

# Full wwPDB X-ray Structure Validation Report (i)

#### Nov 2, 2023 – 12:25 PM EDT

| PDB ID       | : | 3VJC                                                                       |
|--------------|---|----------------------------------------------------------------------------|
| Title        | : | Crystal structure of the human squalene synthase in complex with zaragozic |
|              |   | acid A                                                                     |
| Authors      | : | Liu, C.I.; Jeng, W.Y.; Chang, W.J.; Ko, T.P.; Wang, A.H.J.                 |
| Deposited on | : | 2011-10-14                                                                 |
| Resolution   | : | 1.89 Å(reported)                                                           |
|              |   |                                                                            |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.36                                                               |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY\;DIFFRACTION$ 

The reported resolution of this entry is 1.89 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motric                | Whole archive        | Similar resolution                                          |
|-----------------------|----------------------|-------------------------------------------------------------|
| Meth                  | $(\# {\rm Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| $R_{free}$            | 130704               | 6207 (1.90-1.90)                                            |
| Clashscore            | 141614               | 6847 (1.90-1.90)                                            |
| Ramachandran outliers | 138981               | 6760 (1.90-1.90)                                            |
| Sidechain outliers    | 138945               | 6760 (1.90-1.90)                                            |
| RSRZ outliers         | 127900               | 6082 (1.90-1.90)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |        |
|-----|-------|--------|------------------|--------|
|     |       |        | 4%               |        |
| 1   | А     | 343    | 89%              | 6% • • |
|     |       |        | 3%               |        |
| 1   | В     | 343    | 90%              | 6% • • |
|     |       |        | 3%               |        |
| 1   | С     | 343    | 91%              | 5% • • |
|     |       |        | 9%               |        |
| 1   | D     | 343    | 88%              | 8% ••  |
|     |       |        | 11%              |        |
| 1   | Е     | 343    | 91%              | 6% • • |



| Mol | Chain        | Length | Quality of chain |         |  |  |  |
|-----|--------------|--------|------------------|---------|--|--|--|
|     |              |        | 20%              |         |  |  |  |
| 1   | $\mathbf{F}$ | 343    | 85%              | 10% • • |  |  |  |



# 2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 17855 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | At   | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|--------------|---------|---------|-------|
| 1   | Δ     | 224      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | - 334 | 2699     | 1717  | 460  | 504 | 18  | 0            | 0       | 0       |       |
| 1   | В     | 222      | Total | С    | Ν   | Ο   | S            | 0       | 0       | 0     |
| 1   | D     | 000      | 2691  | 1711 | 459 | 503 | 18           | 0       | 0       | 0     |
| 1   | 1 C   | C 332    | Total | С    | Ν   | Ο   | S            | 0       | 0       |       |
| 1   |       |          | 2682  | 1706 | 457 | 501 | 18           |         | 0       | 0     |
| 1   | Л     | 222      | Total | С    | Ν   | Ο   | S            | 0       | 0       | 0     |
| 1   | D     | ეეე      | 2691  | 1711 | 459 | 503 | 18           |         |         |       |
| 1   | F     | 222      | Total | С    | Ν   | Ο   | S            | 0       | 0       | 0     |
|     | 000   | 2691     | 1711  | 459  | 503 | 18  | 0            | 0       | 0       |       |
| 1   | Б     | 220      | Total | С    | Ν   | Ο   | S            | 0       | 0       | 0     |
|     | 332   | 2685     | 1708  | 458  | 501 | 18  | 0            |         | U       |       |

• Molecule 1 is a protein called Squalene synthase.

There are 18 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| А     | 28      | GLY      | -      | expression tag | UNP P37268 |
| А     | 29      | SER      | -      | expression tag | UNP P37268 |
| А     | 30      | HIS      | -      | expression tag | UNP P37268 |
| В     | 28      | GLY      | -      | expression tag | UNP P37268 |
| В     | 29      | SER      | -      | expression tag | UNP P37268 |
| В     | 30      | HIS      | -      | expression tag | UNP P37268 |
| С     | 28      | GLY      | -      | expression tag | UNP P37268 |
| С     | 29      | SER      | -      | expression tag | UNP P37268 |
| С     | 30      | HIS      | -      | expression tag | UNP P37268 |
| D     | 28      | GLY      | -      | expression tag | UNP P37268 |
| D     | 29      | SER      | -      | expression tag | UNP P37268 |
| D     | 30      | HIS      | -      | expression tag | UNP P37268 |
| Е     | 28      | GLY      | -      | expression tag | UNP P37268 |
| E     | 29      | SER      | -      | expression tag | UNP P37268 |
| E     | 30      | HIS      | -      | expression tag | UNP P37268 |
| F     | 28      | GLY      | -      | expression tag | UNP P37268 |
| F     | 29      | SER      | _      | expression tag | UNP P37268 |



| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| F     | 30      | HIS      | -      | expression tag | UNP P37268 |

• Molecule 2 is Zaragozic acid A (three-letter code: ZGA) (formula:  $C_{35}H_{46}O_{14}$ ).



| Mol | Chain | Residues | Atoms      | ZeroOcc   | AltConf |   |
|-----|-------|----------|------------|-----------|---------|---|
| 2   | А     | 1        | Total C O  | 0         | 0       |   |
| _   |       | -        | 49  35  14 | Ű         | Ŭ       |   |
| 9   | В     | 1        | Total C O  | 0         | 0       |   |
|     | D     | T        | 49 35 14   | 0         | 0       |   |
| 0   | С     | 1        | Total C O  | 0         | 0       |   |
|     |       |          | 49 35 14   | 0         |         |   |
| 0   | 2 D   | П        | 1          | Total C O | 0       | 0 |
|     |       | 1        | 49 35 14   | 0         | 0       |   |
| 0   | F     | 1        | Total C O  | 0         | 0       |   |
|     | L     | 49 35 14 | 0          | 0         |         |   |
| 0   | Б     | 1        | Total C O  | 0         | 0       |   |
|     | Г     |          | 49 35 14   |           | U       |   |

• Molecule 3 is PHOSPHATE ION (three-letter code: PO4) (formula:  $O_4P$ ).





| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 4   | В     | 1        | Total Mg<br>1 1 | 0       | 0       |
| 4   | D     | 1        | Total Mg<br>1 1 | 0       | 0       |

• Molecule 5 is water.

| Mol | Chain | ain Residues Atoms |                    | ZeroOcc | AltConf |
|-----|-------|--------------------|--------------------|---------|---------|
| 5   | А     | 354                | Total O<br>354 354 | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------|---------|---------|
| 5   | В     | 318      | Total O<br>318 318 | 0       | 0       |
| 5   | С     | 330      | Total O<br>330 330 | 0       | 0       |
| 5   | D     | 138      | Total O<br>138 138 | 0       | 0       |
| 5   | Е     | 180      | Total O<br>180 180 | 0       | 0       |
| 5   | F     | 70       | Total O<br>70 70   | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Squalene synthase







# 4 Data and refinement statistics (i)

| Property                                           | Value                                           | Source    |
|----------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                        | P 1 21 1                                        | Depositor |
| Cell constants                                     | 85.87Å 153.15Å 91.86Å                           | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$             | $90.00^{\circ}$ $91.72^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$ | 27.70 - 1.89                                    | Depositor |
| Resolution (A)                                     | 27.65 - 1.89                                    | EDS       |
| % Data completeness                                | 99.4 (27.70-1.89)                               | Depositor |
| (in resolution range)                              | $99.3\ (27.65-1.89)$                            | EDS       |
| R <sub>merge</sub>                                 | 0.06                                            | Depositor |
| R <sub>sym</sub>                                   | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                                | $2.62 (at 1.89 \text{\AA})$                     | Xtriage   |
| Refinement program                                 | REFMAC 5.5.0109                                 | Depositor |
| D D.                                               | 0.148 , $0.197$                                 | Depositor |
| $n, n_{free}$                                      | 0.148 , $0.199$                                 | DCC       |
| $R_{free}$ test set                                | 9433 reflections $(5.02\%)$                     | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                            | 22.5                                            | Xtriage   |
| Anisotropy                                         | 0.555                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$        | 0.38, 59.4                                      | EDS       |
| L-test for twinning <sup>2</sup>                   | $< L >=0.49, < L^2>=0.33$                       | Xtriage   |
| Estimated twinning fraction                        | 0.023 for h,-k,-l                               | Xtriage   |
| $F_o, F_c$ correlation                             | 0.97                                            | EDS       |
| Total number of atoms                              | 17855                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                       | 38.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.53% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PO4, MG, ZGA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Chain | Bond lengths |          | Bond angles |                |  |
|-------|-------|--------------|----------|-------------|----------------|--|
| INIOI | Unam  | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5       |  |
| 1     | А     | 0.43         | 0/2754   | 0.69        | 1/3724~(0.0%)  |  |
| 1     | В     | 0.38         | 0/2746   | 0.65        | 0/3713         |  |
| 1     | С     | 0.40         | 0/2737   | 0.70        | 2/3701~(0.1%)  |  |
| 1     | D     | 0.30         | 0/2746   | 0.61        | 0/3713         |  |
| 1     | Е     | 0.34         | 0/2746   | 0.61        | 0/3713         |  |
| 1     | F     | 0.27         | 0/2740   | 0.55        | 0/3705         |  |
| All   | All   | 0.36         | 0/16469  | 0.64        | 3/22269~(0.0%) |  |

There are no bond length outliers.

All (3) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | А     | 367 | ARG  | NE-CZ-NH2 | -6.61 | 116.99           | 120.30        |
| 1   | С     | 64  | GLU  | CB-CA-C   | -5.90 | 98.60            | 110.40        |
| 1   | С     | 300 | LEU  | CA-CB-CG  | 5.29  | 127.47           | 115.30        |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 2699  | 0        | 2680     | 29      | 0            |
| 1   | В     | 2691  | 0        | 2669     | 17      | 0            |



| <b>9</b> | ۲7 | T | 0 |  |
|----------|----|---|---|--|
| Э        | v  | J | U |  |

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | С     | 2682  | 0        | 2661     | 14      | 0            |
| 1   | D     | 2691  | 0        | 2669     | 32      | 0            |
| 1   | Е     | 2691  | 0        | 2669     | 14      | 0            |
| 1   | F     | 2685  | 0        | 2664     | 25      | 0            |
| 2   | А     | 49    | 0        | 43       | 0       | 0            |
| 2   | В     | 49    | 0        | 43       | 0       | 0            |
| 2   | С     | 49    | 0        | 43       | 1       | 0            |
| 2   | D     | 49    | 0        | 43       | 4       | 0            |
| 2   | Е     | 49    | 0        | 43       | 1       | 0            |
| 2   | F     | 49    | 0        | 43       | 2       | 0            |
| 3   | А     | 5     | 0        | 0        | 0       | 0            |
| 3   | В     | 5     | 0        | 0        | 0       | 0            |
| 3   | С     | 5     | 0        | 0        | 0       | 0            |
| 3   | D     | 5     | 0        | 0        | 1       | 0            |
| 3   | Ε     | 5     | 0        | 0        | 0       | 0            |
| 3   | F     | 5     | 0        | 0        | 0       | 0            |
| 4   | В     | 1     | 0        | 0        | 0       | 0            |
| 4   | D     | 1     | 0        | 0        | 0       | 0            |
| 5   | А     | 354   | 0        | 0        | 9       | 0            |
| 5   | В     | 318   | 0        | 0        | 1       | 0            |
| 5   | С     | 330   | 0        | 0        | 2       | 0            |
| 5   | D     | 138   | 0        | 0        | 3       | 0            |
| 5   | Е     | 180   | 0        | 0        | 1       | 0            |
| 5   | F     | 70    | 0        | 0        | 0       | 0            |
| All | All   | 17855 | 0        | 16270    | 120     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (120) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:315:LYS:HD3  | 1:B:315:LYS:H    | 1.25         | 1.01        |
| 1:D:320:GLN:HE21 | 1:D:340:GLN:HE22 | 1.07         | 0.96        |
| 2:C:400:ZGA:HABB | 2:C:400:ZGA:HBN  | 1.56         | 0.86        |
| 1:A:200:ASP:HB3  | 5:A:1198:HOH:O   | 1.79         | 0.82        |
| 1:A:317:ARG:HH21 | 1:A:317:ARG:HG3  | 1.46         | 0.80        |
| 1:D:320:GLN:NE2  | 1:D:340:GLN:HE22 | 1.80         | 0.79        |
| 1:A:340:GLN:HG2  | 5:A:1639:HOH:O   | 1.86         | 0.74        |
| 1:D:320:GLN:HE21 | 1:D:340:GLN:NE2  | 1.83         | 0.74        |
| 1:A:326:MET:HE3  | 1:C:291:ILE:HD11 | 1.69         | 0.73        |



|                  | AL O             | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:A:120:GLN:HG3  | 5:A:1699:HOH:O   | 1.90         | 0.72        |  |
| 1:A:120:GLN:CG   | 5:A:1699:HOH:O   | 2.39         | 0.70        |  |
| 1:B:297:ILE:HD13 | 1:B:338:ILE:HG12 | 1.74         | 0.68        |  |
| 1:A:344:GLU:HG3  | 5:A:1265:HOH:O   | 1.95         | 0.67        |  |
| 1:A:120:GLN:H    | 1:A:120:GLN:CD   | 1.99         | 0.66        |  |
| 1:D:167:GLU:HG2  | 5:D:1552:HOH:O   | 1.94         | 0.66        |  |
| 1:A:323:THR:HG22 | 1:A:324:LEU:HG   | 1.78         | 0.66        |  |
| 1:D:203:ARG:NH2  | 5:D:886:HOH:O    | 2.19         | 0.65        |  |
| 1:A:317:ARG:HG3  | 1:A:317:ARG:NH2  | 2.11         | 0.64        |  |
| 1:D:297:ILE:HD13 | 1:D:338:ILE:HG12 | 1.80         | 0.64        |  |
| 1:D:53:SER:CB    | 2:D:400:ZGA:HAQ  | 2.29         | 0.62        |  |
| 1:A:323:THR:HA   | 1:A:340:GLN:OE1  | 1.99         | 0.62        |  |
| 1:D:320:GLN:HE22 | 1:D:322:VAL:HB   | 1.65         | 0.61        |  |
| 1:D:323:THR:HG23 | 1:D:340:GLN:CD   | 2.21         | 0.61        |  |
| 1:F:323:THR:HG21 | 1:F:340:GLN:HG3  | 1.83         | 0.60        |  |
| 1:D:100:PHE:HA   | 1:D:103:PHE:CD2  | 2.37         | 0.60        |  |
| 1:E:233:GLN:HA   | 1:E:236:TRP:NE1  | 2.16         | 0.60        |  |
| 1:D:295:MET:HB2  | 2:D:400:ZGA:HAEA | 1.85         | 0.58        |  |
| 1:D:320:GLN:HB3  | 1:D:340:GLN:OE1  | 2.03         | 0.58        |  |
| 1:A:170:LYS:HE2  | 1:A:174:TYR:OH   | 2.03         | 0.58        |  |
| 1:D:318:LYS:HD2  | 1:D:319:GLY:N    | 2.19         | 0.57        |  |
| 1:A:326:MET:HE3  | 1:C:291:ILE:CD1  | 2.33         | 0.57        |  |
| 1:A:368:THR:HG21 | 1:C:41:LYS:HA    | 1.87         | 0.56        |  |
| 1:F:323:THR:CG2  | 1:F:340:GLN:HG3  | 2.34         | 0.56        |  |
| 1:A:369:GLN:HA   | 1:A:369:GLN:OE1  | 2.06         | 0.56        |  |
| 1:A:323:THR:CA   | 1:A:340:GLN:OE1  | 2.53         | 0.56        |  |
| 1:F:125:PHE:N    | 1:F:126:PRO:HD2  | 2.21         | 0.55        |  |
| 1:A:36:LEU:N     | 5:A:1418:HOH:O   | 2.40         | 0.55        |  |
| 1:F:150:MET:HG3  | 1:F:174:TYR:O    | 2.07         | 0.55        |  |
| 1:E:316:ILE:H    | 1:E:316:ILE:HD13 | 1.72         | 0.54        |  |
| 1:F:215:ASN:HD21 | 2:F:400:ZGA:HAX  | 1.73         | 0.54        |  |
| 1:D:343:GLU:OE1  | 1:D:367:ARG:NH2  | 2.41         | 0.54        |  |
| 1:D:320:GLN:NE2  | 1:D:322:VAL:HB   | 2.23         | 0.53        |  |
| 1:B:159:ASP:HB2  | 5:B:1348:HOH:O   | 2.08         | 0.53        |  |
| 1:D:39:SER:HB2   | 1:D:127:THR:HG23 | 1.91         | 0.53        |  |
| 1:A:318:LYS:N    | 1:A:318:LYS:HE3  | 2.24         | 0.53        |  |
| 1:B:210:PHE:HE2  | 1:B:297:ILE:HG13 | 1.73         | 0.53        |  |
| 1:B:315:LYS:HD3  | 1:B:315:LYS:N    | 2.10         | 0.52        |  |
| 1:D:327:ASP:HB2  | 1:E:325:MET:O    | 2.10         | 0.52        |  |
| 1:D:210:PHE:CE2  | 1:D:297:ILE:HG13 | 2.45         | 0.52        |  |
| 1:A:118:ASP:HA   | 1:A:120:GLN:OE1  | 2.10         | 0.52        |  |



|                  | A + 0            | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:210:PHE:CE2  | 1:B:297:ILE:HG13 | 2.45                    | 0.51        |
| 1:F:320:GLN:HB3  | 1:F:340:GLN:OE1  | 2.10                    | 0.51        |
| 1:E:66:ARG:NH1   | 1:F:367:ARG:O    | 2.40                    | 0.51        |
| 1:C:327:ASP:OD2  | 5:C:1758:HOH:O   | 2.19                    | 0.51        |
| 1:C:215:ASN:OD1  | 1:C:218:ARG:NH2  | 2.43                    | 0.50        |
| 1:E:252:ILE:HD11 | 1:E:307:GLN:HB2  | 1.92                    | 0.50        |
| 1:A:100:PHE:HA   | 1:A:103:PHE:CD2  | 2.47                    | 0.50        |
| 1:A:318:LYS:HE3  | 1:A:318:LYS:H    | 1.77                    | 0.50        |
| 1:F:150:MET:O    | 1:F:154:MET:HG3  | 2.12                    | 0.50        |
| 1:F:51:SER:HB2   | 1:F:73:TYR:CZ    | 2.47                    | 0.49        |
| 1:F:101:HIS:CD2  | 1:F:148:ARG:HG3  | 2.48                    | 0.49        |
| 1:F:320:GLN:HE22 | 1:F:322:VAL:HB   | 1.78                    | 0.49        |
| 1:B:100:PHE:HA   | 1:B:103:PHE:CD2  | 2.47                    | 0.49        |
| 1:F:100:PHE:HA   | 1:F:103:PHE:CD2  | 2.47                    | 0.49        |
| 1:D:321:ALA:HA   | 1:D:324:LEU:HD12 | 1.94                    | 0.48        |
| 1:F:316:ILE:H    | 1:F:316:ILE:HD13 | 1.78                    | 0.48        |
| 1:B:297:ILE:CD1  | 1:B:338:ILE:HG12 | 2.43                    | 0.48        |
| 1:E:233:GLN:HA   | 1:E:236:TRP:CD1  | 2.49                    | 0.48        |
| 1:F:350:PRO:HG2  | 1:F:353:ASP:HB2  | 1.96                    | 0.48        |
| 1:D:120:GLN:H    | 1:D:120:GLN:HG3  | 1.40                    | 0.48        |
| 1:F:76:LEU:HD12  | 2:F:400:ZGA:HAV  | 1.96                    | 0.48        |
| 1:A:326:MET:CE   | 1:C:291:ILE:CD1  | 2.92                    | 0.47        |
| 1:D:325:MET:O    | 1:F:327:ASP:HB2  | 2.13                    | 0.47        |
| 1:C:130:LEU:HD12 | 5:C:950:HOH:O    | 2.14                    | 0.47        |
| 1:B:308:GLN:HG3  | 1:B:315:LYS:HE3  | 1.96                    | 0.47        |
| 1:D:53:SER:HB2   | 2:D:400:ZGA:HAQ  | 1.95                    | 0.47        |
| 1:D:137:GLU:HA   | 5:D:1732:HOH:O   | 2.15                    | 0.47        |
| 1:A:325:MET:O    | 1:C:327:ASP:HB2  | 2.16                    | 0.46        |
| 1:F:93:LYS:HE3   | 1:F:158:LEU:HD11 | 1.98                    | 0.46        |
| 1:D:287:ASN:HB3  | 1:E:326:MET:HE1  | 1.95                    | 0.46        |
| 1:A:153:GLY:HA3  | 1:A:174:TYR:CG   | 2.51                    | 0.46        |
| 1:A:291:ILE:HD11 | 1:B:326:MET:CG   | 2.45                    | 0.46        |
| 1:E:66:ARG:NH2   | 5:E:1441:HOH:O   | 2.48                    | 0.46        |
| 1:B:291:ILE:CD1  | 1:C:326:MET:HE3  | 2.46                    | 0.46        |
| 1:E:211:LEU:HD22 | 2:E:400:ZGA:HAEB | 1.98                    | 0.45        |
| 1:A:329:THR:HG21 | 5:A:1260:HOH:O   | 2.17                    | 0.44        |
| 1:B:255:ALA:HB1  | 1:B:310:PHE:CZ   | 2.52                    | 0.44        |
| 1:F:291:ILE:O    | 1:F:295:MET:HG3  | 2.18                    | 0.44        |
| 1:B:233:GLN:HE21 | 1:B:233:GLN:HB3  | 1.61                    | 0.43        |
| 1:D:210:PHE:HE2  | 1:D:297:ILE:HG13 | 1.83                    | 0.43        |
| 1:E:353:ASP:O    | 1:E:356:SER:HB3  | 2.19                    | 0.43        |



| A + am 1         | A4               | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:203:ARG:N    | 1:D:203:ARG:HD3  | 2.33                    | 0.43        |
| 1:D:291:ILE:HD12 | 1:D:328:ALA:HB3  | 2.01                    | 0.43        |
| 1:C:340:GLN:HE21 | 1:C:340:GLN:HB3  | 1.60                    | 0.43        |
| 1:C:72:PHE:CZ    | 1:C:76:LEU:HD11  | 2.54                    | 0.43        |
| 1:E:100:PHE:HD2  | 1:E:147:CYS:SG   | 2.43                    | 0.42        |
| 1:F:111:PHE:HB3  | 1:F:122:LEU:HB3  | 2.01                    | 0.42        |
| 1:B:316:ILE:HD12 | 1:B:316:ILE:N    | 2.33                    | 0.42        |
| 1:A:120:GLN:CD   | 5:A:1699:HOH:O   | 2.57                    | 0.42        |
| 1:B:218:ARG:HD2  | 1:B:219:ASP:OD1  | 2.19                    | 0.42        |
| 1:D:321:ALA:O    | 1:D:324:LEU:HB2  | 2.19                    | 0.42        |
| 1:A:327:ASP:OD2  | 5:A:1260:HOH:O   | 2.22                    | 0.42        |
| 1:F:297:ILE:HD13 | 1:F:338:ILE:HG12 | 2.02                    | 0.42        |
| 1:E:327:ASP:HB2  | 1:F:325:MET:O    | 2.19                    | 0.42        |
| 1:B:315:LYS:H    | 1:B:315:LYS:CD   | 2.05                    | 0.41        |
| 1:F:297:ILE:CD1  | 1:F:338:ILE:HG12 | 2.51                    | 0.41        |
| 1:D:173:HIS:NE2  | 3:D:401:PO4:O3   | 2.53                    | 0.41        |
| 1:F:125:PHE:N    | 1:F:126:PRO:CD   | 2.83                    | 0.41        |
| 1:F:259:LEU:HD21 | 1:F:303:CYS:O    | 2.21                    | 0.41        |
| 1:C:46:TYR:O     | 1:C:50:THR:HG23  | 2.20                    | 0.41        |
| 1:E:196:LEU:HD21 | 1:E:279:ARG:CZ   | 2.50                    | 0.41        |
| 1:A:368:THR:HG21 | 1:C:41:LYS:HG2   | 2.02                    | 0.41        |
| 2:D:400:ZGA:HBB  | 2:D:400:ZGA:HABB | 1.73                    | 0.41        |
| 1:D:315:LYS:HA   | 1:D:315:LYS:HD2  | 1.78                    | 0.41        |
| 1:F:101:HIS:CG   | 1:F:148:ARG:HG3  | 2.55                    | 0.41        |
| 1:B:340:GLN:O    | 1:B:344:GLU:HG2  | 2.20                    | 0.40        |
| 1:C:115:LYS:NZ   | 1:C:119:ARG:HH22 | 2.19                    | 0.40        |
| 1:D:323:THR:HG23 | 1:D:340:GLN:OE1  | 2.21                    | 0.40        |
| 1:E:163:THR:HG22 | 1:E:233:GLN:HE21 | 1.86                    | 0.40        |
| 1:D:323:THR:CG2  | 1:D:340:GLN:CD   | 2.88                    | 0.40        |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Percentiles |
|-----|-------|-----------------|------------|---------|----------|-------------|
| 1   | А     | 332/343~(97%)   | 327~(98%)  | 5(2%)   | 0        | 100 100     |
| 1   | В     | 331/343~(96%)   | 327~(99%)  | 4 (1%)  | 0        | 100 100     |
| 1   | С     | 330/343~(96%)   | 325~(98%)  | 5(2%)   | 0        | 100 100     |
| 1   | D     | 331/343~(96%)   | 323~(98%)  | 8 (2%)  | 0        | 100 100     |
| 1   | Ε     | 331/343~(96%)   | 327~(99%)  | 4 (1%)  | 0        | 100 100     |
| 1   | F     | 330/343~(96%)   | 322~(98%)  | 8 (2%)  | 0        | 100 100     |
| All | All   | 1985/2058~(96%) | 1951 (98%) | 34 (2%) | 0        | 100 100     |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Rotameric Outliers |       |
|-----|-------|-----------------|------------|--------------------|-------|
| 1   | А     | 297/305~(97%)   | 286~(96%)  | 11 (4%)            | 34 25 |
| 1   | В     | 296/305~(97%)   | 288~(97%)  | 8 (3%)             | 44 38 |
| 1   | С     | 295/305~(97%)   | 290~(98%)  | 5 (2%)             | 60 57 |
| 1   | D     | 296/305~(97%)   | 290~(98%)  | 6 (2%)             | 55 51 |
| 1   | Ε     | 296/305~(97%)   | 290~(98%)  | 6 (2%)             | 55 51 |
| 1   | F     | 295/305~(97%)   | 284 (96%)  | 11 (4%)            | 34 25 |
| All | All   | 1775/1830~(97%) | 1728 (97%) | 47 (3%)            | 46 39 |

All (47) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 36  | LEU  |
| 1   | А     | 84  | ASP  |
| 1   | А     | 113 | GLU  |
| 1   | А     | 120 | GLN  |
| 1   | А     | 233 | GLN  |
| 1   | А     | 315 | LYS  |
| 1   | А     | 317 | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 318 | LYS  |
| 1   | А     | 320 | GLN  |
| 1   | А     | 323 | THR  |
| 1   | А     | 326 | MET  |
| 1   | В     | 120 | GLN  |
| 1   | В     | 225 | GLN  |
| 1   | В     | 233 | GLN  |
| 1   | В     | 241 | LYS  |
| 1   | В     | 315 | LYS  |
| 1   | В     | 317 | ARG  |
| 1   | В     | 318 | LYS  |
| 1   | В     | 320 | GLN  |
| 1   | С     | 119 | ARG  |
| 1   | С     | 225 | GLN  |
| 1   | С     | 233 | GLN  |
| 1   | С     | 317 | ARG  |
| 1   | С     | 340 | GLN  |
| 1   | D     | 120 | GLN  |
| 1   | D     | 203 | ARG  |
| 1   | D     | 233 | GLN  |
| 1   | D     | 291 | ILE  |
| 1   | D     | 318 | LYS  |
| 1   | D     | 320 | GLN  |
| 1   | Е     | 83  | GLU  |
| 1   | Е     | 225 | GLN  |
| 1   | Е     | 316 | ILE  |
| 1   | Е     | 326 | MET  |
| 1   | Е     | 351 | ASP  |
| 1   | Е     | 352 | SER  |
| 1   | F     | 92  | LYS  |
| 1   | F     | 158 | LEU  |
| 1   | F     | 159 | ASP  |
| 1   | F     | 162 | VAL  |
| 1   | F     | 166 | GLN  |
| 1   | F     | 218 | ARG  |
| 1   | F     | 233 | GLN  |
| 1   | F     | 316 | ILE  |
| 1   | F     | 318 | LYS  |
| 1   | F     | 320 | GLN  |
| 1   | F     | 325 | MET  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:



| $\operatorname{Mol}$ | Chain | $\operatorname{Res}$ | Type |
|----------------------|-------|----------------------|------|
| 1                    | А     | 225                  | GLN  |
| 1                    | А     | 233                  | GLN  |
| 1                    | А     | 257                  | GLN  |
| 1                    | А     | 283                  | GLN  |
| 1                    | А     | 308                  | GLN  |
| 1                    | В     | 120                  | GLN  |
| 1                    | В     | 225                  | GLN  |
| 1                    | В     | 233                  | GLN  |
| 1                    | В     | 257                  | GLN  |
| 1                    | В     | 340                  | GLN  |
| 1                    | В     | 347                  | HIS  |
| 1                    | В     | 369                  | GLN  |
| 1                    | С     | 233                  | GLN  |
| 1                    | С     | 340                  | GLN  |
| 1                    | D     | 101                  | HIS  |
| 1                    | D     | 140                  | GLN  |
| 1                    | D     | 166                  | GLN  |
| 1                    | D     | 225                  | GLN  |
| 1                    | D     | 233                  | GLN  |
| 1                    | D     | 257                  | GLN  |
| 1                    | D     | 320                  | GLN  |
| 1                    | Е     | 49                   | GLN  |
| 1                    | Е     | 120                  | GLN  |
| 1                    | Е     | 233                  | GLN  |
| 1                    | F     | 215                  | ASN  |
| 1                    | F     | 225                  | GLN  |
| 1                    | F     | 257                  | GLN  |
| 1                    | F     | 283                  | GLN  |
| 1                    | F     | 320                  | GLN  |
| 1                    | F     | 340                  | GLN  |
| 1                    | F     | 369                  | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

Of 14 ligands modelled in this entry, 2 are monoatomic - leaving 12 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Turne | Chain | Dec | Tink | Bo       | Bond lengths |          |          | Bond angles |          |  |
|-----|-------|-------|-----|------|----------|--------------|----------|----------|-------------|----------|--|
|     | туре  | Unam  | nes |      | Counts   | RMSZ         | # Z  > 2 | Counts   | RMSZ        | # Z  > 2 |  |
| 2   | ZGA   | D     | 400 | -    | 47,51,51 | 1.25         | 2 (4%)   | 41,76,76 | 1.12        | 5 (12%)  |  |
| 2   | ZGA   | Е     | 400 | -    | 47,51,51 | 1.25         | 2 (4%)   | 41,76,76 | 1.41        | 4 (9%)   |  |
| 3   | PO4   | D     | 401 | -    | 4,4,4    | 1.01         | 0        | 6,6,6    | 0.55        | 0        |  |
| 2   | ZGA   | А     | 400 | -    | 47,51,51 | 1.24         | 2 (4%)   | 41,76,76 | 1.45        | 4 (9%)   |  |
| 3   | PO4   | С     | 401 | -    | 4,4,4    | 1.02         | 0        | 6,6,6    | 0.91        | 0        |  |
| 3   | PO4   | F     | 401 | -    | 4,4,4    | 0.90         | 0        | 6,6,6    | 0.31        | 0        |  |
| 3   | PO4   | В     | 401 | -    | 4,4,4    | 0.88         | 0        | 6,6,6    | 0.74        | 0        |  |
| 3   | PO4   | А     | 401 | -    | 4,4,4    | 0.88         | 0        | 6,6,6    | 0.72        | 0        |  |
| 3   | PO4   | Ε     | 401 | -    | 4,4,4    | 0.97         | 0        | 6,6,6    | 1.09        | 0        |  |
| 2   | ZGA   | С     | 400 | -    | 47,51,51 | 1.26         | 2(4%)    | 41,76,76 | 1.35        | 6 (14%)  |  |
| 2   | ZGA   | В     | 400 | -    | 47,51,51 | 1.27         | 2 (4%)   | 41,76,76 | 1.39        | 4 (9%)   |  |
| 2   | ZGA   | F     | 400 | -    | 47,51,51 | 1.28         | 2 (4%)   | 41,76,76 | 1.35        | 6 (14%)  |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 2   | ZGA  | D     | 400 | -    | -       | 6/52/95/95 | 0/4/3/3 |
| 2   | ZGA  | Е     | 400 | -    | -       | 2/52/95/95 | 0/4/3/3 |
| 2   | ZGA  | А     | 400 | -    | -       | 1/52/95/95 | 0/4/3/3 |
| 2   | ZGA  | С     | 400 | -    | -       | 5/52/95/95 | 0/4/3/3 |
| 2   | ZGA  | В     | 400 | -    | -       | 2/52/95/95 | 0/4/3/3 |



Continued from previous page...

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 2   | ZGA  | F     | 400 | -    | -       | 6/52/95/95 | 0/4/3/3 |

All (12) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Ζ    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|------|-------------|----------|
| 2   | F     | 400 | ZGA  | OBD-CBH | 5.66 | 1.46        | 1.34     |
| 2   | С     | 400 | ZGA  | OBD-CBH | 5.60 | 1.46        | 1.34     |
| 2   | В     | 400 | ZGA  | OBD-CBH | 5.51 | 1.45        | 1.34     |
| 2   | Ε     | 400 | ZGA  | OBD-CBH | 5.41 | 1.45        | 1.34     |
| 2   | D     | 400 | ZGA  | OBD-CBH | 5.20 | 1.45        | 1.34     |
| 2   | А     | 400 | ZGA  | OBD-CBH | 5.11 | 1.45        | 1.34     |
| 2   | D     | 400 | ZGA  | OBC-CBG | 4.69 | 1.45        | 1.35     |
| 2   | F     | 400 | ZGA  | OBC-CBG | 4.68 | 1.45        | 1.35     |
| 2   | Ε     | 400 | ZGA  | OBC-CBG | 4.62 | 1.45        | 1.35     |
| 2   | А     | 400 | ZGA  | OBC-CBG | 4.59 | 1.45        | 1.35     |
| 2   | В     | 400 | ZGA  | OBC-CBG | 4.58 | 1.45        | 1.35     |
| 2   | C     | 400 | ZGA  | OBC-CBG | 4.24 | 1.44        | 1.35     |

All (29) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Ζ     | $\mathbf{Observed}(^{o})$ | $\operatorname{Ideal}(^{o})$ |
|-----|-------|-----|------|-------------|-------|---------------------------|------------------------------|
| 2   | В     | 400 | ZGA  | OBF-CBV-CBQ | -6.31 | 96.51                     | 103.98                       |
| 2   | Е     | 400 | ZGA  | OBC-CBG-CAC | 5.17  | 120.61                    | 111.09                       |
| 2   | А     | 400 | ZGA  | OBC-CBG-CAC | 4.99  | 120.27                    | 111.09                       |
| 2   | А     | 400 | ZGA  | OBF-CBV-CBQ | -4.11 | 99.11                     | 103.98                       |
| 2   | С     | 400 | ZGA  | OBF-CBV-CBQ | -4.01 | 99.24                     | 103.98                       |
| 2   | F     | 400 | ZGA  | OBC-CBG-CAC | 3.88  | 118.24                    | 111.09                       |
| 2   | А     | 400 | ZGA  | OBC-CBG-OAG | -3.55 | 115.92                    | 122.96                       |
| 2   | Е     | 400 | ZGA  | OBF-CBV-CBQ | -3.50 | 99.84                     | 103.98                       |
| 2   | F     | 400 | ZGA  | OBD-CBH-CAQ | 3.45  | 119.21                    | 111.38                       |
| 2   | С     | 400 | ZGA  | OBC-CBG-CAC | 3.44  | 117.41                    | 111.09                       |
| 2   | F     | 400 | ZGA  | OBF-CBV-CBQ | -3.27 | 100.11                    | 103.98                       |
| 2   | С     | 400 | ZGA  | OBD-CBH-CAQ | 3.23  | 118.72                    | 111.38                       |
| 2   | В     | 400 | ZGA  | OBC-CBG-CAC | 3.18  | 116.94                    | 111.09                       |
| 2   | D     | 400 | ZGA  | OBC-CBG-CAC | 3.08  | 116.76                    | 111.09                       |
| 2   | С     | 400 | ZGA  | OBC-CBG-OAG | -3.06 | 116.89                    | 122.96                       |
| 2   | Е     | 400 | ZGA  | OBC-CBG-OAG | -3.00 | 117.01                    | 122.96                       |
| 2   | Ε     | 400 | ZGA  | OBD-CBH-CAQ | 2.96  | 118.10                    | 111.38                       |
| 2   | D     | 400 | ZGA  | CBB-CBN-CAR | -2.72 | 104.97                    | 110.92                       |
| 2   | D     | 400 | ZGA  | OBF-CBV-CBQ | -2.70 | 100.78                    | 103.98                       |
| 2   | D     | 400 | ZGA  | CAR-CAQ-CBH | 2.51  | 128.25                    | 122.62                       |
| 2   | F     | 400 | ZGA  | OBF-CBW-CBT | -2.49 | 99.94                     | 103.58                       |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 2   | А     | 400 | ZGA  | CAD-CBN-CAR | -2.43 | 105.49           | 110.86        |
| 2   | С     | 400 | ZGA  | CAR-CAQ-CBH | -2.43 | 117.17           | 122.62        |
| 2   | D     | 400 | ZGA  | CBR-OBC-CBG | 2.24  | 120.51           | 116.68        |
| 2   | В     | 400 | ZGA  | OBC-CBG-OAG | -2.24 | 118.52           | 122.96        |
| 2   | F     | 400 | ZGA  | CAF-CBP-CBA | 2.22  | 113.30           | 110.91        |
| 2   | С     | 400 | ZGA  | OBF-CBW-CBT | -2.17 | 100.41           | 103.58        |
| 2   | F     | 400 | ZGA  | OBC-CBG-OAG | -2.12 | 118.75           | 122.96        |
| 2   | В     | 400 | ZGA  | OBF-CBW-CBT | -2.10 | 100.52           | 103.58        |

There are no chirality outliers.

All (22) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 2   | А     | 400 | ZGA  | OAK-CBL-CBW-CBT |
| 2   | С     | 400 | ZGA  | CBN-CBB-CBO-CAX |
| 2   | С     | 400 | ZGA  | OAK-CBL-CBW-CBT |
| 2   | D     | 400 | ZGA  | CBO-CBB-CBN-CAD |
| 2   | D     | 400 | ZGA  | CBO-CBB-CBN-CAR |
| 2   | D     | 400 | ZGA  | OAK-CBL-CBW-CBT |
| 2   | Е     | 400 | ZGA  | OAK-CBL-CBW-CBT |
| 2   | F     | 400 | ZGA  | CBO-CBB-CBN-CAD |
| 2   | F     | 400 | ZGA  | CBO-CBB-CBN-CAR |
| 2   | F     | 400 | ZGA  | CBN-CBB-CBO-CAX |
| 2   | F     | 400 | ZGA  | OAK-CBL-CBW-CBT |
| 2   | D     | 400 | ZGA  | OAH-CBH-OBD-CBT |
| 2   | В     | 400 | ZGA  | OAK-CBL-CBW-CBT |
| 2   | F     | 400 | ZGA  | CAQ-CAR-CBN-CBB |
| 2   | В     | 400 | ZGA  | CAY-CAZ-CBV-OBF |
| 2   | D     | 400 | ZGA  | CAQ-CBH-OBD-CBT |
| 2   | С     | 400 | ZGA  | CBN-CBB-CBO-CAE |
| 2   | Е     | 400 | ZGA  | OAI-CBJ-CBS-OBE |
| 2   | F     | 400 | ZGA  | OAI-CBJ-CBS-OBE |
| 2   | С     | 400 | ZGA  | CBO-CBB-CBN-CAD |
| 2   | С     | 400 | ZGA  | CBO-CBB-CBN-CAR |
| 2   | D     | 400 | ZGA  | CAR-CAQ-CBH-OBD |

There are no ring outliers.

5 monomers are involved in 9 short contacts:

| M | lol | Chain | Res | Type | Clashes  | Symm-Clashes |
|---|-----|-------|-----|------|----------|--------------|
|   | 2   | D     | 400 | ZGA  | 4        | 0            |
|   |     |       |     |      | <i>a</i> |              |



|     | *     | -              |      |         |              |
|-----|-------|----------------|------|---------|--------------|
| Mol | Chain | $\mathbf{Res}$ | Type | Clashes | Symm-Clashes |
| 2   | Е     | 400            | ZGA  | 1       | 0            |
| 3   | D     | 401            | PO4  | 1       | 0            |
| 2   | С     | 400            | ZGA  | 1       | 0            |
| 2   | F     | 400            | ZGA  | 2       | 0            |

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.























## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | < <b>RSRZ</b> > | #RSRZ>2        | $OWAB(Å^2)$      | Q<0.9 |
|-----|-------|-----------------|-----------------|----------------|------------------|-------|
| 1   | А     | 334/343~(97%)   | -0.07           | 15 (4%) 33 36  | 11, 19, 46, 76   | 0     |
| 1   | В     | 333/343~(97%)   | -0.07           | 12 (3%) 42 45  | 14, 23, 48, 69   | 0     |
| 1   | С     | 332/343~(96%)   | -0.02           | 11 (3%) 46 49  | 12, 21, 46, 72   | 0     |
| 1   | D     | 333/343~(97%)   | 0.41            | 32 (9%) 8 9    | 22, 39, 87, 108  | 0     |
| 1   | Е     | 333/343~(97%)   | 0.33            | 37 (11%) 5 6   | 16, 35, 88, 100  | 0     |
| 1   | F     | 332/343~(96%)   | 0.96            | 68 (20%) 1 1   | 22, 57, 113, 132 | 0     |
| All | All   | 1997/2058~(97%) | 0.25            | 175 (8%) 10 11 | 11, 30, 92, 132  | 0     |

All (175) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 318 | LYS  | 8.4  |
| 1   | Е     | 318 | LYS  | 7.7  |
| 1   | D     | 316 | ILE  | 7.6  |
| 1   | F     | 313 | ALA  | 7.2  |
| 1   | F     | 241 | LYS  | 7.1  |
| 1   | D     | 319 | GLY  | 7.0  |
| 1   | А     | 318 | LYS  | 6.4  |
| 1   | D     | 318 | LYS  | 6.2  |
| 1   | F     | 159 | ASP  | 6.1  |
| 1   | С     | 315 | LYS  | 6.0  |
| 1   | F     | 315 | LYS  | 6.0  |
| 1   | Ε     | 313 | ALA  | 5.9  |
| 1   | В     | 313 | ALA  | 5.8  |
| 1   | Е     | 159 | ASP  | 5.6  |
| 1   | В     | 318 | LYS  | 5.5  |
| 1   | D     | 317 | ARG  | 5.4  |
| 1   | F     | 87  | THR  | 5.3  |
| 1   | F     | 319 | GLY  | 5.3  |
| 1   | С     | 313 | ALA  | 5.2  |



| 3 | V | J | C |  |
|---|---|---|---|--|
|   |   |   |   |  |

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 86  | MET  | 5.1  |
| 1   | С     | 318 | LYS  | 5.0  |
| 1   | F     | 316 | ILE  | 5.0  |
| 1   | F     | 321 | ALA  | 5.0  |
| 1   | А     | 313 | ALA  | 4.9  |
| 1   | F     | 312 | GLY  | 4.8  |
| 1   | D     | 313 | ALA  | 4.6  |
| 1   | F     | 115 | LYS  | 4.6  |
| 1   | F     | 119 | ARG  | 4.5  |
| 1   | F     | 320 | GLN  | 4.5  |
| 1   | А     | 317 | ARG  | 4.4  |
| 1   | Ε     | 312 | GLY  | 4.3  |
| 1   | Ε     | 321 | ALA  | 4.3  |
| 1   | D     | 91  | GLU  | 4.3  |
| 1   | Е     | 314 | VAL  | 4.3  |
| 1   | Ε     | 241 | LYS  | 4.2  |
| 1   | D     | 159 | ASP  | 4.2  |
| 1   | F     | 314 | VAL  | 4.2  |
| 1   | D     | 90  | VAL  | 4.2  |
| 1   | F     | 117 | LYS  | 4.2  |
| 1   | Ε     | 319 | GLY  | 4.2  |
| 1   | F     | 242 | LYS  | 4.2  |
| 1   | F     | 324 | LEU  | 4.1  |
| 1   | А     | 319 | GLY  | 4.1  |
| 1   | Е     | 320 | GLN  | 4.0  |
| 1   | F     | 114 | SER  | 4.0  |
| 1   | А     | 324 | LEU  | 4.0  |
| 1   | А     | 323 | THR  | 3.9  |
| 1   | D     | 37  | SER  | 3.9  |
| 1   | F     | 91  | GLU  | 3.9  |
| 1   | А     | 315 | LYS  | 3.9  |
| 1   | D     | 113 | GLU  | 3.9  |
| 1   | Ε     | 315 | LYS  | 3.9  |
| 1   | А     | 320 | GLN  | 3.8  |
| 1   | F     | 90  | VAL  | 3.8  |
| 1   | Е     | 242 | LYS  | 3.8  |
| 1   | В     | 316 | ILE  | 3.8  |
| 1   | A     | 321 | ALA  | 3.8  |
| 1   | D     | 92  | LYS  | 3.8  |
| 1   | F     | 250 | GLU  | 3.7  |
| 1   | А     | 36  | LEU  | 3.7  |
| 1   | В     | 37  | SER  | 3.7  |



| 3VJC |
|------|
|      |

| Mol | Chain | Res     | Type | RSRZ |
|-----|-------|---------|------|------|
| 1   | Е     | 317     | ARG  | 3.6  |
| 1   | F     | 113     | GLU  | 3.6  |
| 1   | D     | 38      | SER  | 3.6  |
| 1   | С     | 351 ASP |      | 3.6  |
| 1   | Е     | 369     | GLN  | 3.5  |
| 1   | Е     | 324     | LEU  | 3.5  |
| 1   | С     | 316     | ILE  | 3.5  |
| 1   | D     | 312     | GLY  | 3.5  |
| 1   | D     | 315     | LYS  | 3.5  |
| 1   | Е     | 316     | ILE  | 3.5  |
| 1   | F     | 166     | GLN  | 3.5  |
| 1   | F     | 317     | ARG  | 3.4  |
| 1   | F     | 221     | LEU  | 3.4  |
| 1   | Е     | 88      | ILE  | 3.4  |
| 1   | F     | 100     | PHE  | 3.4  |
| 1   | С     | 159     | ASP  | 3.3  |
| 1   | В     | 225     | GLN  | 3.3  |
| 1   | D     | 117     | LYS  | 3.3  |
| 1   | Е     | 347     | HIS  | 3.3  |
| 1   | Е     | 351     | ASP  | 3.2  |
| 1   | F     | 236     | TRP  | 3.2  |
| 1   | F     | 157     | PHE  | 3.2  |
| 1   | D     | 115     | LYS  | 3.2  |
| 1   | Е     | 323     | THR  | 3.1  |
| 1   | F     | 155     | ALA  | 3.1  |
| 1   | F     | 89      | SER  | 3.1  |
| 1   | Е     | 87      | THR  | 3.1  |
| 1   | Е     | 225     | GLN  | 3.1  |
| 1   | В     | 159     | ASP  | 3.0  |
| 1   | E     | 221     | LEU  | 3.0  |
| 1   | F     | 254     | LEU  | 2.9  |
| 1   | Е     | 37      | SER  | 2.9  |
| 1   | С     | 317     | ARG  | 2.9  |
| 1   | А     | 322     | VAL  | 2.9  |
| 1   | С     | 319     | GLY  | 2.9  |
| 1   | D     | 76      | LEU  | 2.9  |
| 1   | А     | 312     | GLY  | 2.9  |
| 1   | Ε     | 91      | GLU  | 2.9  |
| 1   | F     | 158     | LEU  | 2.9  |
| 1   | F     | 249     | PRO  | 2.8  |
| 1   | F     | 311     | LYS  | 2.8  |
| 1   | Е     | 226     | GLY  | 2.8  |



| 3 | V | J | С |
|---|---|---|---|
|---|---|---|---|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 69  | VAL  | 2.8  |
| 1   | Е     | 115 | LYS  | 2.7  |
| 1   | В     | 319 | GLY  | 2.7  |
| 1   | F     | 107 | PRO  | 2.7  |
| 1   | Е     | 352 | SER  | 2.7  |
| 1   | D     | 111 | PHE  | 2.7  |
| 1   | F     | 38  | SER  | 2.7  |
| 1   | Е     | 228 | ARG  | 2.7  |
| 1   | Е     | 86  | MET  | 2.7  |
| 1   | F     | 82  | LEU  | 2.7  |
| 1   | Е     | 236 | TRP  | 2.6  |
| 1   | D     | 89  | SER  | 2.6  |
| 1   | С     | 312 | GLY  | 2.6  |
| 1   | F     | 256 | VAL  | 2.6  |
| 1   | В     | 241 | LYS  | 2.6  |
| 1   | А     | 159 | ASP  | 2.6  |
| 1   | D     | 137 | GLU  | 2.6  |
| 1   | D     | 119 | ARG  | 2.6  |
| 1   | F     | 228 | ARG  | 2.6  |
| 1   | F     | 99  | ASN  | 2.5  |
| 1   | D     | 324 | LEU  | 2.5  |
| 1   | F     | 243 | LEU  | 2.5  |
| 1   | D     | 179 | VAL  | 2.5  |
| 1   | F     | 92  | LYS  | 2.4  |
| 1   | F     | 120 | GLN  | 2.4  |
| 1   | F     | 233 | GLN  | 2.4  |
| 1   | D     | 108 | ASP  | 2.4  |
| 1   | D     | 347 | HIS  | 2.4  |
| 1   | F     | 170 | LYS  | 2.4  |
| 1   | F     | 137 | GLU  | 2.4  |
| 1   | F     | 322 | VAL  | 2.4  |
| 1   | F     | 200 | ASP  | 2.4  |
| 1   | Е     | 117 | LYS  | 2.4  |
| 1   | F     | 84  | ASP  | 2.4  |
| 1   | А     | 314 | VAL  | 2.4  |
| 1   | С     | 314 | VAL  | 2.4  |
| 1   | F     | 156 | GLU  | 2.4  |
| 1   | Е     | 243 | LEU  | 2.3  |
| 1   | F     | 246 | PHE  | 2.3  |
| 1   | Е     | 224 | GLN  | 2.3  |
| 1   | F     | 76  | LEU  | 2.3  |
| 1   | F     | 310 | PHE  | 2.3  |



| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         F         79         LEU           1         B         315         LYS           1         F         252         ILE           1         D         103         PHE           1         F         161         HIS           1         D         104         LEU           1         E         222         GLU | $ \begin{array}{c} 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
| 1         B         315         LYS           1         F         252         ILE           1         D         103         PHE           1         F         161         HIS           1         D         104         LEU           1         E         222         GLU                                              | $ \begin{array}{c} 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
| 1         F         252         ILE           1         D         103         PHE           1         F         161         HIS           1         D         104         LEU           1         E         222         GLU                                                                                            | $ \begin{array}{c} 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
| 1         D         103         PHE           1         F         161         HIS           1         D         104         LEU           1         E         222         GLU                                                                                                                                          | $ \begin{array}{c} 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
| 1         F         161         HIS           1         D         104         LEU           1         E         222         GLU                                                                                                                                                                                        | $ \begin{array}{c} 2.3 \\ 2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
| 1         D         104         LEU           1         E         222         GLU                                                                                                                                                                                                                                      | $ \begin{array}{c} 2.3 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
| 1 E 222 GLU                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $1  F    112 \mid MET  $                                                                                                                                                                                                                                                                                               | 2.2<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 B 314 VAL                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 240 VAL                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 369 GLN                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 E 248 LYS                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 248 LYS                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 D 130 LEU                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 116 GLU                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 A 316 ILE                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 88 ILE                                                                                                                                                                                                                                                                                                             | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 D 361 GLN                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 E 166 GLN                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 103 PHE                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 B 249 PRO                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 B 250 GLU                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 D 107 PRO                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 D 75 VAL                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 108 ASP                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 F 72 PHE                                                                                                                                                                                                                                                                                                             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 E 247 ALA                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 D 166 GLN                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 C 241 LYS                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Continued from previous page...

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.



### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | ${f B}	ext{-factors}({ m \AA}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|-----------------------------------|-------|
| 2   | ZGA  | F     | 400 | 49/49 | 0.88 | 0.17 | 43,52,61,63                       | 0     |
| 2   | ZGA  | D     | 400 | 49/49 | 0.91 | 0.14 | 32,42,56,57                       | 0     |
| 2   | ZGA  | Е     | 400 | 49/49 | 0.93 | 0.11 | 23,35,47,50                       | 0     |
| 2   | ZGA  | В     | 400 | 49/49 | 0.94 | 0.10 | 19,25,38,40                       | 0     |
| 2   | ZGA  | С     | 400 | 49/49 | 0.95 | 0.10 | 15,23,37,39                       | 0     |
| 2   | ZGA  | А     | 400 | 49/49 | 0.95 | 0.09 | 14,23,31,33                       | 0     |
| 3   | PO4  | F     | 401 | 5/5   | 0.96 | 0.16 | 69,70,71,72                       | 0     |
| 3   | PO4  | В     | 401 | 5/5   | 0.99 | 0.05 | 22,23,24,24                       | 0     |
| 3   | PO4  | D     | 401 | 5/5   | 0.99 | 0.08 | 48,50,50,51                       | 0     |
| 3   | PO4  | Е     | 401 | 5/5   | 0.99 | 0.05 | 27,28,31,32                       | 0     |
| 3   | PO4  | А     | 401 | 5/5   | 0.99 | 0.05 | 20,20,21,22                       | 0     |
| 4   | MG   | В     | 402 | 1/1   | 0.99 | 0.05 | 32,32,32,32                       | 0     |
| 4   | MG   | D     | 402 | 1/1   | 0.99 | 0.07 | 42,42,42,42                       | 0     |
| 3   | PO4  | С     | 401 | 5/5   | 1.00 | 0.05 | 18,20,23,23                       | 0     |

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

























## 6.5 Other polymers (i)

There are no such residues in this entry.

