
A454	D394	K334	V264
L454	A395	A335	V265
R455	V455	S395	P266
A456	D396	Y336	P267
A457	W397	L337	A208
C458	F398	E325	F209
A459	K399	D339	M205
L454	D394	K334	F206
A460	E400	F340	M207
M461	N401	M341	A208
G462	Y402	Y342	F207
T467	T407	D273	K267
I468	K408	D274	K268
P463	M403	S274	V268
G464	G404	A326	V269
R465	R405	Y336	S275
E470	G410	W397	K277
A466	K406	D337	S218
G462	F402	F338	D278
M467	T407	D338	T219
I468	K408	K348	D220
P463	M403	V343	N279
G464	G404	S344	E221
H465	R405	D345	G280
E470	G410	M341	I281
A466	K406	D346	I281
G462	F402	P347	R282
M467	T407	P347	E287
I468	K408	K348	Q288
P463	M403	V343	P283
V469	V409	D349	M289
G464	G404	S344	S284
K474	L414	E405	S285
E415	E415	A405	A290
A466	A416	A406	A290
G462	G412	G406	A291
M467	M417	M406	A233
I468	I417	I406	L292
P463	P413	P406	K293
G464	G414	G406	A235
H465	H414	H406	P294
E470	E415	E406	V236
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
K474	K414	K406	A295
E415	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
K474	K414	K406	A295
E415	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406	A295
G464	G414	G406	A295
H465	H414	H406	A295
E470	E415	E406	A295
A466	A416	A406	A295
G462	G412	G406	A295
M467	M417	M406	A295
I468	I417	I406	A295
P463	P413	P406	A295
V469	V413	V406</td	



- Molecule 2: Trifunctional enzyme subunit beta, mitochondrial

Chain F: 72% 87% 11% • 0%

- Molecule 2: Trifunctional enzyme subunit beta, mitochondrial

4 Experimental information i

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	48564	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose ($e^-/\text{\AA}^2$)	50	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.793	Depositor
Minimum map value	-0.659	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.029	Depositor
Recommended contour level	0.15	Depositor
Map size (Å)	337.92, 337.92, 337.92	wwPDB
Map dimensions	128, 128, 128	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	2.64, 2.64, 2.64	Depositor

5 Model quality i

5.1 Standard geometry i

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	# $ Z > 5$	RMSZ	# $ Z > 5$
1	A	0.37	0/2841	0.86	2/3546 (0.1%)
1	C	0.37	0/2841	0.86	2/3546 (0.1%)
1	E	0.37	0/2841	0.86	2/3546 (0.1%)
1	G	0.37	0/2841	0.86	2/3546 (0.1%)
2	B	0.45	0/1678	0.99	2/2094 (0.1%)
2	D	0.45	0/1678	0.99	2/2094 (0.1%)
2	F	0.44	0/1678	0.99	2/2094 (0.1%)
2	H	0.44	0/1678	0.99	2/2094 (0.1%)
All	All	0.40	0/18076	0.91	16/22560 (0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	B	0	5
2	D	0	5
2	F	0	5
2	H	0	5
All	All	0	20

There are no bond length outliers.

The worst 5 of 16 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed($^{\circ}$)	Ideal($^{\circ}$)
1	C	501	SER	CA-C-N	-7.43	111.13	120.79
1	C	501	SER	C-N-CA	-7.43	111.13	120.79
1	E	501	SER	CA-C-N	-7.43	111.14	120.79
1	E	501	SER	C-N-CA	-7.43	111.14	120.79
1	G	501	SER	CA-C-N	-7.42	111.14	120.79

There are no chirality outliers.

5 of 20 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	B	142	ASN	Peptide
2	B	174	ARG	Peptide
2	B	272	LYS	Peptide
2	B	376	PHE	Peptide
2	B	435	CYS	Peptide

5.2 Too-close contacts [\(i\)](#)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	2844	0	801	5	0
1	C	2844	0	801	4	0
1	E	2844	0	801	3	0
1	G	2844	0	801	5	0
2	B	1680	0	468	0	0
2	D	1680	0	468	0	0
2	F	1680	0	468	0	0
2	H	1680	0	468	0	0
All	All	18096	0	5076	17	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

The worst 5 of 17 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:235:ARG:O	1:A:239:TYR:N	2.49	0.46
1:C:235:ARG:O	1:C:239:TYR:N	2.49	0.46
1:G:235:ARG:O	1:G:239:TYR:N	2.49	0.45
1:E:235:ARG:O	1:E:239:TYR:N	2.49	0.45
1:C:77:ASN:O	1:C:81:ALA:N	2.50	0.45

There are no symmetry-related clashes.

5.3 Torsion angles [\(i\)](#)

5.3.1 Protein backbone [\(i\)](#)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	A	705/763 (92%)	626 (89%)	76 (11%)	3 (0%)	30 68
1	C	705/763 (92%)	626 (89%)	77 (11%)	2 (0%)	37 73
1	E	705/763 (92%)	626 (89%)	76 (11%)	3 (0%)	30 68
1	G	705/763 (92%)	626 (89%)	77 (11%)	2 (0%)	37 73
2	B	416/474 (88%)	354 (85%)	59 (14%)	3 (1%)	19 57
2	D	416/474 (88%)	352 (85%)	61 (15%)	3 (1%)	19 57
2	F	416/474 (88%)	353 (85%)	60 (14%)	3 (1%)	19 57
2	H	416/474 (88%)	352 (85%)	61 (15%)	3 (1%)	19 57
All	All	4484/4948 (91%)	3915 (87%)	547 (12%)	22 (0%)	27 64

5 of 22 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A	758	ASN
1	C	758	ASN
1	E	758	ASN
1	G	758	ASN
1	A	259	LYS

5.3.2 Protein sidechains [\(i\)](#)

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA [\(i\)](#)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains [\(i\)](#)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates [\(i\)](#)

There are no oligosaccharides in this entry.

5.6 Ligand geometry [\(i\)](#)

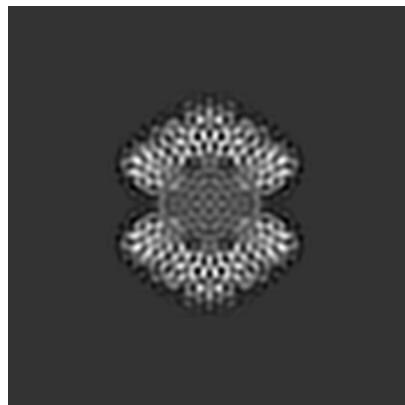
There are no ligands in this entry.

5.7 Other polymers [\(i\)](#)

There are no such residues in this entry.

5.8 Polymer linkage issues [\(i\)](#)

There are no chain breaks in this entry.


6 Map visualisation i

This section contains visualisations of the EMDB entry EMD-6944. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections i

6.1.1 Primary map

X

Y

Z

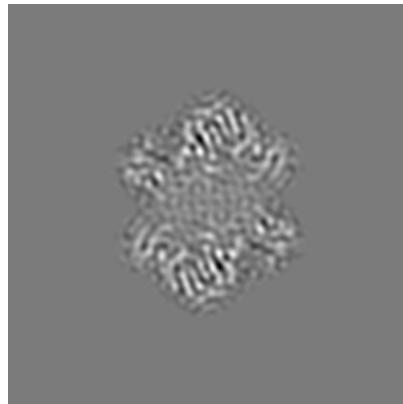
The images above show the map projected in three orthogonal directions.

6.2 Central slices i

6.2.1 Primary map

X Index: 64

Y Index: 64



Z Index: 64

The images above show central slices of the map in three orthogonal directions.

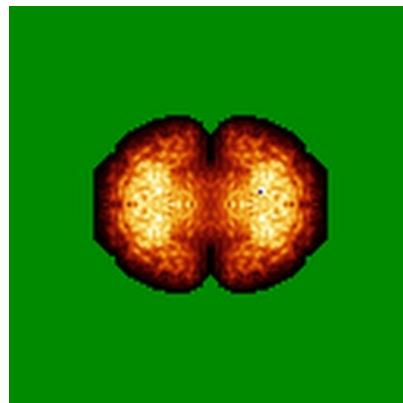
6.3 Largest variance slices [\(i\)](#)

6.3.1 Primary map

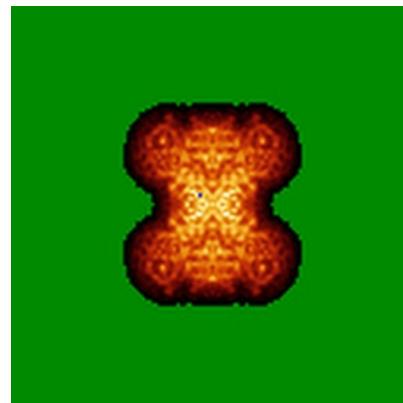
X Index: 68

Y Index: 68

Z Index: 47

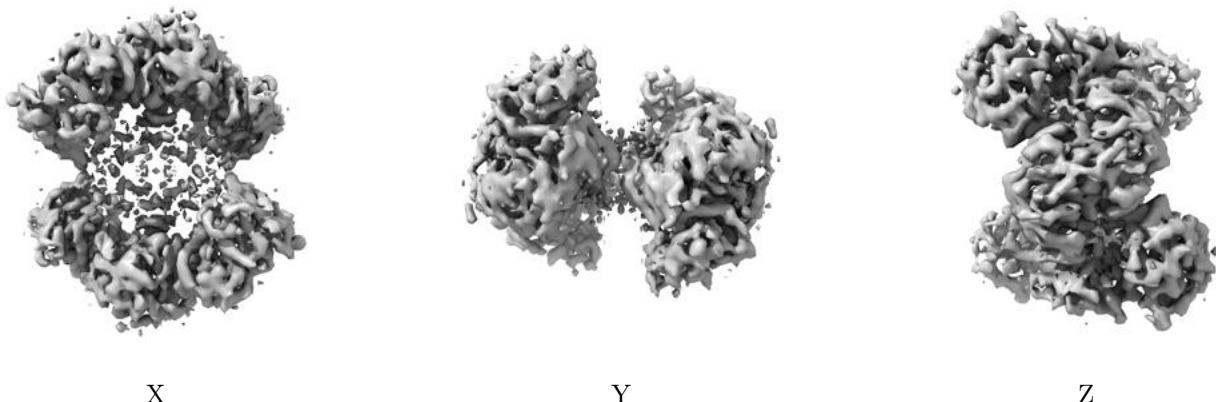

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) [\(i\)](#)


6.4.1 Primary map

X

Y



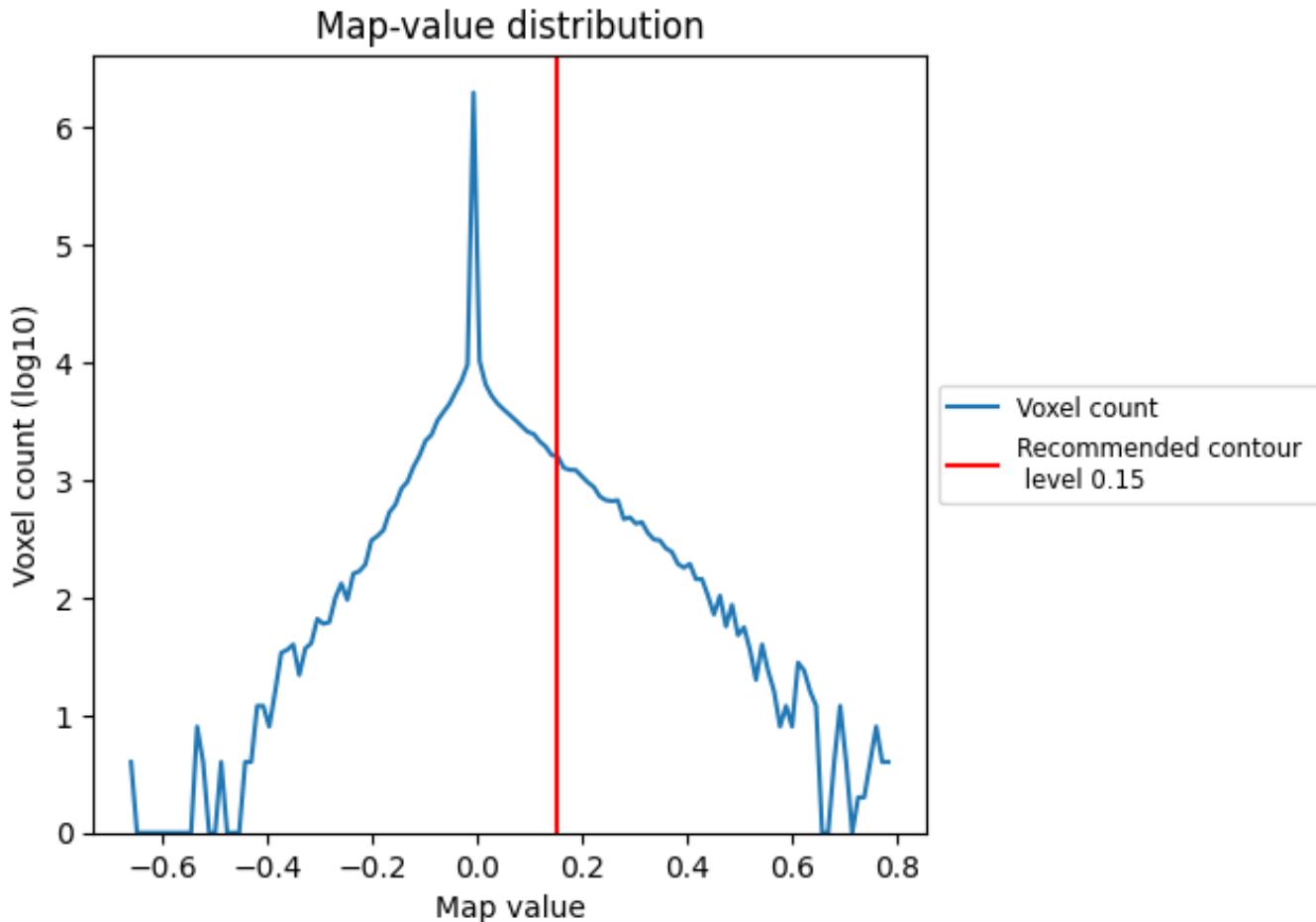
Z

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views [\(i\)](#)

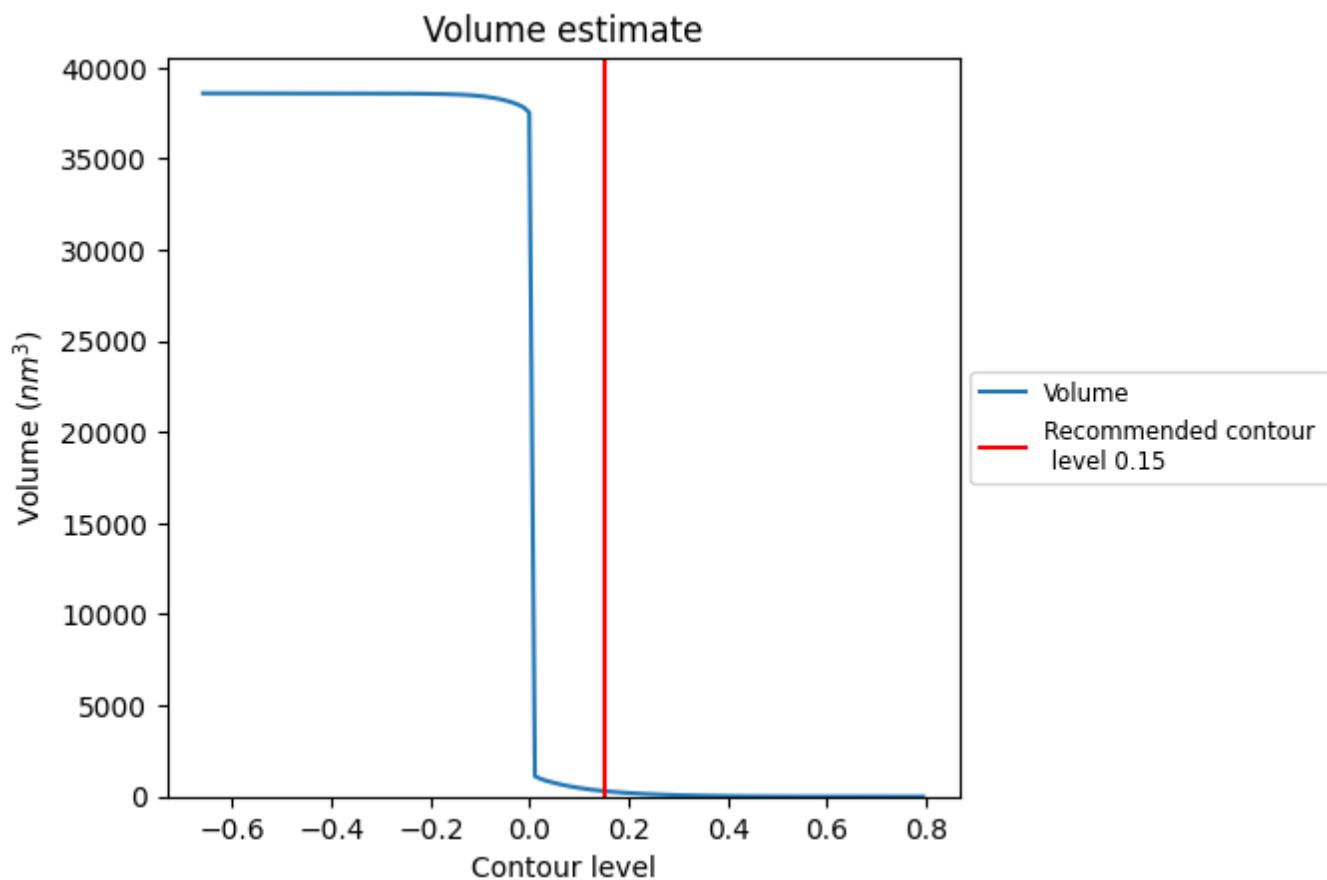
6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.15. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.


6.6 Mask visualisation [\(i\)](#)

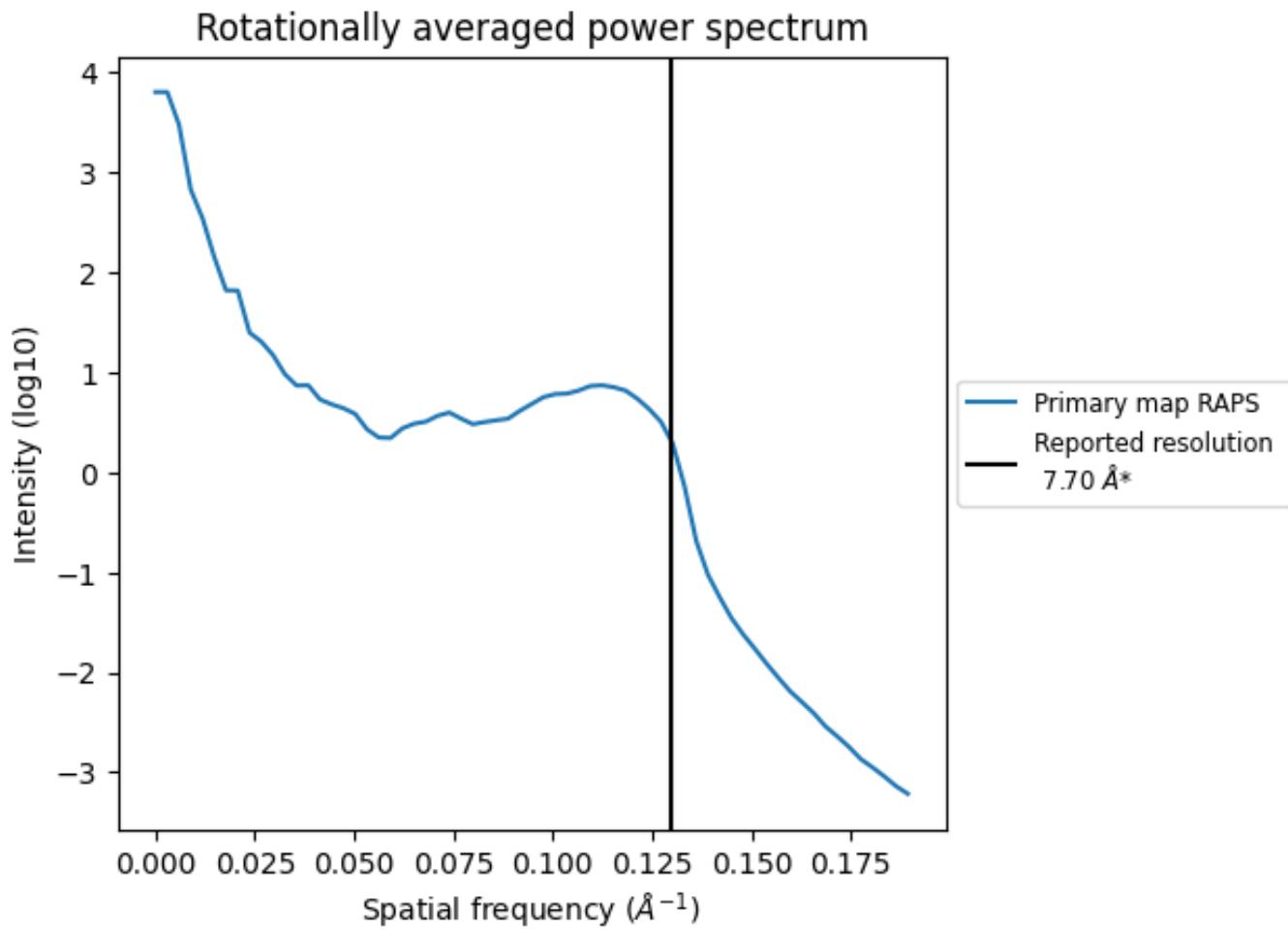
This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)


This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

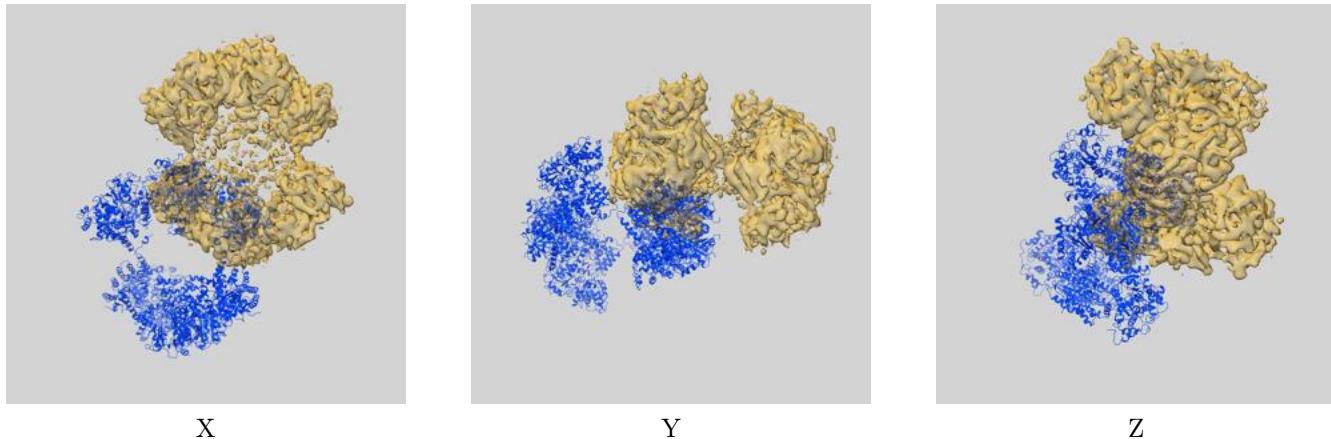

7.2 Volume estimate (i)

The volume at the recommended contour level is 301 nm³; this corresponds to an approximate mass of 272 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

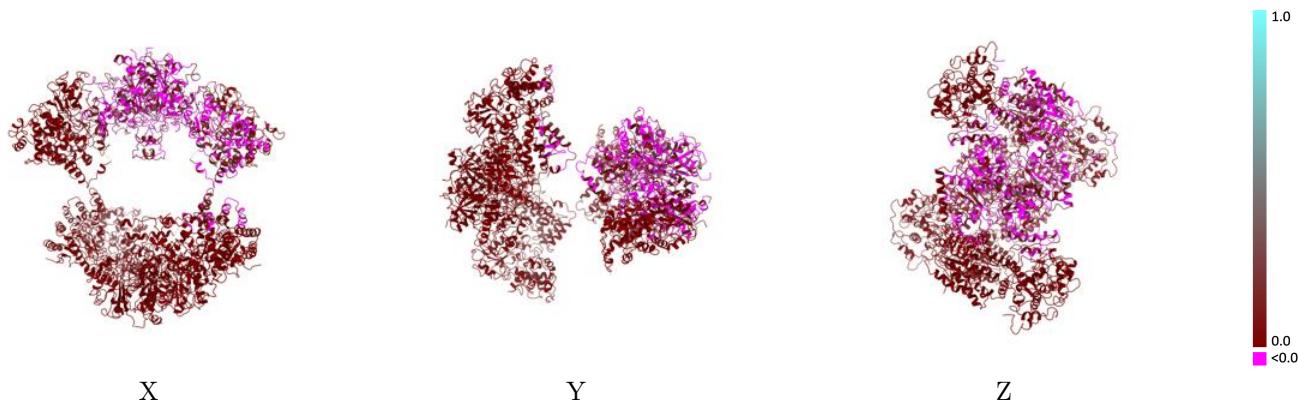
7.3 Rotationally averaged power spectrum [\(i\)](#)

*Reported resolution corresponds to spatial frequency of 0.130 \AA^{-1}

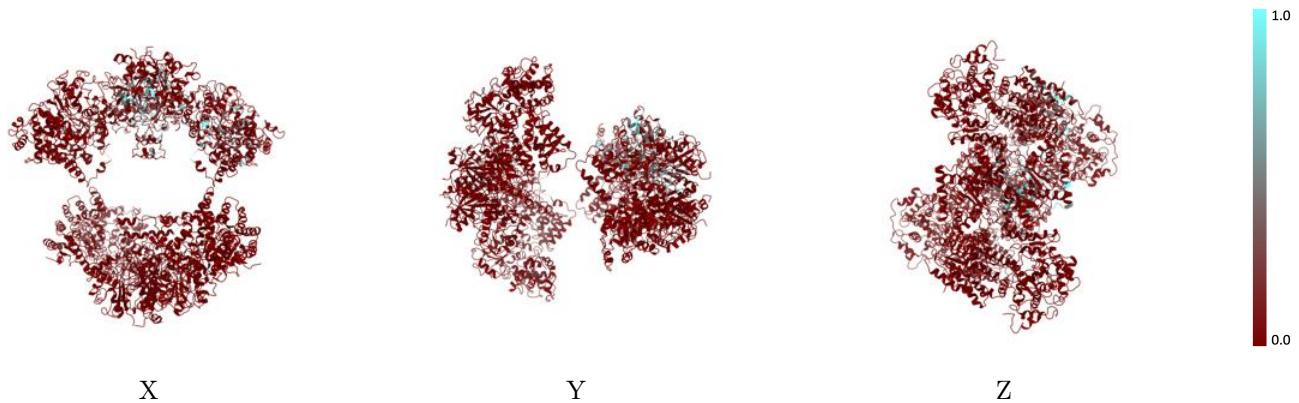

8 Fourier-Shell correlation [i](#)

This section was not generated. No FSC curve or half-maps provided.

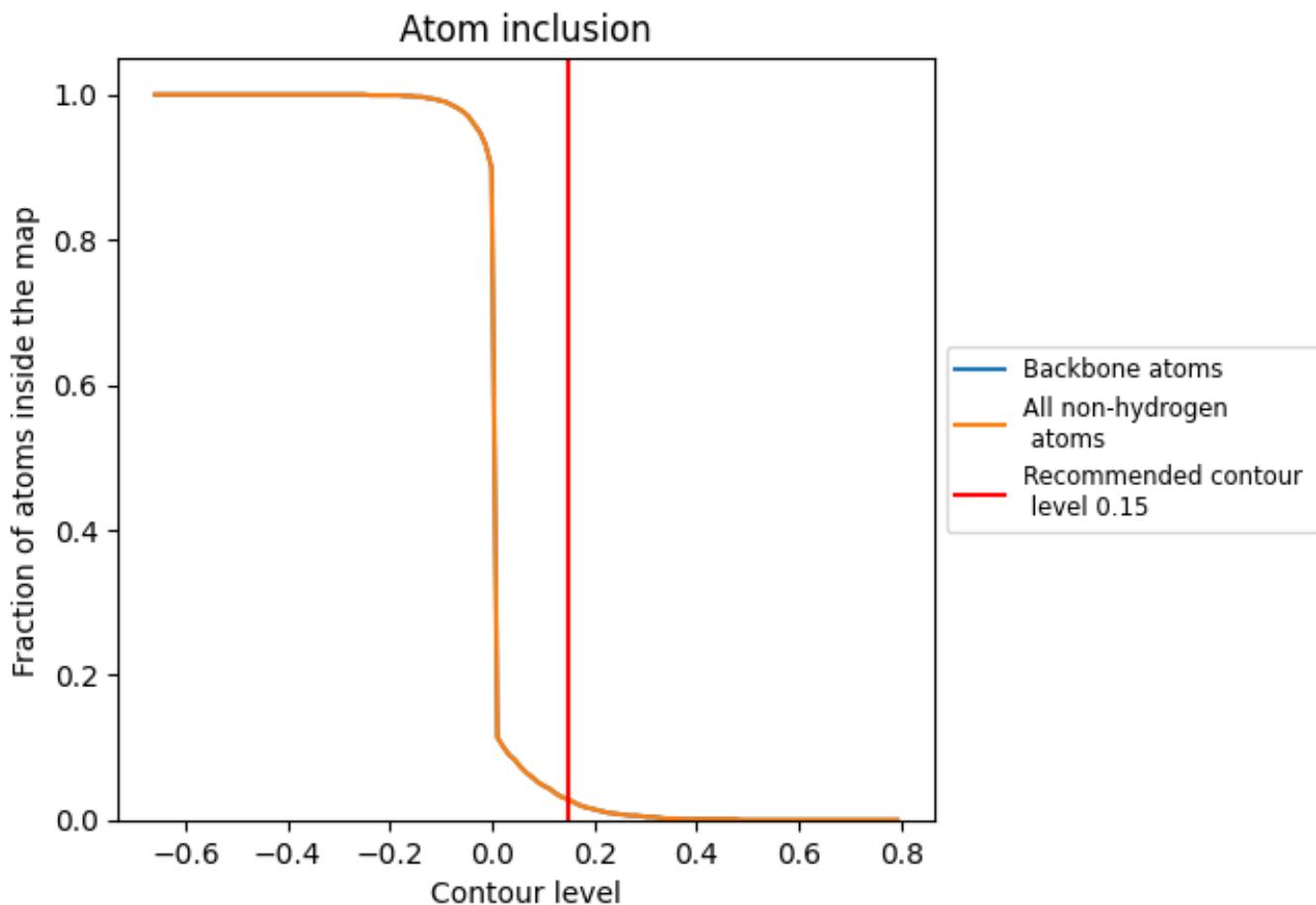
9 Map-model fit i


This section contains information regarding the fit between EMDB map EMD-6944 and PDB model 5ZRV. Per-residue inclusion information can be found in section 3 on page 4.

9.1 Map-model overlay i


The images above show the 3D surface view of the map at the recommended contour level 0.15 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model [\(i\)](#)


The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model [\(i\)](#)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.15).

9.4 Atom inclusion [\(i\)](#)

At the recommended contour level, 3% of all backbone atoms, 3% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary

The table lists the average atom inclusion at the recommended contour level (0.15) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.0280	0.0020
A	0.0000	0.0050
B	0.0000	0.0000
C	0.0000	0.0000
D	0.0000	0.0000
E	0.0550	0.0040
F	0.1590	-0.0000
G	0.0010	0.0050
H	0.0430	-0.0000

