

Full wwPDB X-ray Structure Validation Report (i)

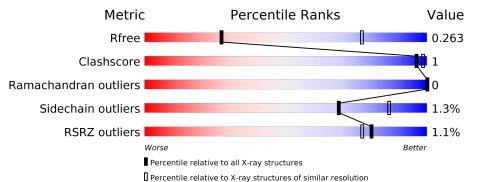
May 22, 2020 - 04:10 am BST

PDB ID	:	5 FV2
Title	:	Crystal structure of hVEGF in complex with VH domain antibody
Authors	:	Chung, C.; Batuwangala, T.
Deposited on		
Resolution	:	3.45 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	$7.0.044 (\mathrm{Gargrove})$
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.45 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$		
R _{free}	130704	1291 (3.52-3.40)		
Clashscore	141614	1372(3.52-3.40)		
Ramachandran outliers	138981	1337 (3.52-3.40)		
Sidechain outliers	138945	1338 (3.52-3.40)		
RSRZ outliers	127900	1205(3.52-3.40)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	116	% • 94%	6%
1		110	3470	090
1	В	116	95%	• •
1	С	116	2% 90%	10%
2	V	116	% • 83%	17%
2	W	116	3%	• 16%
2	Х	116	82%	• 16%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 5024 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	Δ	116	Total	С	Ν	Ο	S	0	1	0
	I A	110	893	565	150	173	5	0		
1	р	115	Total	С	Ν	Ο	S	0	0	0
	I D	115	889	565	150	169	5			
1	1 C	116	Total	С	Ν	Ο	S	0	1	0
			893	565	150	173	5			

• Molecule 1 is a protein called VH DOMAIN ANTIBODY.

• Molecule 2 is a protein called VASCULAR ENDOTHELIAL GROWTH FACTOR.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
9	V	96	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	v	90	779	489	131	146	13	0		
0	W	97	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	2 VV	97	785	492	133	147	13			
0	v	97	Total	С	Ν	0	S	0	0	0
		91	785	492	133	147	13	0	0	U

There are 18 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
V	111	HIS	-	expression tag	UNP P15692
V	112	HIS	-	expression tag	UNP P15692
V	113	HIS	-	expression tag	UNP P15692
V	114	HIS	-	expression tag	UNP P15692
V	115	HIS	-	expression tag	UNP P15692
V	116	HIS	-	expression tag	UNP P15692
W	111	HIS	-	expression tag	UNP P15692
W	112	HIS	-	expression tag	UNP P15692
W	113	HIS	-	expression tag	UNP P15692
W	114	HIS	-	expression tag	UNP P15692
W	115	HIS	-	expression tag	UNP P15692
W	116	HIS	_	expression tag	UNP P15692

Continued on next page...

Continu	cu jiom pic				
Chain	Residue	Modelled	Actual	Comment	Reference
Х	111	HIS	-	expression tag	UNP P15692
Х	112	HIS	-	expression tag	UNP P15692
Х	113	HIS	-	expression tag	UNP P15692
Х	114	HIS	-	expression tag	UNP P15692
Х	115	HIS	-	expression tag	UNP P15692
Х	116	HIS	-	expression tag	UNP P15692

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 94% 6% • Molecule 1: VH DOMAIN ANTIBODY Chain B: 95% • Molecule 1: VH DOMAIN ANTIBODY Chain C: 90% 10% • Molecule 2: VASCULAR ENDOTHELIAL GROWTH FACTOR Chain V: 83% 17% ALA PRO GLV GLV GLY GLY GLY GLV HIS HIS ASP ARG HIS HIS HIS HIS HIS HIS • Molecule 2: VASCULAR ENDOTHELIAL GROWTH FACTOR Chain W: 82% 16% ALA PRO GLV GLY GLY GLY GLY GLY ASN ASN • Molecule 2: VASCULAR ENDOTHELIAL GROWTH FACTOR
- Molecule 1: VH DOMAIN ANTIBODY

Chain X:	82%	• 16%
ALA PRO MET ALA ALA GLY GLY ASN ASN ASN ASN	Y21 V21 K108 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	107.11Å 130.40Å 81.18Å	Deneiten
a, b, c, α , β , γ	90.00° 106.53° 90.00°	Depositor
Resolution (Å)	39.62 - 3.45	Depositor
Resolution (A)	37.32 - 3.45	EDS
% Data completeness	99.3 (39.62-3.45)	Depositor
(in resolution range)	99.4(37.32 - 3.45)	EDS
R _{merge}	0.01	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.64 (at 3.48 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0073	Depositor
D D	0.212 , 0.263	Depositor
R, R_{free}	0.215 , 0.263	DCC
R_{free} test set	706 reflections (5.03%)	wwPDB-VP
Wilson B-factor $(Å^2)$	102.2	Xtriage
Anisotropy	0.067	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29 , 49.8	EDS
L-test for twinning ²	$< L > = 0.47, < L^2 > = 0.30$	Xtriage
	0.027 for -1/2 * h + 1/2 * k-l, 1/2 * h - 1/2 * k-l, -1/2	
Estimated twinning fraction	h-1/2k	Xtriage
	0.018 for $-1/2$ *h $-1/2$ *k $-l,-1/2$ *h $-1/2$ *k $+l,-1/2$	
E.E. completion	$2^{+h+1/2^{+}k}$	EDC
F_o, F_c correlation	0.93	EDS
Total number of atoms $A = B = \frac{1}{2} \left(\frac{3}{2}\right)$	5024	wwPDB-VP
Average B, all atoms $(Å^2)$	110.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.55% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Boi	nd lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.36	1/919~(0.1%)	0.49	0/1245	
1	В	0.31	0/910	0.47	0/1233	
1	С	0.34	0/919	0.52	1/1245~(0.1%)	
2	V	0.25	0/797	0.45	0/1073	
2	W	0.26	0/804	0.44	0/1084	
2	Х	0.26	0/804	0.44	0/1084	
All	All	0.30	1/5153~(0.0%)	0.47	1/6964~(0.0%)	

All (1) bond length outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	А	76	LYS	CE-NZ	-7.34	1.30	1.49

All (1) bond angle outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	С	19	ARG	NE-CZ-NH2	-5.81	117.39	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	893	0	868	3	0
1	В	889	0	873	2	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	С	893	0	868	5	0
2	V	779	0	745	0	0
2	W	785	0	741	1	0
2	Х	785	0	743	1	0
All	All	5024	0	4838	10	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (10) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:39:GLN:NE2	1:C:43:LYS:O	2.01	0.94
1:C:35:MET:HB3	1:C:50:GLU:HG2	1.86	0.58
1:C:5:LEU:HA	1:C:107:GLY:HA3	1.90	0.52
1:B:35:MET:HB3	1:B:50:GLU:HG2	1.97	0.47
1:A:101:ARG:NH2	2:X:22:GLN:O	2.49	0.45
1:B:98:LYS:HG3	1:B:99:ASP:N	2.32	0.44
1:A:35:MET:HB3	1:A:50:GLU:HG2	2.01	0.43
1:C:101:ARG:NH1	2:W:22:GLN:O	2.51	0.42
1:A:11:LEU:HD11	1:A:115:SER:HB3	2.01	0.42
1:C:102:LYS:O	1:C:102:LYS:CG	2.69	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	115/116~(99%)	113~(98%)	2(2%)	0	100	100
1	В	113/116~(97%)	108 (96%)	5 (4%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	С	115/116~(99%)	113~(98%)	2(2%)	0	100	100
2	V	94/116~(81%)	88 (94%)	6 (6%)	0	100	100
2	W	95/116~(82%)	91~(96%)	4 (4%)	0	100	100
2	Х	95/116~(82%)	90~(95%)	5(5%)	0	100	100
All	All	627/696~(90%)	603~(96%)	24 (4%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	96/96~(100%)	94~(98%)	2(2%)	53 78
1	В	95/96~(99%)	94 (99%)	1 (1%)	73 88
1	С	96/96~(100%)	92~(96%)	4 (4%)	30 61
2	V	91/106~(86%)	91~(100%)	0	100 100
2	W	91/106~(86%)	90~(99%)	1 (1%)	73 88
2	Х	91/106~(86%)	90~(99%)	1 (1%)	73 88
All	All	560/606~(92%)	551 (98%)	9 (2%)	69 83

All (9) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	17[A]	SER
1	А	17[B]	SER
1	В	96	CYS
1	С	17[A]	SER
1	С	17[B]	SER
1	С	77	ASN
1	С	96	CYS
2	W	21	TYR
2	Х	21	TYR

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	108	GLN
2	W	12	HIS
2	Х	62	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\# RSRZ {>}2$	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	116/116~(100%)	-0.11	1 (0%) 84 81	79, 97, 117, 144	0
1	В	115/116~(99%)	-0.13	0 100 100	84, 106, 127, 142	0
1	С	116/116~(100%)	0.02	2 (1%) 70 67	91,116,136,164	0
2	V	96/116~(82%)	0.03	1 (1%) 82 79	86, 109, 142, 150	0
2	W	97/116~(83%)	0.38	3 (3%) 49 47	89, 127, 150, 170	0
2	Х	97/116~(83%)	-0.10	0 100 100	82, 97, 139, 149	0
All	All	637/696~(91%)	0.01	7 (1%) 80 77	79,108,142,170	0

All (7) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	116	SER	4.5
1	С	115	SER	4.1
2	W	97	LEU	3.4
1	А	116	SER	3.4
2	W	78	MET	2.1
2	W	96	PHE	2.1
2	V	44	GLU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

