

Full wwPDB X-ray Structure Validation Report (i)

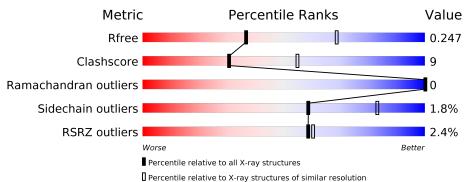
May 29, 2020 – 07:06 am BST

PDB ID	:	5IAN
Title	:	Caspase 3 V266N
Authors	:	Maciag, J.J.; Mackenzie, S.H.; Tucker, M.B.; Schipper, J.L.; Swartz, P.D.;
		Clark, A.C.
Deposited on	:	2016-02-21
Resolution	:	2.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$		
R_{free}	130704	2808 (2.70-2.70)		
Clashscore	141614	3122 (2.70-2.70)		
Ramachandran outliers	138981	3069(2.70-2.70)		
Sidechain outliers	138945	3069 (2.70-2.70)		
RSRZ outliers	127900	2737 (2.70-2.70)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	278	^{2%} 69%	17%	14%
2	Е	3	100%		
3	В	6	67%	17%	17%

5IAN

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 2080 atoms, of which 1 is hydrogen and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Caspase-3.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	240	Total 1998	C 1274	N 339	O 367	S 18	0	12	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	266	ASN	VAL	engineered mutation	UNP P42574
А	278	LEU	-	expression tag	UNP P42574

• Molecule 2 is a protein called LEU-SER-SER.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
2	Е	3	Total 21	C 12	H 1	N 3	O 5	0	0	0

• Molecule 3 is a protein called ACE-ASP-GLU-VAL-ASK.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	В	6	Total C N O 36 21 4 11	0	0	1

• Molecule 4 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Na 1 1	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	24	$\begin{array}{ccc} \text{Total} & \text{O} \\ 24 & 24 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	69%	17%	14%
MET MET ASN ASN ASN ASN ASN SER SER SER SER SER SER SER SER SER SER	PRO LLYS LLYS LLYS LLYS LLYS GLU GLU SSC LLS SSC LLS SSC LLS SSC LLS SSC C SC SSC S	N89 196 M100 R101 R101 C116 C116	V117 L118 L119 L119 L119 T127 T130 L136
1139 [1157 [1159 [1159 [1159 [1168 [1168 [1168 [1168 [1168 [1168 [117] [1168 [117] [1168 [117] [1168 [117] [1168 [117] [1168] [1	ASP ASP MET MET ASP ASP A196 71195 71197 71195 71197 7107 710	2110 2110 2218 2218 1219 K223 R233 R233 R233 R233	R238 R241 R241 R241 R257 A258 R256 R256 R256
C264 1265 S267 M268 M268 L278			
• Molecule 2: LEU-S	ER-SER		
Chain E: <mark>មនុន</mark>	100%		
• Molecule 3: ACE-A	SP-GLU-VAL-ASK		
Chain B:	67%	17%	17%
<mark>. 88</mark>			

• Molecule 1: Caspase-3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 2 2 2	Depositor
Cell constants	69.02Å 84.91 Å 96.39 Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	33.86 - 2.70	Depositor
Resolution (A)	34.51 - 2.70	EDS
% Data completeness	98.7 (33.86-2.70)	Depositor
(in resolution range)	98.8(34.51-2.70)	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$3.38 (at 2.72 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.10.1_2155: ???)	Depositor
B B.	0.163 , 0.247	Depositor
R, R_{free}	0.163 , 0.247	DCC
R_{free} test set	795 reflections $(10.01%)$	wwPDB-VP
Wilson B-factor (Å ²)	27.4	Xtriage
Anisotropy	0.343	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 33.5	EDS
L-test for twinning ²	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	2080	wwPDB-VP
Average B, all atoms $(Å^2)$	22.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.54% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

 $^{^1 {\}rm Intensities}$ estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NA, $0\mathrm{QE},\,\mathrm{ACE}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
	Cham	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.39	0/2067	0.55	0/2773	
2	Е	0.70	0/19	1.07	0/24	
3	В	0.59	0/32	1.32	1/43~(2.3%)	
All	All	0.39	0/2118	0.58	1/2840~(0.0%)	

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	В	5	ASP	CB-CA-C	-5.46	99.49	110.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1998	0	2010	37	0
2	Е	20	1	23	2	0
3	В	36	0	26	4	0
4	А	1	0	0	0	0
5	А	24	0	0	1	0
All	All	2079	1	2059	38	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (38) close contacts	within the	same	$\operatorname{asymmetric}$	unit	are	listed	below,	sorted	by	their	clash
magnitude.											

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:127[A]:ILE:HG23	1:A:136:LEU:HD21	1.59	0.83
1:A:120:SER:HB3	1:A:127[B]:ILE:HD11	1.60	0.81
1:A:163:CYS:HB2	3:B:6:0QE:C1	2.11	0.80
1:A:163:CYS:SG	1:A:204:TYR:HA	2.27	0.74
1:A:163:CYS:SG	3:B:6:0QE:C1	2.77	0.73
1:A:218:SER:HB3	1:A:242[B]:LYS:HD3	1.79	0.65
1:A:163:CYS:CB	3:B:6:0QE:C1	2.74	0.65
1:A:127[A]:ILE:CG2	1:A:136:LEU:HD21	2.27	0.64
1:A:238:ARG:HD3	1:A:241[B]:ARG:HH22	1.64	0.61
1:A:210:LYS:HG2	1:A:211:ASP:OD1	2.01	0.60
1:A:195:TYR:HB2	1:A:266:ASN:HB2	1.85	0.57
1:A:198:SER:O	1:A:261:GLN:NE2	2.34	0.55
1:A:32:SER:O	1:A:33:LEU:HD22	2.08	0.53
1:A:218:SER:CB	1:A:242[B]:LYS:HD3	2.39	0.51
1:A:89:ASN:H	2:E:1:LEU:HD23	1.77	0.49
2:E:2:SER:O	2:E:3:SER:OG	2.29	0.49
1:A:207:ARG:HA	1:A:213:SER:HA	1.94	0.48
1:A:257:HIS:O	1:A:258:ALA:HB3	2.13	0.47
1:A:231:GLU:OE1	1:A:233:MET:HB2	2.14	0.46
1:A:238:ARG:HD3	1:A:241[B]:ARG:NH2	2.29	0.46
1:A:159[B]:ILE:HD13	1:A:219:LEU:HD21	1.97	0.46
1:A:168:LEU:HD22	1:A:259:LYS:HG3	1.98	0.46
1:A:55:PHE:CD2	1:A:130:THR:HA	2.51	0.45
1:A:168:LEU:HG	1:A:204:TYR:HD2	1.83	0.44
1:A:197:TYR:HB2	1:A:264:CYS:HB3	1.98	0.44
1:A:119:LEU:O	1:A:120:SER:HB2	2.17	0.44
1:A:100[A]:MET:HG3	1:A:139:ILE:HG23	2.00	0.43
1:A:213:SER:OG	1:A:216:ILE:HG12	2.19	0.42
1:A:163:CYS:HB2	3:B:5:ASP:C	2.40	0.42
1:A:101:ARG:HD2	5:A:421:HOH:O	2.18	0.42
1:A:231:GLU:OE1	1:A:233:MET:N	2.52	0.42
1:A:96:ILE:O	1:A:100[B]:MET:HG2	2.19	0.42
1:A:120:SER:HB3	1:A:127[B]:ILE:CD1	2.40	0.42
1:A:51:ASN:O	1:A:89:ASN:HA	2.19	0.42
1:A:233:MET:CE	1:A:265:ILE:HG21	2.50	0.41
1:A:117:VAL:HG13	1:A:159[A]:ILE:HB	2.03	0.41
1:A:115:VAL:HG22	1:A:157:LEU:HB2	2.02	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	248/278~(89%)	239~(96%)	9~(4%)	0	100 100
2	Е	1/3~(33%)	0	1 (100%)	0	100 100
3	В	3/6~(50%)	3 (100%)	0	0	100 100
All	All	252/287~(88%)	242 (96%)	10 (4%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	d Rotameric Outl		Percentiles
1	А	225/250~(90%)	219~(97%)	6 (3%)	44 74
2	Е	3/3~(100%)	3~(100%)	0	100 100
3	В	4/4~(100%)	4 (100%)	0	100 100
All	All	232/257~(90%)	226~(97%)	6 (3%)	59 75

All (6) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	63[A]	SER
1	А	63[B]	SER

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
1	А	209	SER
1	А	224	LYS
1	А	268[A]	MET
1	А	268[B]	MET

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$OWAB(Å^2)$	Q<0.9
1	А	240/278~(86%)	-0.53	6 (2%) 57 59	9, 19, 40, 79	0
2	Е	3/3~(100%)	-0.06	0 100 100	39, 39, 40, 50	0
3	В	4/6~(66%)	-0.75	0 100 100	20, 27, 34, 38	0
All	All	$247/287 \ (86\%)$	-0.52	6 (2%) 59 60	9, 19, 40, 79	0

All (6) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	А	32	SER	3.8
1	А	30	GLY	3.6
1	А	29	SER	3.4
1	А	31	ILE	3.3
1	А	33	LEU	3.1
1	А	185	HIS	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
4	NA	А	301	1/1	0.95	0.11	$19,\!19,\!19,\!19$	0

6.5 Other polymers (i)

There are no such residues in this entry.

