

wwPDB X-ray Structure Validation Summary Report (i)

Aug 20, 2023 – 12:47 PM EDT

PDB ID	:	2NOX
Title	:	Crystal structure of tryptophan 2,3-dioxygenase from Ralstonia metallidurans
Authors	:	Zhang, Y.; Kang, S.A.; Mukherjee, T.; Bale, S.; Crane, B.R.; Begley, T.P.;
		Ealick, S.E.
Deposited on	:	2006-10-26
Resolution	:	2.40 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
IVIEUTIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	3907 (2.40-2.40)
Clashscore	141614	4398 (2.40-2.40)
Ramachandran outliers	138981	4318 (2.40-2.40)
Sidechain outliers	138945	4319 (2.40-2.40)
RSRZ outliers	127900	3811 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	281	% 70%	21%	• 7%
1	В	281	^{2%} 71%	21%	•• 5%
1	С	281	2% 7 0%	18%	• 9%
1	D	281	70%	19%	• 8%
1	Е	281	% 71%	18%	• 9%

Conti	nued from	<i>i</i> previous	page			
Mol	Chain	Length	Quality of chain			
1	F	281	% 66%	23%	•	7%
1	G	281	3% 62%	27%	•	8%
1	Н	281	70%	19%	·	8%
1	Ι	281	% 62%	27%	·	8%
1	J	281	67%	22%	•	9%
1	К	281	71%	17%	•	9%
1	L	281	% 64%	25%	•	7%
1	М	281	69%	18%	••	9%
1	Ν	281	<u>2%</u> 69%	21%	•	7%
1	О	281	% 68%	19%	·	9%
1	Р	281	68%	22%	•	8%

2NOX

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 36423 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	261	Total	С	Ν	0	S	0	1	0
	Π	201	2160	1375	382	390	13	0	1	0
1	В	266	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	D	200	2192	1400	384	395	13	0	0	0
1	C	255	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		200	2106	1344	368	382	12	0	0	0
1	О	259	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		200	2133	1360	376	385	12	Ŭ	· · · · · · · · · · · · · · · · · · ·	0
1	E	256	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
-	-	200	2126	1356	376	382	12	Ŭ		0
1	F	260	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	-	200	2152	1371	380	388	13	Ŭ		0
1	G	259	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	<u> </u>	200	2137	1362	376	387	12	Ŭ		0
1	Н	259	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	2	0
		200	2147	1368	380	387	12	Ŭ		
1	T	259	Total	С	Ν	0	S	0	0	0
	-	200	2133	1360	376	385	12	Ŭ		
1	J	257	Total	С	Ν	0	S	0	0	0
	, in the second		2126	1356	374	384	12	Ŭ		
1	K	255	Total	С	Ν	0	S	0	1	0
			2119	1352	372	383	12		_	
1	L	260	Total	С	N	0	S	0	0	0
			2141	1364	377	388	12		_	
1	М	255	Total	C	N	0	S	0	1	0
			2111	1349	370	380	12			
1	Ν	260	Total	C	N	0	S	0	1	0
			2150	1370	379	389	12			
1	Ο	257	Total	C	N	U O	S	0	0	0
	_		2126	1356	374	384	12	_		
1	Р	259	'I'otal	C	N	0	S	0	0	0
	-		2133	1360	376	385	12	, v	Ĭ	Ŭ

• Molecule 1 is a protein called Tryptophan 2,3-dioxygenase.

• Molecule 2 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: $C_{34}H_{32}FeN_4O_4$).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
0	٨	1	Total	С	Fe	Ν	0	0	0
	A	1	43	34	1	4	4	0	0
0	р	1	Total	С	Fe	Ν	0	0	0
	D	1	43	34	1	4	4	0	0
2	С	1	Total	С	Fe	Ν	Ο	0	0
2	U	1	43	34	1	4	4	0	0
2	Л	1	Total	С	Fe	Ν	Ο	0	0
2	D	I	43	34	1	4	4	0	0
2	E	1	Total	С	Fe	Ν	Ο	0	0
2	Ľ	1	43	34	1	4	4	0	0
2	F	1	Total	\mathbf{C}	Fe	Ν	Ο	0	0
	Ľ	I	43	34	1	4	4	0	0
2	C	1	Total	С	Fe	Ν	Ο	0	0
	G	1	43	34	1	4	4	0	0
2	н	1	Total	\mathbf{C}	Fe	Ν	Ο	0	0
	11	I	43	34	1	4	4	0	0
2	Т	1	Total	\mathbf{C}	Fe	Ν	Ο	0	0
	1	Ĩ	43	34	1	4	4	0	0
2	Т	1	Total	С	Fe	Ν	Ο	0	0
	0	I	43	34	1	4	4	U	0
2	K	1	Total	\mathbf{C}	Fe	N	0	0	0
2	17	I	43	34	1	4	4	0	0
2	T.	1	Total	\mathbf{C}	Fe	Ν	Ο	0	0
		L	43	34	1	4	4	U	0

Continued from previous page...

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf
9	М	1	Total	С	Fe	Ν	Ο	0	0
	111	1	43	34	1	4	4	0	0
0	N	1	Total	С	Fe	Ν	Ο	0	0
	11	1	43	34	1	4	4	0	0
0	0	1	Total	С	Fe	Ν	Ο	0	0
	0	1	43	34	1	4	4	0	0
2	D	1	Total	С	Fe	Ν	Ο	0	0
	L	1	43	34	1	4	4	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	130	Total O 130 130	0	0
3	В	126	Total O 126 126	0	0
3	С	107	Total O 107 107	0	0
3	D	158	Total O 158 158	0	0
3	Е	107	Total O 107 107	0	0
3	F	72	Total O 72 72	0	0
3	G	56	Total O 56 56	0	0
3	Н	114	Total O 114 114	0	0
3	Ι	85	Total O 85 85	0	0
3	J	82	TotalO8282	0	0
3	K	74	Total O 74 74	0	0
3	L	81	Total O 81 81	0	0
3	М	116	Total O 116 116	0	0
3	Ν	66	Total O 66 66	0	0
3	О	61	Total O 61 61	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Р	108	Total O 108 108	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Tryptophan 2,3-dioxygenase

• Molecule 1: Tryptophan 2,3-dioxygenase

[•] Molecule 1: Tryptophan 2,3-dioxygenase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	72.54Å 132.12Å 139.95Å	Deperitor
a, b, c, α , β , γ	66.97° 85.06° 89.89°	Depositor
Bosolution(A)	50.12 - 2.40	Depositor
Resolution (A)	50.09 - 2.22	EDS
% Data completeness	93.5 (50.12-2.40)	Depositor
(in resolution range)	86.1 (50.09-2.22)	EDS
R_{merge}	0.07	Depositor
R _{sym}	0.07	Depositor
$< I/\sigma(I) > 1$	$1.46 (at 2.22 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
P. P.	0.210 , 0.270	Depositor
n, n_{free}	0.163 , 0.235	DCC
R_{free} test set	11190 reflections (4.98%)	wwPDB-VP
Wilson B-factor $(Å^2)$	38.1	Xtriage
Anisotropy	0.109	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34, 51.3	EDS
L-test for twinning ²	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	36423	wwPDB-VP
Average B, all atoms $(Å^2)$	45.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.97% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEM

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.68	0/2217	0.80	3/3004~(0.1%)	
1	В	0.64	0/2252	0.78	5/3053~(0.2%)	
1	С	0.65	0/2162	0.76	2/2932~(0.1%)	
1	D	0.68	0/2190	0.80	1/2969~(0.0%)	
1	Е	0.61	0/2182	0.68	1/2956~(0.0%)	
1	F	0.58	0/2208	0.71	1/2991~(0.0%)	
1	G	0.57	0/2193	0.66	0/2972	
1	Н	0.60	0/2207	0.73	1/2992~(0.0%)	
1	Ι	0.57	0/2190	0.69	1/2969~(0.0%)	
1	J	0.54	0/2182	0.69	1/2957~(0.0%)	
1	Κ	0.51	0/2178	0.68	0/2953	
1	L	0.54	0/2198	0.68	0/2980	
1	М	0.64	0/2167	0.75	2/2938~(0.1%)	
1	Ν	0.54	0/2207	0.67	0/2991	
1	0	0.57	0/2182	0.68	1/2957~(0.0%)	
1	Р	0.61	0/2190	0.73	2/2969~(0.1%)	
All	All	0.60	0/35105	0.72	21/47583~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	L	0	1

There are no bond length outliers.

The worst 5 of 21 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
1	D	295	LEU	CA-CB-CG	9.07	136.17	115.30
1	М	295	LEU	CA-CB-CG	8.72	135.36	115.30
1	В	296	ARG	NE-CZ-NH2	-8.70	115.95	120.30
1	Н	295	LEU	CA-CB-CG	7.93	133.53	115.30
1	В	296	ARG	NE-CZ-NH1	7.75	124.17	120.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	L	139	ALA	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2160	0	2108	65	0
1	В	2192	0	2117	50	0
1	С	2106	0	2047	51	0
1	D	2133	0	2083	49	0
1	Е	2126	0	2076	51	0
1	F	2152	0	2096	64	0
1	G	2137	0	2083	75	0
1	Н	2147	0	2101	34	0
1	Ι	2133	0	2083	87	0
1	J	2126	0	2073	56	0
1	K	2119	0	2065	53	0
1	L	2141	0	2087	78	0
1	М	2111	0	2051	46	0
1	N	2150	0	2099	60	0
1	0	2126	0	2073	58	0
1	Р	2133	0	2083	62	0
2	А	43	0	30	6	0
2	В	43	0	30	0	0
2	С	43	0	30	2	0
2	D	43	0	30	2	0
2	E	43	0	30	7	0
2	F	43	0	30	3	0

2NOX

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	G	43	0	30	3	0
2	Н	43	0	30	2	0
2	Ι	43	0	30	9	0
2	J	43	0	30	1	0
2	Κ	43	0	30	4	0
2	L	43	0	30	5	0
2	М	43	0	30	2	0
2	Ν	43	0	30	1	0
2	0	43	0	30	4	0
2	Р	43	0	30	7	0
3	А	130	0	0	10	0
3	В	126	0	0	6	0
3	С	107	0	0	7	0
3	D	158	0	0	4	0
3	Ε	107	0	0	4	0
3	F	72	0	0	6	0
3	G	56	0	0	8	0
3	Η	114	0	0	3	0
3	Ι	85	0	0	8	0
3	J	82	0	0	6	0
3	Κ	74	0	0	7	0
3	L	81	0	0	10	0
3	М	116	0	0	5	0
3	Ν	66	0	0	1	0
3	0	61	0	0	4	0
3	Р	108	0	0	5	0
All	All	36423	0	33805	893	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

The worst 5 of 893 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:N:109:SER:HB3	1:N:110:ARG:NH1	1.56	1.17
1:G:283:MET:HE2	1:G:283:MET:HA	1.18	1.15
1:P:65:GLU:HG3	1:P:133:MET:CE	1.77	1.15
1:G:82:MET:HE2	1:G:112:MET:HG2	1.31	1.11
1:C:219:VAL:HG12	1:C:291:GLU:HG3	1.31	1.09

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	260/281~(92%)	254 (98%)	6 (2%)	0	100	100
1	В	262/281~(93%)	254 (97%)	8 (3%)	0	100	100
1	С	251/281~(89%)	244 (97%)	7 (3%)	0	100	100
1	D	257/281~(92%)	248 (96%)	8 (3%)	1 (0%)	34	48
1	Е	252/281~(90%)	241 (96%)	9 (4%)	2(1%)	19	29
1	F	256/281~(91%)	249~(97%)	6(2%)	1 (0%)	34	48
1	G	255/281~(91%)	242 (95%)	12 (5%)	1 (0%)	34	48
1	Н	259/281~(92%)	254 (98%)	5 (2%)	0	100	100
1	Ι	257/281~(92%)	249~(97%)	7 (3%)	1 (0%)	34	48
1	J	253/281~(90%)	244 (96%)	9~(4%)	0	100	100
1	Κ	252/281~(90%)	246 (98%)	5 (2%)	1 (0%)	34	48
1	L	258/281~(92%)	250~(97%)	6(2%)	2(1%)	19	29
1	М	252/281~(90%)	244 (97%)	7 (3%)	1 (0%)	34	48
1	Ν	259/281~(92%)	250~(96%)	9~(4%)	0	100	100
1	Ο	253/281~(90%)	238 (94%)	15 (6%)	0	100	100
1	Р	257/281~(92%)	249 (97%)	8 (3%)	0	100	100
All	All	4093/4496 (91%)	3956 (97%)	127 (3%)	10 (0%)	47	62

5 of 10 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	D	140	SER
1	Е	268	LYS
1	Ι	212	PRO
1	М	268	LYS
1	Е	141	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	229/240~(95%)	217~(95%)	12~(5%)	23	38
1	В	230/240~(96%)	214~(93%)	16 (7%)	15	24
1	\mathbf{C}	224/240~(93%)	210~(94%)	14 (6%)	18	28
1	D	226/240~(94%)	211~(93%)	15 (7%)	16	26
1	Ε	226/240~(94%)	212 (94%)	14 (6%)	18	29
1	F	228/240~(95%)	213~(93%)	15 (7%)	16	26
1	G	227/240~(95%)	213~(94%)	14 (6%)	18	29
1	Н	228/240~(95%)	214 (94%)	14 (6%)	18	30
1	Ι	226/240~(94%)	213~(94%)	13 (6%)	20	32
1	J	226/240~(94%)	209~(92%)	17 (8%)	13	21
1	Κ	226/240~(94%)	213~(94%)	13 (6%)	20	32
1	L	227/240~(95%)	215~(95%)	12 (5%)	22	37
1	М	223/240~(93%)	204 (92%)	19 (8%)	10	16
1	Ν	228/240~(95%)	213~(93%)	15 (7%)	16	26
1	Ο	226/240 (94%)	207~(92%)	19 (8%)	11	16
1	Р	226/240 (94%)	213 (94%)	13 (6%)	20	32
All	All	3626/3840 (94%)	3391 (94%)	235 (6%)	17	27

5 of 235 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Ι	59	LEU
1	0	296	ARG
1	J	295	LEU
1	0	291	GLU
1	Ν	265	ILE

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 23 such side chains are listed below:

Mol	Chain	Res	Type
1	Κ	144	GLN
1	L	114	GLN
1	L	51	GLN
1	М	252	GLN
1	D	252	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

16 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	B	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
2	HEM	D	500	3,1	41,50,50	2.15	10 (24%)	45,82,82	1.86	8 (17%)	
2	HEM	Н	500	1	41,50,50	2.06	8 (19%)	45,82,82	1.92	12 (26%)	
2	HEM	F	500	1	41,50,50	1.95	6 (14%)	45,82,82	1.69	10 (22%)	
2	HEM	0	500	1	41,50,50	2.00	7 (17%)	45,82,82	1.77	9 (20%)	
2	HEM	Р	500	3,1	41,50,50	2.00	7 (17%)	45,82,82	1.79	8 (17%)	
2	HEM	G	500	1	41,50,50	2.11	9 (21%)	45,82,82	1.85	8 (17%)	
2	HEM	J	500	1	41,50,50	2.01	6 (14%)	45,82,82	1.59	7 (15%)	
2	HEM	Е	500	3,1	41,50,50	1.93	8 (19%)	45,82,82	1.79	9 (20%)	

Mal	Mol Type		Dec	Link	В	ond leng	gths	Bond angles		
WIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	HEM	С	500	1	$41,\!50,\!50$	2.01	6 (14%)	45,82,82	1.81	10 (22%)
2	HEM	К	500	1	$41,\!50,\!50$	1.88	6 (14%)	45,82,82	1.71	5 (11%)
2	HEM	В	500	1	$41,\!50,\!50$	2.14	8 (19%)	45,82,82	1.78	9 (20%)
2	HEM	L	500	1	41,50,50	1.87	7 (17%)	45,82,82	1.72	9 (20%)
2	HEM	М	500	1	41,50,50	2.05	10 (24%)	45,82,82	1.72	8 (17%)
2	HEM	Ν	500	1	$41,\!50,\!50$	1.96	6 (14%)	45,82,82	1.83	8 (17%)
2	HEM	Ι	500	1	41,50,50	1.94	7 (17%)	45,82,82	1.66	8 (17%)
2	HEM	А	500	3,1	41,50,50	2.02	8 (19%)	45,82,82	1.92	9 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	HEM	D	500	3,1	-	4/12/54/54	-
2	HEM	Н	500	1	-	2/12/54/54	-
2	HEM	F	500	1	-	2/12/54/54	-
2	HEM	0	500	1	-	0/12/54/54	-
2	HEM	Р	500	3,1	-	4/12/54/54	-
2	HEM	G	500	1	-	5/12/54/54	-
2	HEM	J	500	1	-	7/12/54/54	-
2	HEM	Е	500	3,1	-	4/12/54/54	-
2	HEM	С	500	1	-	4/12/54/54	-
2	HEM	К	500	1	-	4/12/54/54	-
2	HEM	В	500	1	-	2/12/54/54	-
2	HEM	L	500	1	-	1/12/54/54	-
2	HEM	М	500	1	-	2/12/54/54	-
2	HEM	Ν	500	1	-	3/12/54/54	-
2	HEM	Ι	500	1	-	2/12/54/54	-
2	HEM	А	500	3,1	-	4/12/54/54	-

The worst 5 of 119 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	В	500	HEM	C3D-C2D	8.48	1.54	1.36
2	G	500	HEM	C3D-C2D	8.32	1.54	1.36

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	Ι	500	HEM	C3D-C2D	8.26	1.54	1.36
2	С	500	HEM	C3D-C2D	8.19	1.54	1.36
2	J	500	HEM	C3D-C2D	8.16	1.54	1.36

Continued from previous page...

The worst 5 of 137 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	D	500	HEM	C4D-ND-C1D	7.52	112.84	105.07
2	G	500	HEM	C4D-ND-C1D	6.88	112.18	105.07
2	А	500	HEM	C4D-ND-C1D	6.77	112.06	105.07
2	Р	500	HEM	C4D-ND-C1D	6.46	111.75	105.07
2	Ν	500	HEM	C4D-ND-C1D	6.40	111.69	105.07

There are no chirality outliers.

5 of 50 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	500	HEM	C2B-C3B-CAB-CBB
2	А	500	HEM	C4B-C3B-CAB-CBB
2	J	500	HEM	C4D-C3D-CAD-CBD
2	J	500	HEM	C3D-CAD-CBD-CGD
2	М	500	HEM	CAA-CBA-CGA-O2A

There are no ring outliers.

15 monomers are involved in 58 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	D	500	HEM	2	0
2	Н	500	HEM	2	0
2	F	500	HEM	3	0
2	0	500	HEM	4	0
2	Р	500	HEM	7	0
2	G	500	HEM	3	0
2	J	500	HEM	1	0
2	Е	500	HEM	7	0
2	С	500	HEM	2	0
2	K	500	HEM	4	0
2	L	500	HEM	5	0
2	М	500	HEM	2	0
2	N	500	HEM	1	0
2	Ι	500	HEM	9	0

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	А	500	HEM	6	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	261/281~(92%)	-0.42	2 (0%) 86 84	27, 41, 65, 121	0
1	В	266/281~(94%)	-0.34	5 (1%) 66 64	30, 43, 70, 102	0
1	С	255/281~(90%)	-0.33	5 (1%) 65 63	29, 43, 70, 101	0
1	D	259/281~(92%)	-0.45	0 100 100	27, 40, 64, 92	0
1	Е	256/281~(91%)	-0.49	2 (0%) 86 84	26, 42, 70, 120	0
1	F	260/281~(92%)	-0.34	2 (0%) 86 84	29, 44, 80, 106	0
1	G	259/281~(92%)	-0.21	8 (3%) 49 47	29, 45, 76, 106	0
1	Н	259/281~(92%)	-0.47	1 (0%) 92 91	27, 41, 63, 92	0
1	Ι	259/281~(92%)	-0.36	3 (1%) 79 77	29, 44, 68, 83	0
1	J	257/281~(91%)	-0.10	10 (3%) 39 38	28, 43, 71, 109	0
1	Κ	255/281~(90%)	-0.05	8 (3%) 49 47	28, 41, 66, 99	0
1	L	260/281~(92%)	-0.33	3 (1%) 79 77	28, 43, 66, 91	0
1	М	255/281~(90%)	-0.47	0 100 100	27, 42, 70, 97	0
1	Ν	260/281~(92%)	-0.16	6 (2%) 60 58	29, 44, 74, 105	0
1	Ο	257/281~(91%)	-0.22	3 (1%) 79 77	28, 44, 74, 116	0
1	Р	259/281~(92%)	-0.48	0 100 100	27, 43, 65, 93	0
All	All	4137/4496 (92%)	-0.33	58 (1%) 75 73	26, 43, 70, 121	0

The worst 5 of 58 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Ν	139	ALA	4.5
1	В	270	GLY	4.4
1	В	139	ALA	4.2
1	А	39	ARG	3.8
1	Κ	275	GLU	3.6

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q < 0.9
2	HEM	F	500	43/43	0.97	0.11	$39,\!47,\!58,\!74$	0
2	HEM	G	500	43/43	0.97	0.10	43,52,63,70	0
2	HEM	Ι	500	43/43	0.97	0.10	24,37,57,60	0
2	HEM	J	500	43/43	0.97	0.10	$27,\!42,\!57,\!67$	0
2	HEM	0	500	43/43	0.97	0.11	48,58,68,80	0
2	HEM	А	500	43/43	0.98	0.09	18,28,39,57	0
2	HEM	В	500	43/43	0.98	0.10	32,43,56,62	0
2	HEM	Н	500	43/43	0.98	0.09	16,29,37,43	0
2	HEM	С	500	43/43	0.98	0.09	28,42,62,68	0
2	HEM	D	500	43/43	0.98	0.10	18,29,37,44	0
2	HEM	K	500	43/43	0.98	0.10	28,43,61,71	0
2	HEM	L	500	43/43	0.98	0.10	20,34,53,63	0
2	HEM	М	500	43/43	0.98	0.10	$25,\!37,\!48,\!52$	0
2	HEM	N	500	43/43	0.98	0.10	37,56,65,74	0
2	HEM	Е	500	43/43	0.98	0.09	21,32,48,58	0
2	HEM	Р	500	43/43	0.99	0.08	20,31,42,54	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

