

wwPDB EM Validation Summary Report (i)

Jan 24, 2023 - 07:39 PM EST

PDB ID	:	4V6U
EMDB ID	:	EMD-2009
Title	:	Promiscuous behavior of proteins in archaeal ribosomes revealed by cryo-EM:
		implications for evolution of eukaryotic ribosomes
Authors	:	Armache, JP.; Anger, A.M.; Marquez, V.; Frankenberg, S.; Froehlich, T.;
		Villa, E.; Berninghausen, O.; Thomm, M.; Arnold, G.J.; Beckmann, R.; Wil-
		son, D.N.
Deposited on	:	2012-08-09
Resolution	:	6.60 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 6.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures		
	(#Entries)	(#Entries)		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	AQ	158	32%		25% •
2	AK	135	79% 72%	2	23% 5%
3	AI	130	42% 82%		15% ••
4	AG	125	50% 63%	24%	10% •
5	AW	63	27% 76%		21% •
6	AC	210	68%	17%	• 11%
7	AB	202	45%	25	5% •
8	AR	113	44% 69%	2	•9%

Mol	Chain	Length	Quality of chain							
0	4.0	57	30%							
9	A9		98%		•					
10	AD	180	68%	23%	• •					
			21%							
11	A1	77	81%		19%					
12	AN	147	67%	26%	5%					
12	1111	111	52%	2078	J /0 ••					
13	AX	71	63%	25%	7% •					
14	АМ	137	37%	210/						
14	AM	107	60%	21%	• •					
15	AE	243	69%	25%	5%•					
10	АТ	107	44%							
10	AJ	127	74%	22%	•					
17	AO	148	69%	24%	5%•					
			49%							
18	AF	236	84%	7	% • 8%					
19	AS	67	42%	24	9/					
15	110	01	97%	24	70 •					
20	A3	123	75%	24	%•					
20	D4	199	83%							
20	D4	120	20%		11% ••					
20	BG	123	82%	1	.3% • •					
01	10	1.405	9%							
21	A2	1495	· 78%		21%					
22	AY	50	72%	22%	6%					
			52%							
23	AT	132	64%	18% •	16%					
24	ΔΔ	108	27%	2.40/						
24	1111	150	67%	24%	• •					
25	AH	215	68%	21%	5% 6%					
26		FC	77%							
20	AP	00	57%	34%	7% •					
27	A0	76	• 74%	25	5%					
			58%							
28	AV	99	69%	24%	6% ·					
28	B6	99	64%	26%	5% 5%					
			87%		/ 0					
29	AL	102	67%	27%	5% •					
30	ΔΙΙ	150	73%	100/	E0/					
- 50	AU	100	/3%	18%	⊃%•					

Continued from previous page...

Conti	nued fron	n previous	page		
Mol	Chain	Length	Quality of chain		
			42%		
31	BY	155	68%	23%	8% •
32	BO	203	65%	25%	7% •
33	BC	365	70%	23%	••
34	B5	83	65%	27%	5% ••
34	BK	83	35% 69%	25%	
35	BL	147	54%	16%	7% •
36	Bf	51	67% 49% 25%	18%	8%
37	BU	121	44% 70%	27%	·
38	Bb	130	48% 62%	25%	10% ••
39	Be	62	68% 55%	29%	16%
40	BE	186	40% 80%	15	% 5%•
41	Ba	95	29% 62%	22% 9	% • 5%
42	BT	86	34% 73%	21%	••
43	Bk	339	53% 48% 11% ••	37%	
44	BW	72	69%	26%	•
45	Bi	83	31%	8%	5% • 6%
46	ВА	216	81% 73%	23%	•
47	BI	142	41%	24%	•
48	BR	97	53% 66%	25%	7% •
49	BQ	150	42% 67%	26%	7%
50	BV	66	42%	27%	•
51	Bj	94	52% 47% 29%	15%	10%
52	BB	239	41% 75%	18%	7%
53	BD	255	46%	25%	••
54	BF	184	20%	23%	•••

Mol	Chain	Length	Quality of cha	ain		
			71%			
55	Bh	24	92%			8%
FC	דום	1.0.4	62%			
06	BH	104	59%	14%	8% •	18%
57	BZ	99	77%		19	1% • •
58	BP	120	32%		25%	-
00		120	60%		2.570	•
59	BM	194	74%		23%	% ••
60	BS	155	35%		18%	6%
			60%		10,0	
61	Bd	89	52%	35%		10% •
62	BN	181	35% 67%		18%	7% 7%
02	DI	101	51%		1070	770 770
63	Bg	51	43% 27%		12% 6%	12%
	Б	07	51%			
64	BC	87	63%		29%	7% •
65	BJ	141	69%		23%	• 6%
			26%			
66	Bl	77	71%		23%	5%
67	B1	3049	7% • 76%			23%
			_			
68	B3	126	67%		33%	

Continued from previous page...

2 Entry composition (i)

There are 68 unique types of molecules in this entry. The entry contains 173979 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 30S ribosomal protein S15P/S13e.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	AQ	158	Total 1310	C 834	N 250	0 221	${ m S}{ m 5}$	0	0

• Molecule 2 is a protein called 30S ribosomal protein S9P.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	AK	135	Total 1072	C 671	N 205	O 190	S 6	0	0

• Molecule 3 is a protein called 30S ribosomal protein S8P.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	AI	129	Total 1028	C 668	N 178	0 180	${ m S} { m 2}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S6e.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	AG	125	Total 984	C 623	N 180	0 179	${S \over 2}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S27e.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	AW	63	Total 478	C 306	N 85	0 81	${ m S}{ m 6}$	0	0

• Molecule 6 is a protein called 30S ribosomal protein S3P.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	AC	186	Total 1459	C 933	N 271	0 251	$\frac{S}{4}$	0	0

• Molecule 7 is a protein called 30S ribosomal protein S2P.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	AB	202	Total 1623	C 1046	N 282	O 290	${f S}{5}$	0	0

• Molecule 8 is a protein called 30S ribosomal protein S17P.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	AR	113	Total 934	C 592	N 177	0 160	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called unknown 30S ribosomal protein SX.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
9	A9	57	Total 286	C 171	N 57	O 58	0	0

• Molecule 10 is a protein called 30S ribosomal protein S4P.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	AD	172	Total 1434	C 902	N 273	O 255	${S \atop 4}$	0	0

• Molecule 11 is a RNA chain called E-tRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms	AltConf	Trace		
11	A1	77	Total 1649	С 734	N 303	O 535	Р 77	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12P.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	AN	145	Total 1140	C 722	N 222	0 193	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S28e.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	AX	71	Total 568	C 345	N 115	0 107	S 1	0	0

• Molecule 14 is a protein called 30S ribosomal protein S11P.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	AM	133	Total 1004	C 623	N 200	O 179	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S4e.

Mol	Chain	Residues		Ate		AltConf	Trace		
15	AE	241	Total 1976	C 1277	N 355	O 339	${ m S}{ m 5}$	0	0

• Molecule 16 is a protein called 30S ribosomal protein S8e.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	AJ	127	Total 1004	C 622	N 207	0 174	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S13P.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
17	AO	148	Total 1189	C 746	N 237	O 200	S 6	0	0

• Molecule 18 is a protein called 30S ribosomal protein S5P.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	AF	217	Total 1716	C 1084	N 319	O 305	S 8	0	0

• Molecule 19 is a protein called 30S ribosomal protein S17e.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
19	AS	67	Total 556	C 353	N 105	O 95	$\frac{S}{3}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L7Ae.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Δ3	193	Total	С	Ν	Ο	S	0	0
20	110	120	939	599	155	181	4	0	0
20	BC	192	Total	С	Ν	Ο	\mathbf{S}	0	0
20	DG	120	939	599	155	181	4	0	0
20	D4	192	Total	С	Ν	0	S	0	0
20	D4	125	939	599	155	181	4	0	0

• Molecule 21 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
21	A2	1495	Total 32135	C 14297	N 5954	O 10389	Р 1495	0	0

• Molecule 22 is a protein called 30S ribosomal protein S27ae.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
22	AY	50	Total 409	C 262	N 75	O 66	S 6	0	0

• Molecule 23 is a protein called 30S ribosomal protein S19P.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	AT	111	Total 923	C 594	N 173	O 150	${ m S}{ m 6}$	0	0

• Molecule 24 is a protein called 30S ribosomal protein S3Ae.

Mol	Chain	Residues		Ate	AltConf	Trace			
24	АА	190	Total 1559	C 1007	N 273	0 274	${S \atop 5}$	0	0

• Molecule 25 is a protein called 30S ribosomal protein S7P.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
25	AH	215	Total 1736	C 1100	N 326	O 302	S 8	0	0

• Molecule 26 is a protein called 30S ribosomal protein S14P type Z.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
26	AP	56	Total 462	C 292	N 95	O 69	S 6	0	0

• Molecule 27 is a RNA chain called P-tRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
27	A0	76	Total 1625	C 722	N 291	O 536	Р 76	0	0

• Molecule 28 is a protein called 30S ribosomal protein S24e.

Mol	Chain	Residues		At	oms		AltConf	Trace	
28	AV	99	Total	С	Ν	0	\mathbf{S}	0	0
_0		00	823	532	134	154	3	Ŭ	Ŭ
10	DG	0.4	Total	С	Ν	0	\mathbf{S}	0	0
20	D0	54	782	508	127	144	3		

• Molecule 29 is a protein called 30S ribosomal protein S10P.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
29	AL	102	Total 822	C 507	N 159	0 152	$\frac{S}{4}$	0	0

• Molecule 30 is a protein called SSU ribosomal protein S19E.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	AU	144	Total 1175	C 758	N 212	0 204	S 1	0	0

• Molecule 31 is a protein called 50S ribosomal protein L30P.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	ΡV	155	Total	С	Ν	0	\mathbf{S}	0	0
10	DI	100	1243	788	235	213	$\overline{7}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L18P.

Mol	Chain	Residues		At		AltConf	Trace		
32	BO	197	Total 1597	C 1021	N 299	0 274	${ m S} { m 3}$	0	0

• Molecule 33 is a protein called 50S ribosomal protein L3P.

Mol	Chain	Residues		At		AltConf	Trace		
33	BC	365	Total 2912	C 1870	N 527	O 500	S 15	0	0

• Molecule 34 is a protein called 50S ribosomal protein L14e.

Mol	Chain	Residues		At	oms		AltConf	Trace	
34	R5	81	Total	С	Ν	0	S	0	0
- 54	D5	01	614	386	119	108	1	0	0
24	BK	Q1	Total	С	Ν	0	S	0	0
04	DN	01	614	386	119	108	1		

• Molecule 35 is a protein called 50S ribosomal protein L15P.

Mol	Chain	Residues		At	oms		AltConf	Trace	
35	BL	147	Total 1154	С 727	N 227	0 195	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called 50S ribosomal protein L39e.

Mol	Chain	Residues		Ato	ms	AltConf	Trace		
36	Bf	51	Total 445	C 284	N 98	O 62	S 1	0	0

• Molecule 37 is a protein called 50S ribosomal protein L24P.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	BU	121	Total 1008	C 637	N 195	0 172	${S \atop 4}$	0	0

• Molecule 38 is a protein called 50S ribosomal protein L32e.

Mol	Chain	Residues		At	oms		AltConf	Trace	
38	Bb	127	Total 1074	C 689	N 217	0 167	S 1	0	0

• Molecule 39 is a protein called 50S ribosomal protein L37e.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
39	Be	62	Total 506	C 312	N 111	0 78	${f S}{5}$	0	0

• Molecule 40 is a protein called 50S ribosomal protein L5P.

Mol	Chain	Residues		At	oms		AltConf	Trace	
40	BE	186	Total 1489	C 937	N 278	O 265	S 9	0	0

• Molecule 41 is a protein called 50S ribosomal protein L31e.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
41	Ba	90	Total 746	C 483	N 138	O 125	0	0

• Molecule 42 is a protein called 50S ribosomal protein L23P.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
42	BT	84	Total 680	C 440	N 118	0 122	0	0

• Molecule 43 is a protein called Acidic ribosomal protein P0 homolog.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	Bk	212	Total 1632	C 1051	N 272	O 303	S 6	0	0

• Molecule 44 is a protein called 50S ribosomal protein L29P.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	BW	72	Total 594	C 369	N 115	0 106	$\frac{S}{4}$	0	0

• Molecule 45 is a protein called 50S ribosomal protein L37Ae.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
45	Bi	78	Total	С	Ν	0	S	0	0
10	Di		590	368	122	95	5	Ŭ	Ŭ

• Molecule 46 is a protein called 50S ribosomal protein L1P.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	ВА	216	Total 1677	C 1068	N 300	0 304	${ m S}{ m 5}$	0	0

• Molecule 47 is a protein called 50S ribosomal protein L13P.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	BI	142	Total 1150	C 737	N 215	0 195	${ m S} { m 3}$	0	0

• Molecule 48 is a protein called 50S ribosomal protein L21e.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	BR	95	Total 787	C 501	N 160	0 125	S 1	0	0

• Molecule 49 is a protein called 50S ribosomal protein L19e.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	BQ	150	Total 1256	C 794	N 255	O 202	${ m S}{ m 5}$	0	0

• Molecule 50 is a protein called 50S ribosomal protein L24e.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
50	BV	66	Total	С	N	0	S	0	0
- 50		00	555	351	106	91	7	0	0

• Molecule 51 is a protein called 50S ribosomal protein L44E.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	Bj	94	Total 787	C 499	N 161	0 122	${ m S}{ m 5}$	0	0

• Molecule 52 is a protein called 50S ribosomal protein L2P.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
52	BB	239	Total 1838	C 1169	N 347	0 317	${ m S}{ m 5}$	0	0

• Molecule 53 is a protein called 50S ribosomal protein L4P.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	BD	255	Total 2026	C 1288	N 391	0 342	${ m S}{ m 5}$	0	0

• Molecule 54 is a protein called 50S ribosomal protein L6P.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	BF	184	Total 1476	C 956	N 252	O 266	${ m S} { m 2}$	0	0

• Molecule 55 is a protein called 50S ribosomal protein L41e.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
55	Bh	24	Total 230	C 147	N 54	O 28	S 1	0	0

• Molecule 56 is a protein called 50S ribosomal protein L11P.

Mol	Chain	Residues		At	oms	AltConf	Trace		
56	BH	134	Total 988	$\begin{array}{c} \mathrm{C} \\ 635 \end{array}$	N 164	0 183	S 6	0	0

• Molecule 57 is a protein called 50S ribosomal protein L30e.

Mol	Chain	Residues		At	oms	AltConf	Trace		
57	ΒZ	99	Total 754	C 489	N 121	0 142	${S \over 2}$	0	0

• Molecule 58 is a protein called 50S ribosomal protein L18e.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	BP	120	Total 966	C 606	N 186	0 171	${ m S} { m 3}$	0	0

• Molecule 59 is a protein called 50S ribosomal protein L15e.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	BM	194	Total 1595	C 1020	N 316	O 253	S 6	0	0

• Molecule 60 is a protein called 50S ribosomal protein L22P.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	BS	150	Total 1200	С 764	N 230	O 202	S 4	0	0

• Molecule 61 is a protein called 50S ribosomal protein L34e.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms		AltConf	Trace	
61	Bd	89	Total 740	C 463	N 158	0 108	S 11	0	0

• Molecule 62 is a protein called 50S ribosomal protein L10e.

Mol	Chain	Residues		At	oms	AltConf	Trace		
62	BN	168	Total 1378	C 872	N 268	0 232	S 6	0	0

• Molecule 63 is a protein called 50S ribosomal protein L40e.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
63	Bg	45	Total 371	C 236	N 76	O 55	${f S}{4}$	0	0

• Molecule 64 is a protein called 50S ribosomal protein L35Ae.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	Bc	87	Total 685	C 434	N 132	0 117	${S \over 2}$	0	0

• Molecule 65 is a protein called 50S ribosomal protein L14P.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	BJ	132	Total 1014	C 631	N 204	0 176	${ m S} { m 3}$	0	0

• Molecule 66 is a protein called 50S ribosomal protein LX.

Mol	Chain	Residues	Atoms					AltConf	Trace
66	Bl	77	Total 659	C 425	N 118	0 115	S 1	0	0

• Molecule 67 is a RNA chain called 23S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
67	B1	3049	Total 65577	C 29172	N 12191	O 21165	Р 3049	0	0

• Molecule 68 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
68	B3	126	Total 2694	C 1199	N 492	0 877	Р 126	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 30S ribosomal protein S15P/S13e

• Molecule 4: 30S ribosomal protein S6e 50% Chain AG: 63% 24% 10% 딮 H79 G80 P81 R82 R83 R.95 K97 V84 V86 L87 88 S 89 691 P92 693 К90 • Molecule 5: 30S ribosomal protein S27e 27% Chain AW: 76% 21% • Molecule 6: 30S ribosomal protein S3P 46% Chain AC: 68% 17% 11% 30 G31 **R140** V82 E83 N77 P78 E81 117 • Molecule 7: 30S ribosomal protein S2P 45% Chain AB: 25% 70% L6 5

 \bullet Molecule 8: 30S ribosomal protein S17P

• Molecule 13: 30S ribosomal protein S28e

• Molecule 14: 30S ribosomal protein S11P

 \bullet Molecule 15: 30S ribosomal protein S4e

• Molecule 17: 30S ribosomal protein S13P

• Molecule 18: 30S ribosomal protein S5P

 \bullet Molecule 20: 50S ribosomal protein L7Ae

97% Chain A3: 75% 24% •

• Molecule 25: 30S ribosomal protein S7P

 \bullet Molecule 26: 30S ribosomal protein S14P type Z

• Molecule 28: 30S ribosomal protein S24e

 \bullet Molecule 34: 50S ribosomal protein L14e

• Molecule 47: 50S ribosomal protein L13P

 \bullet Molecule 51: 50S ribosomal protein L44E

 \bullet Molecule 59: 50S ribosomal protein L15e

 \bullet Molecule 63: 50S ribosomal protein L40e

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	10000	Depositor
Resolution determination method	FSC 0.5 CUT-OFF	Depositor
CTF correction method	Wiener Filter	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	25	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	3600	Depositor
Magnification	75000	Depositor
Image detector	TVIPS TEMCAM-F416 (4k x 4k)	Depositor
Maximum map value	0.745	Depositor
Minimum map value	-0.497	Depositor
Average map value	0.004	Depositor
Map value standard deviation	0.040	Depositor
Recommended contour level	0.13	Depositor
Map size (Å)	455.4, 455.4, 455.4	wwPDB
Map dimensions	368, 368, 368	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.2375, 1.2375, 1.2375	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		I	Bond lengths	Bond angles		
MOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	AQ	1.71	11/1338~(0.8%)	1.93	30/1797~(1.7%)	
2	AK	1.74	12/1088~(1.1%)	2.01	32/1455~(2.2%)	
3	AI	1.54	5/1049~(0.5%)	1.70	9/1408~(0.6%)	
4	AG	1.48	3/999~(0.3%)	1.97	31/1337~(2.3%)	
5	AW	1.76	3/485~(0.6%)	1.86	11/651~(1.7%)	
6	AC	1.81	19/1480~(1.3%)	1.99	34/1985~(1.7%)	
7	AB	1.79	18/1654~(1.1%)	2.06	51/2233~(2.3%)	
8	AR	1.83	14/956~(1.5%)	2.07	35/1287~(2.7%)	
10	AD	1.73	15/1457~(1.0%)	1.93	36/1953~(1.8%)	
11	A1	3.43	155/1843~(8.4%)	2.59	167/2873~(5.8%)	
12	AN	1.58	12/1156~(1.0%)	1.95	31/1535~(2.0%)	
13	AX	1.92	9/570~(1.6%)	2.14	19/760~(2.5%)	
14	AM	1.71	11/1022~(1.1%)	1.98	27/1375~(2.0%)	
15	AE	1.80	28/2025~(1.4%)	2.16	66/2732~(2.4%)	
16	AJ	1.85	16/1013~(1.6%)	2.04	20/1349~(1.5%)	
17	AO	1.88	16/1208~(1.3%)	2.11	39/1619~(2.4%)	
18	AF	1.23	5/1745~(0.3%)	1.38	18/2350~(0.8%)	
19	AS	1.71	8/562~(1.4%)	1.86	14/744~(1.9%)	
20	A3	1.67	7/951~(0.7%)	1.95	24/1281~(1.9%)	
20	B4	1.41	2/951~(0.2%)	1.64	11/1281~(0.9%)	
20	BG	1.34	0/951	1.79	21/1281~(1.6%)	
21	A2	3.29	2781/35966~(7.7%)	2.59	3540/56138~(6.3%)	
22	AY	1.72	4/421~(1.0%)	1.85	8/558~(1.4%)	
23	AT	1.81	7/942~(0.7%)	1.95	24/1257~(1.9%)	
24	AA	1.71	13/1585~(0.8%)	2.12	53/2124~(2.5%)	
25	AH	1.62	20/1773~(1.1%)	2.11	75/2381~(3.1%)	
26	AP	1.87	6/471~(1.3%)	2.06	15/620~(2.4%)	
27	A0	3.33	158/1814~(8.7%)	2.51	182/2828~(6.4%)	
28	AV	1.57	$\overline{7/839}~(0.8\%)$	1.75	17/1122~(1.5%)	
28	B6	1.73	9/798~(1.1%)	2.09	32/1071~(3.0%)	
29	AL	1.52	3/830~(0.4%)	2.03	$\overline{28/1113}\ (2.5\%)$	
30	AU	1.79	$\overline{14/1203}~(1.2\%)$	2.05	$\overline{29/1621}\ (1.8\%)$	
31	BY	1.73	$\overline{13/1262}~(1.0\%)$	2.04	$\overline{31/1687}~(1.8\%)$	
32	BO	1.85	$\overline{29/1635}~(1.8\%)$	1.96	$\overline{37/2196}~(1.7\%)$	

Mol Chain		I	Bond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	BC	1.72	27/2978~(0.9%)	2.06	96/4003~(2.4%)	
34	B5	1.76	7/618~(1.1%)	2.12	24/829~(2.9%)	
34	BK	1.80	8/618~(1.3%)	1.98	19/829~(2.3%)	
35	BL	1.71	13/1175~(1.1%)	2.07	46/1563~(2.9%)	
36	Bf	1.94	13/453~(2.9%)	2.75	38/603~(6.3%)	
37	BU	1.77	16/1024~(1.6%)	2.05	29/1365~(2.1%)	
38	Bb	1.77	12/1099~(1.1%)	2.14	36/1466~(2.5%)	
39	Be	1.82	10/517~(1.9%)	2.11	19/681~(2.8%)	
40	BE	1.72	12/1513~(0.8%)	1.99	39/2026~(1.9%)	
41	Ba	1.61	1/760~(0.1%)	2.04	30/1019~(2.9%)	
42	BT	1.66	5/689~(0.7%)	1.97	19/924~(2.1%)	
43	Bk	1.48	8/1659~(0.5%)	1.82	44/2253~(2.0%)	
44	BW	1.85	13/595~(2.2%)	2.02	19/784~(2.4%)	
45	Bi	1.57	0/599	1.85	16/798~(2.0%)	
46	BA	1.73	23/1702~(1.4%)	1.98	46/2293~(2.0%)	
47	BI	1.80	18/1168~(1.5%)	1.96	30/1561~(1.9%)	
48	BR	1.65	4/808~(0.5%)	1.92	22/1080~(2.0%)	
49	BQ	1.69	15/1272~(1.2%)	2.17	43/1676~(2.6%)	
50	BV	1.67	3/570~(0.5%)	2.07	23/758~(3.0%)	
51	Bj	1.75	6/805~(0.7%)	2.36	51/1064~(4.8%)	
52	BB	1.77	19/1883~(1.0%)	2.08	56/2540~(2.2%)	
53	BD	1.81	25/2068~(1.2%)	1.99	57/2787~(2.0%)	
54	BF	1.74	13/1507~(0.9%)	2.01	44/2033~(2.2%)	
55	Bh	1.34	2/233~(0.9%)	1.11	3/301~(1.0%)	
56	BH	1.46	5/1001~(0.5%)	1.88	31/1351~(2.3%)	
57	ΒZ	1.69	6/764~(0.8%)	1.99	20/1028~(1.9%)	
58	BP	1.89	12/980~(1.2%)	1.97	24/1313~(1.8%)	
59	BM	1.84	23/1634~(1.4%)	1.97	35/2179~(1.6%)	
60	BS	1.76	7/1226~(0.6%)	2.16	38/1649~(2.3%)	
61	Bd	1.60	5/758~(0.7%)	2.22	41/1007~(4.1%)	
62	BN	1.86	16/1409~(1.1%)	2.09	51/1890~(2.7%)	
63	Bg	1.58	2/380~(0.5%)	2.02	17/504~(3.4%)	
64	Bc	1.67	6/694~(0.9%)	2.12	30/926~(3.2%)	
65	BJ	1.88	14/1027~(1.4%)	1.95	24/1385~(1.7%)	
66	Bl	1.81	7/669~(1.0%)	1.92	15/884~(1.7%)	
67	B1	3.31	5858/73410~(8.0%)	2.59	7158/114595~(6.2%)	
68	B3	3.47	234/3010~(7.8%)	2.74	322/4693~(6.9%)	
All	All	2.81	9901/187317~(5.3%)	2.41	13452/276642~(4.9%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	AQ	0	7
2	AK	0	4
3	AI	0	5
4	AG	1	9
5	AW	0	2
6	AC	0	11
7	AB	0	6
8	AR	0	3
9	A9	0	1
10	AD	0	6
12	AN	0	10
13	AX	0	7
14	AM	0	2
15	AE	0	11
16	AJ	0	4
17	AO	0	11
18	AF	0	1
19	AS	0	1
20	B4	0	1
20	BG	0	3
21	A2	1	7
22	AY	0	4
23	AT	0	5
24	AA	0	2
25	AH	4	21
26	AP	0	6
28	AV	0	10
28	B6	0	2
29	AL	1	5
30	AU	0	6
31	BY	0	7
32	BO	0	11
33	BC	0	18
34	B5	1	3
34	BK	1	1
35	BL	3	12
36	Bf	0	13
37	BU	0	3
38	Bb	0	10
39	Be	1	12
40	BE	0	6
41	Ba	0	7
42	BT	0	3
44	DI	0	5

Mol	Chain	#Chirality outliers	#Planarity outliers
43	Bk	0	10
44	BW	0	2
45	Bi	0	4
46	BA	0	4
47	BI	0	3
48	BR	0	6
49	BQ	3	10
50	BV	1	4
51	Bj	1	18
52	BB	0	16
53	BD	0	8
54	BF	0	8
56	BH	1	9
57	BZ	0	1
58	BP	0	2
59	BM	0	7
60	BS	0	7
61	Bd	1	7
62	BN	0	8
63	Bg	1	4
64	Bc	1	7
65	BJ	0	3
66	Bl	0	3
67	B1	0	12
All	All	22	442

Continued from previous page...

The worst 5 of 9901 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
67	B1	1565	G	O4'-C1'	51.72	2.08	1.41
67	B1	2507	С	O4'-C1'	37.95	1.91	1.41
67	B1	1570	С	O4'-C1'	37.84	1.90	1.41
67	B1	1642	G	C2'-C1'	35.02	1.91	1.53
21	A2	85	А	C2'-C1'	34.42	1.91	1.53

The worst 5 of 13452 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
67	B1	2363	G	O4'-C1'-N9	44.16	143.53	108.20
67	B1	1754	A	O4'-C1'-N9	36.92	137.74	108.20
21	A2	1207	G	O4'-C1'-N9	31.50	133.40	108.20
11	A1	49	С	O4'-C1'-N1	30.68	132.75	108.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
67	B1	2174	G	O4'-C1'-N9	30.40	132.52	108.20

5 of 22 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
4	AG	53	LYS	CA
21	A2	1317	G	C1'
25	AH	85	PHE	CA
25	AH	86	MET	CA
25	AH	87	ARG	CA

5 of 442 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	AQ	28	TYR	Sidechain
1	AQ	3	ARG	Sidechain
1	AQ	58	TYR	Sidechain
1	AQ	68	ASP	Peptide
1	AQ	74	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	AQ	156/158~(99%)	139 (89%)	8 (5%)	9~(6%)	1 18
2	AK	133/135~(98%)	119 (90%)	12 (9%)	2 (2%)	10 46
3	AI	127/130~(98%)	121 (95%)	4 (3%)	2 (2%)	9 44
4	AG	123/125~(98%)	103 (84%)	11 (9%)	9 (7%)	1 14

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
5	AW	61/63~(97%)	55~(90%)	4 (7%)	2(3%)	4	26
6	AC	184/210~(88%)	175~(95%)	6 (3%)	3(2%)	9	44
7	AB	200/202~(99%)	177 (88%)	19 (10%)	4 (2%)	7	38
8	AR	111/113~(98%)	100 (90%)	9 (8%)	2(2%)	8	40
10	AD	170/180~(94%)	151 (89%)	14 (8%)	5(3%)	4	29
12	AN	143/147~(97%)	129 (90%)	8 (6%)	6 (4%)	3	22
13	AX	69/71~(97%)	59~(86%)	4 (6%)	6 (9%)	1	11
14	AM	131/137~(96%)	118 (90%)	8 (6%)	5 (4%)	3	24
15	AE	239/243~(98%)	210 (88%)	23 (10%)	6 (2%)	5	32
16	AJ	125/127~(98%)	101 (81%)	18 (14%)	6 (5%)	2	21
17	AO	146/148~(99%)	122 (84%)	15 (10%)	9 (6%)	1	17
18	AF	215/236~(91%)	191 (89%)	22 (10%)	2 (1%)	17	57
19	AS	65/67~(97%)	64 (98%)	0	1 (2%)	10	46
20	A3	121/123~(98%)	105 (87%)	8 (7%)	8 (7%)	1	15
20	B4	121/123~(98%)	113 (93%)	6 (5%)	2(2%)	9	42
20	BG	121/123~(98%)	109 (90%)	8 (7%)	4(3%)	4	26
22	AY	48/50~(96%)	43 (90%)	3~(6%)	2(4%)	3	22
23	AT	109/132~(83%)	98~(90%)	9 (8%)	2(2%)	8	40
24	AA	188/198~(95%)	170 (90%)	12 (6%)	6 (3%)	4	26
25	AH	213/215~(99%)	181 (85%)	14 (7%)	18 (8%)	1	11
26	AP	54/56~(96%)	43 (80%)	8 (15%)	3~(6%)	2	18
28	AV	97/99~(98%)	86 (89%)	6 (6%)	5(5%)	2	19
28	B6	92/99~(93%)	84 (91%)	4 (4%)	4 (4%)	2	22
29	AL	100/102~(98%)	92~(92%)	1 (1%)	7~(7%)	1	14
30	AU	142/150~(95%)	134 (94%)	5 (4%)	3~(2%)	7	36
31	BY	153/155~(99%)	143 (94%)	5(3%)	5(3%)	4	26
32	BO	195/203~(96%)	164 (84%)	17 (9%)	14 (7%)	1	14
33	BC	363/365~(100%)	303 (84%)	34 (9%)	26(7%)	1	14
34	B5	$79/83~(9\overline{5\%})$	69 (87%)	5 (6%)	5(6%)	1	16
34	BK	79/83 (95%)	68~(86%)	6 (8%)	5(6%)	1	16
35	BL	145/147~(99%)	128 (88%)	8 (6%)	9 (6%)	1	17

Continued from previous page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
36	Bf	49/51~(96%)	37~(76%)	8 (16%)	4 (8%)	1	12
37	BU	119/121~(98%)	113 (95%)	3 (2%)	3~(2%)	5	32
38	Bb	125/130~(96%)	102~(82%)	13 (10%)	10 (8%)	1	12
39	Be	60/62~(97%)	45~(75%)	11 (18%)	4 (7%)	1	15
40	BE	184/186~(99%)	170 (92%)	8 (4%)	6 (3%)	4	26
41	Ba	88/95~(93%)	74 (84%)	7 (8%)	7 (8%)	1	12
42	BT	82/86~(95%)	78~(95%)	3 (4%)	1 (1%)	13	50
43	Bk	210/339~(62%)	187 (89%)	12 (6%)	11 (5%)	2	19
44	BW	70/72~(97%)	70 (100%)	0	0	100	100
45	Bi	76/83~(92%)	70 (92%)	6 (8%)	0	100	100
46	BA	214/216~(99%)	190 (89%)	12 (6%)	12~(6%)	2	18
47	BI	140/142~(99%)	129 (92%)	7 (5%)	4(3%)	4	29
48	BR	93/97~(96%)	85 (91%)	6 (6%)	2(2%)	6	35
49	BQ	148/150~(99%)	141 (95%)	4 (3%)	3~(2%)	7	38
50	BV	64/66~(97%)	63~(98%)	1 (2%)	0	100	100
51	Bj	92/94~(98%)	71 (77%)	8 (9%)	13 (14%)	0	4
52	BB	237/239~(99%)	213 (90%)	17 (7%)	7 (3%)	4	28
53	BD	253/255~(99%)	218 (86%)	21 (8%)	14~(6%)	2	19
54	BF	182/184~(99%)	169~(93%)	13~(7%)	0	100	100
55	Bh	22/24~(92%)	21 (96%)	1 (4%)	0	100	100
56	BH	132/164~(80%)	108 (82%)	14 (11%)	10 (8%)	1	13
57	BZ	97/99~(98%)	84 (87%)	7 (7%)	6~(6%)	1	17
58	BP	118/120~(98%)	102 (86%)	13 (11%)	3~(2%)	5	32
59	BM	192/194~(99%)	173 (90%)	17 (9%)	2(1%)	15	54
60	BS	148/155~(96%)	137~(93%)	8 (5%)	3~(2%)	7	38
61	Bd	87/89~(98%)	78 (90%)	6 (7%)	3~(3%)	3	26
62	BN	166/181~(92%)	137 (82%)	20 (12%)	9~(5%)	2	19
63	Bg	43/51~(84%)	31 (72%)	3 (7%)	9 (21%)	0	2
64	Bc	85/87~(98%)	74 (87%)	7 (8%)	4 (5%)	2	21
65	BJ	$\overline{130/141}\ (92\%)$	124 (95%)	4 (3%)	2 (2%)	10	46
66	Bl	75/77~(97%)	69 (92%)	4 (5%)	2(3%)	5	31

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	8599/9048~(95%)	7630 (89%)	608 (7%)	361 (4%)	5 22

5 of 361 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	AQ	78	ILE
2	AK	133	SER
3	AI	121	ILE
4	AG	48	ASN
4	AG	50	LEU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	AQ	143/143~(100%)	138~(96%)	5(4%)	36	59
2	AK	111/111~(100%)	105~(95%)	6~(5%)	22	47
3	AI	107/108~(99%)	100 (94%)	7~(6%)	17	42
4	AG	108/108~(100%)	88~(82%)	20~(18%)	1	10
5	AW	54/54~(100%)	52~(96%)	2(4%)	34	58
6	AC	145/167~(87%)	143~(99%)	2(1%)	67	80
7	AB	173/173~(100%)	164 (95%)	9~(5%)	23	48
8	AR	102/102~(100%)	101 (99%)	1 (1%)	76	86
10	AD	153/160~(96%)	147~(96%)	6 (4%)	32	56
12	AN	118/121~(98%)	104 (88%)	14 (12%)	5	20
13	AX	60/60~(100%)	55~(92%)	5 (8%)	11	34
14	AM	100/104~(96%)	94~(94%)	6~(6%)	19	44
15	AE	212/213~(100%)	198~(93%)	14 (7%)	16	41
16	AJ	103/103~(100%)	98~(95%)	5 (5%)	25	50
17	AO	122/122 (100%)	119 (98%)	3 (2%)	47	68
18	AF	$18\overline{1/197}~(92\%)$	176~(97%)	5(3%)	43	65

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
00100010000	J. 01.0	proceed as	p @ 9 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
19	AS	61/61~(100%)	61~(100%)	0	100	100
20	A3	99/99~(100%)	95~(96%)	4 (4%)	31	55
20	B4	99/99~(100%)	95~(96%)	4 (4%)	31	55
20	BG	99/99~(100%)	92~(93%)	7 (7%)	14	39
22	AY	41/41~(100%)	39~(95%)	2 (5%)	25	50
23	AT	99/114~(87%)	99 (100%)	0	100	100
24	AA	166/171~(97%)	163~(98%)	3~(2%)	59	77
25	AH	184/184~(100%)	166 (90%)	18 (10%)	8	27
26	AP	46/46~(100%)	39~(85%)	7 (15%)	3	15
28	AV	89/89~(100%)	81 (91%)	8 (9%)	9	30
28	B6	85/89~(96%)	78~(92%)	7 (8%)	11	34
29	AL	91/91~(100%)	82 (90%)	9 (10%)	8	26
30	AU	121/127~(95%)	114 (94%)	7 (6%)	20	45
31	BY	133/133~(100%)	112 (84%)	21 (16%)	2	14
32	BO	166/169~(98%)	157 (95%)	9~(5%)	22	47
33	BC	312/312~(100%)	293~(94%)	19 (6%)	18	44
34	B5	64/66~(97%)	60 (94%)	4~(6%)	18	43
34	BK	64/66~(97%)	62~(97%)	2(3%)	40	62
35	BL	117/117~(100%)	102~(87%)	15~(13%)	4	19
36	Bf	47/47~(100%)	40 (85%)	7 (15%)	3	15
37	BU	110/110~(100%)	106 (96%)	4 (4%)	35	59
38	Bb	114/117~(97%)	105~(92%)	9~(8%)	12	36
39	Be	51/51~(100%)	46 (90%)	5 (10%)	8	27
40	BE	158/158~(100%)	152 (96%)	6 (4%)	33	57
41	Ba	80/83~(96%)	71~(89%)	9 (11%)	6	21
42	BT	75/77~(97%)	72~(96%)	3~(4%)	31	55
43	Bk	$179/\overline{280~(64\%)}$	159 (89%)	20 (11%)	6	22
44	BW	66/66~(100%)	63~(96%)	3 (4%)	27	52
45	Bi	57/61~(93%)	55 (96%)	2 (4%)	36	59
46	BA	$1\overline{82/182}\ (100\%)$	174 (96%)	8 (4%)	28	53
47	BI	122/122~(100%)	119 (98%)	3 (2%)	47	68

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
48	BR	85/87~(98%)	75~(88%)	10 (12%)	5	20
49	BQ	130/130~(100%)	121 (93%)	9~(7%)	15	40
50	BV	56/56~(100%)	54 (96%)	2 (4%)	35	59
51	Bj	82/83~(99%)	65~(79%)	17 (21%)	1	7
52	BB	189/189~(100%)	180 (95%)	9(5%)	25	51
53	BD	213/213~(100%)	197 (92%)	16 (8%)	13	38
54	BF	156/156~(100%)	150 (96%)	6 (4%)	33	57
55	Bh	23/23~(100%)	23 (100%)	0	100	100
56	BH	110/137~(80%)	96 (87%)	14 (13%)	4	19
57	BZ	80/80~(100%)	73~(91%)	7 (9%)	10	31
58	BP	101/101 (100%)	98~(97%)	3 (3%)	41	63
59	BM	162/162~(100%)	152 (94%)	10 (6%)	18	43
60	BS	126/130~(97%)	121 (96%)	5(4%)	31	55
61	Bd	81/81 (100%)	66~(82%)	15 (18%)	1	10
62	BN	140/152~(92%)	138 (99%)	2 (1%)	67	80
63	Bg	37/39~(95%)	29~(78%)	8 (22%)	1	6
64	Bc	74/74~(100%)	65~(88%)	9 (12%)	5	20
65	BJ	104/108~(96%)	99~(95%)	5 (5%)	25	51
66	Bl	72/72~(100%)	68 (94%)	4 (6%)	21	46
All	All	7390/7646~(97%)	6904 (93%)	486 (7%)	20	41

Continued from previous page...

5 of 486 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
35	BL	47	TRP
61	Bd	30	LYS
43	Bk	56	ARG
60	BS	155	ARG
64	Bc	51	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 65 such side chains are listed below:

Mol	Chain	Res	Type
28	B6	11	ASN

Continued from previous page...

Mol	Chain	Res	Type
59	BM	25	GLN
25	AH	69	ASN
25	AH	48	HIS
61	Bd	25	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	A1	76/77~(98%)	15 (19%)	3~(3%)
21	A2	1494/1495~(99%)	260 (17%)	118 (7%)
27	A0	75/76~(98%)	18 (24%)	3~(4%)
67	B1	3047/3049~(99%)	603~(19%)	194 (6%)
68	B3	126/126~(100%)	35~(27%)	13 (10%)
All	All	4818/4823~(99%)	931 (19%)	331~(6%)

5 of 931 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
11	A1	8	U
11	A1	9	А
11	A1	10	G
11	A1	16	С
11	A1	21	G

5 of 331 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
67	B1	1665	G
67	B1	2507	С
67	B1	1734	G
67	B1	2043	А
67	B1	2805	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
67	B1	1
56	BH	1
53	BD	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	B1	2506:G	O3'	2507:C	Р	1.83
1	BH	18:GLY	С	19:PRO	Ν	1.19
1	BD	91:ARG	С	92:THR	Ν	0.93

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-2009. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 184

Y Index: 184

Z Index: 184

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 207

Y Index: 187

Z Index: 178

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.13. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1275 nm^3 ; this corresponds to an approximate mass of 1152 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.152 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-2009 and PDB model 4V6U. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.13 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.13).

9.4 Atom inclusion (i)

At the recommended contour level, 66% of all backbone atoms, 58% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.13) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.5849	0.1970
A0	0.5348	0.1690
A1	0.5731	0.1410
A2	0.6951	0.2250
A3	0.0388	0.0200
A9	0.6783	0.2060
AA	0.5368	0.1380
AB	0.4356	0.1460
AC	0.4006	0.1390
AD	0.4182	0.1260
AE	0.3493	0.1190
AF	0.3928	0.1500
AG	0.3915	0.0820
AH	0.2889	0.0810
AI	0.4307	0.1390
AJ	0.4062	0.1520
AK	0.1950	0.1020
AL	0.1400	0.0710
AM	0.4444	0.1560
AN	0.3731	0.1420
AO	0.3785	0.1050
AP	0.2358	0.0950
AQ	0.4921	0.1430
AR	0.4237	0.1750
AS	0.4262	0.1170
AT	0.3557	0.0990
AU	0.2278	0.0850
AV	0.3491	0.1020
AW	0.5255	0.1240
AX	0.3956	0.1410
AY	0.0980	0.0320
B1	0.7262	0.2500
B3	0.7984	0.2180
B4	0.1961	0.1010
B5	0.5635	0.1560

Continued from previous page...

Chain	Atom inclusion	Q-score
B6	0.0171	0.0390
BA	0.2176	0.0480
BB	0.4494	0.2180
BC	0.4304	0.1680
BD	0.4160	0.1590
BE	0.4775	0.1130
BF	0.5643	0.1920
BG	0.5603	0.1520
BH	0.2308	0.0610
BI	0.4295	0.1670
BJ	0.4342	0.2070
BK	0.5251	0.1440
BL	0.3961	0.1390
BM	0.3396	0.1790
BN	0.4502	0.1800
BO	0.4606	0.1510
BP	0.4882	0.1710
BQ	0.4513	0.1440
BR	0.3653	0.1810
BS	0.4527	0.1730
BT	0.4692	0.1790
BU	0.4496	0.1560
BV	0.4302	0.1440
BW	0.5401	0.1570
BY	0.4660	0.1800
BZ	0.5685	0.1650
Ba	0.4979	0.1790
Bb	0.3983	0.1540
Bc	0.3919	0.1610
Bd	0.3206	0.1200
Be	0.2931	0.1250
Bf	0.3294	0.1430
Bg	0.3672	0.1280
Bh	0.3318	0.0850
Bi	0.5062	0.2030
Bj	0.3952	0.1330
Bk	0.1443	0.0340
Bl	0.5093	0.1590

