# wwPDB X-ray Structure Validation Summary Report (i) #### Aug 16, 2023 – 03:47 AM EDT PDB ID : 1Y7O Title: The structure of Streptococcus pneumoniae A153P ClpP Authors: Kimber, M.S.; Gribun, A.; Ching, R.; Sprangers, R.; Fiebig, K.M.; Houry, W.A. Deposited on : 2004-12-09 Resolution : 2.51 Å(reported) This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol. The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types. The following versions of software and data (see references (1)) were used in the production of this report: $Mol Probity \quad : \quad 4.02b\text{--}467$ Mogul: 1.8.5 (274361), CSD as541be (2020) Xtriage (Phenix) : 1.13 EDS : 2.35 Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) $Refmac \quad : \quad 5.8.0158$ CCP4 : 7.0.044 (Gargrove) Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.35 ## 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION The reported resolution of this entry is 2.51 Å. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. | Metric | Whole archive $(\# \mathrm{Entries})$ | $\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries},{\rm resolution\ range}({\rm \AA})) \end{array}$ | |-----------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------| | $R_{free}$ | 130704 | 4661 (2.50-2.50) | | Clashscore | 141614 | 5346 (2.50-2.50) | | Ramachandran outliers | 138981 | 5231 (2.50-2.50) | | Sidechain outliers | 138945 | 5233 (2.50-2.50) | | RSRZ outliers | 127900 | 4559 (2.50-2.50) | The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar. | Mol | Chain | Length | Quality of chain | | | | | | |-----|-------|--------|------------------|-----------|--|--|--|--| | - | | 010 | 2% | | | | | | | 1 | A | 218 | 64% | 12% • 22% | | | | | | 1 | D | 010 | 2% | | | | | | | 1 | В | 218 | 67% | 11% • 18% | | | | | | | | 210 | .%<br>■ | | | | | | | 1 | С | 218 | 67% | 13% • 19% | | | | | | | _ | | 2% | | | | | | | 1 | D | 218 | 67% | 12% • 18% | | | | | | | | | 3% | | | | | | | 1 | Е | 218 | 62% | 15% • 20% | | | | | Continued from previous page... | Mol | Chain | Length | Quality of chain | | | | | | |-----|-------|--------|------------------|-----|---|-----|--|--| | 1 | F | 218 | 61% | 16% | • | 21% | | | | 1 | G | 218 | 66% | 14% | | 19% | | | # 2 Entry composition (i) There are 3 unique types of molecules in this entry. The entry contains 9601 atoms, of which 0 are hydrogens and 0 are deuteriums. In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. • Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | Trace | |-----|-------|----------|-------------------------------------------|---------|---------|-------| | 1 | A | 171 | Total C N O Se<br>1315 828 217 258 12 | 0 | 0 | 0 | | 1 | В | 178 | Total C N O S Se<br>1373 862 228 270 1 12 | 0 | 0 | 0 | | 1 | С | 176 | Total C N O S Se<br>1357 853 226 265 1 12 | 0 | 0 | 0 | | 1 | D | 178 | Total C N O S Se<br>1371 859 228 271 1 12 | 0 | 0 | 0 | | 1 | Е | 174 | Total C N O S Se<br>1340 842 223 262 1 12 | 0 | 0 | 0 | | 1 | F | 173 | Total C N O S Se<br>1328 837 219 259 1 12 | 0 | 0 | 0 | | 1 | G | 177 | Total C N O Se<br>1365 857 227 269 12 | 0 | 0 | 0 | There are 245 discrepancies between the modelled and reference sequences: | Chain | Residue | Modelled | Actual | Comment | Reference | |-------|---------|----------|--------|------------------|------------| | A | -19 | MET | - | cloning artifact | UNP P63788 | | A | -18 | GLY | - | cloning artifact | UNP P63788 | | A | -17 | SER | - | cloning artifact | UNP P63788 | | A | -16 | SER | - | cloning artifact | UNP P63788 | | A | -15 | HIS | - | cloning artifact | UNP P63788 | | A | -14 | HIS | - | cloning artifact | UNP P63788 | | A | -13 | HIS | - | cloning artifact | UNP P63788 | | A | -12 | HIS | - | cloning artifact | UNP P63788 | | A | -11 | HIS | - | cloning artifact | UNP P63788 | | A | -10 | HIS | - | cloning artifact | UNP P63788 | | A | -9 | SER | - | cloning artifact | UNP P63788 | | A | -8 | SER | - | cloning artifact | UNP P63788 | | A | -7 | GLY | - | cloning artifact | UNP P63788 | | A | -6 | LEU | - | cloning artifact | UNP P63788 | | A | -5 | VAL | - | cloning artifact | UNP P63788 | $Continued\ from\ previous\ page...$ | Chain | Residue | Modelled | Actual | Comment | Reference | |-------|---------|----------|--------|---------------------|------------| | A | -4 | PRO | - | cloning artifact | UNP P63788 | | A | -3 | ARG | - | cloning artifact | UNP P63788 | | A | -2 | GLY | - | cloning artifact | UNP P63788 | | A | -1 | SER | - | cloning artifact | UNP P63788 | | A | 0 | HIS | - | cloning artifact | UNP P63788 | | A | 29 | MSE | MET | modified residue | UNP P63788 | | A | 38 | MSE | MET | modified residue | UNP P63788 | | A | 79 | MSE | MET | modified residue | UNP P63788 | | A | 91 | MSE | MET | modified residue | UNP P63788 | | A | 93 | MSE | MET | modified residue | UNP P63788 | | A | 97 | MSE | MET | modified residue | UNP P63788 | | A | 112 | MSE | MET | modified residue | UNP P63788 | | A | 119 | MSE | MET | modified residue | UNP P63788 | | A | 124 | MSE | MET | modified residue | UNP P63788 | | A | 140 | PRO | ALA | engineered mutation | UNP P63788 | | A | 162 | MSE | MET | modified residue | UNP P63788 | | A | 175 | MSE | MET | modified residue | UNP P63788 | | A | 190 | MSE | MET | modified residue | UNP P63788 | | A | 197 | GLY | - | cloning artifact | UNP P63788 | | A | 198 | SER | - | cloning artifact | UNP P63788 | | В | -19 | MET | - | cloning artifact | UNP P63788 | | В | -18 | GLY | - | cloning artifact | UNP P63788 | | В | -17 | SER | - | cloning artifact | UNP P63788 | | В | -16 | SER | - | cloning artifact | UNP P63788 | | В | -15 | HIS | - | cloning artifact | UNP P63788 | | В | -14 | HIS | - | cloning artifact | UNP P63788 | | В | -13 | HIS | - | cloning artifact | UNP P63788 | | В | -12 | HIS | - | cloning artifact | UNP P63788 | | В | -11 | HIS | - | cloning artifact | UNP P63788 | | В | -10 | HIS | - | cloning artifact | UNP P63788 | | В | -9 | SER | - | cloning artifact | UNP P63788 | | В | -8 | SER | - | cloning artifact | UNP P63788 | | В | -7 | GLY | - | cloning artifact | UNP P63788 | | В | -6 | LEU | - | cloning artifact | UNP P63788 | | В | -5 | VAL | - | cloning artifact | UNP P63788 | | В | -4 | PRO | - | cloning artifact | UNP P63788 | | В | -3 | ARG | - | cloning artifact | UNP P63788 | | В | -2 | GLY | - | cloning artifact | UNP P63788 | | В | -1 | SER | - | cloning artifact | UNP P63788 | | В | 0 | HIS | - | cloning artifact | UNP P63788 | | В | 29 | MSE | MET | modified residue | UNP P63788 | | В | 38 | MSE | MET | modified residue | UNP P63788 | $Continued\ from\ previous\ page...$ | Chain | Residue | Modelled | Actual | Comment | Reference | |-------|---------|----------|--------|---------------------|------------| | В | 79 | MSE | MET | modified residue | UNP P63788 | | В | 91 | MSE | MET | modified residue | UNP P63788 | | В | 93 | MSE | MET | modified residue | UNP P63788 | | В | 97 | MSE | MET | modified residue | UNP P63788 | | В | 112 | MSE | MET | modified residue | UNP P63788 | | В | 119 | MSE | MET | modified residue | UNP P63788 | | В | 124 | MSE | MET | modified residue | UNP P63788 | | В | 140 | PRO | ALA | engineered mutation | UNP P63788 | | В | 162 | MSE | MET | modified residue | UNP P63788 | | В | 175 | MSE | MET | modified residue | UNP P63788 | | В | 190 | MSE | MET | modified residue | UNP P63788 | | В | 197 | GLY | - | cloning artifact | UNP P63788 | | В | 198 | SER | _ | cloning artifact | UNP P63788 | | С | -19 | MET | - | cloning artifact | UNP P63788 | | С | -18 | GLY | - | cloning artifact | UNP P63788 | | С | -17 | SER | _ | cloning artifact | UNP P63788 | | С | -16 | SER | - | cloning artifact | UNP P63788 | | С | -15 | HIS | - | cloning artifact | UNP P63788 | | С | -14 | HIS | - | cloning artifact | UNP P63788 | | С | -13 | HIS | - | cloning artifact | UNP P63788 | | С | -12 | HIS | - | cloning artifact | UNP P63788 | | С | -11 | HIS | - | cloning artifact | UNP P63788 | | С | -10 | HIS | - | cloning artifact | UNP P63788 | | С | -9 | SER | - | cloning artifact | UNP P63788 | | С | -8 | SER | - | cloning artifact | UNP P63788 | | С | -7 | GLY | - | cloning artifact | UNP P63788 | | С | -6 | LEU | - | cloning artifact | UNP P63788 | | С | -5 | VAL | - | cloning artifact | UNP P63788 | | С | -4 | PRO | - | cloning artifact | UNP P63788 | | С | -3 | ARG | - | cloning artifact | UNP P63788 | | С | -2 | GLY | - | cloning artifact | UNP P63788 | | С | -1 | SER | | cloning artifact | UNP P63788 | | С | 0 | HIS | - | cloning artifact | UNP P63788 | | С | 29 | MSE | MET | modified residue | UNP P63788 | | С | 38 | MSE | MET | modified residue | UNP P63788 | | С | 79 | MSE | MET | modified residue | UNP P63788 | | С | 91 | MSE | MET | modified residue | UNP P63788 | | С | 93 | MSE | MET | modified residue | UNP P63788 | | С | 97 | MSE | MET | modified residue | UNP P63788 | | С | 112 | MSE | MET | modified residue | UNP P63788 | | С | 119 | MSE | MET | modified residue | UNP P63788 | | С | 124 | MSE | MET | modified residue | UNP P63788 | $Continued\ from\ previous\ page...$ | Chain | Residue | Modelled Modelled | Actual | Comment | Reference | |-------|---------|--------------------|--------|---------------------|------------| | С | 140 | PRO | ALA | engineered mutation | UNP P63788 | | С | 162 | MSE | MET | modified residue | UNP P63788 | | С | 175 | MSE | MET | modified residue | UNP P63788 | | С | 190 | MSE | MET | modified residue | UNP P63788 | | С | 197 | GLY | _ | cloning artifact | UNP P63788 | | С | 198 | SER | - | cloning artifact | UNP P63788 | | D | -19 | MET | _ | cloning artifact | UNP P63788 | | D | -18 | GLY | - | cloning artifact | UNP P63788 | | D | -17 | SER | - | cloning artifact | UNP P63788 | | D | -16 | SER | - | cloning artifact | UNP P63788 | | D | -15 | HIS | _ | cloning artifact | UNP P63788 | | D | -14 | HIS | _ | cloning artifact | UNP P63788 | | D | -13 | HIS | _ | cloning artifact | UNP P63788 | | D | -12 | HIS | _ | cloning artifact | UNP P63788 | | D | -11 | HIS | _ | cloning artifact | UNP P63788 | | D | -10 | HIS | _ | cloning artifact | UNP P63788 | | D | -9 | SER | _ | cloning artifact | UNP P63788 | | D | -8 | SER | - | cloning artifact | UNP P63788 | | D | -7 | GLY | _ | cloning artifact | UNP P63788 | | D | -6 | LEU | - | cloning artifact | UNP P63788 | | D | -5 | VAL | - | cloning artifact | UNP P63788 | | D | -4 | PRO | - | cloning artifact | UNP P63788 | | D | -3 | ARG | - | cloning artifact | UNP P63788 | | D | -2 | GLY | - | cloning artifact | UNP P63788 | | D | -1 | SER | - | cloning artifact | UNP P63788 | | D | 0 | HIS | - | cloning artifact | UNP P63788 | | D | 29 | MSE | MET | modified residue | UNP P63788 | | D | 38 | MSE | MET | modified residue | UNP P63788 | | D | 79 | MSE | MET | modified residue | UNP P63788 | | D | 91 | MSE | MET | modified residue | UNP P63788 | | D | 93 | MSE | MET | modified residue | UNP P63788 | | D | 97 | MSE | MET | modified residue | UNP P63788 | | D | 112 | MSE | MET | modified residue | UNP P63788 | | D | 119 | MSE | MET | modified residue | UNP P63788 | | D | 124 | MSE | MET | modified residue | UNP P63788 | | D | 140 | PRO | ALA | engineered mutation | UNP P63788 | | D | 162 | MSE | MET | modified residue | UNP P63788 | | D | 175 | MSE | MET | modified residue | UNP P63788 | | D | 190 | MSE | MET | modified residue | UNP P63788 | | D | 197 | GLY | - | cloning artifact | UNP P63788 | | D | 198 | SER | - | cloning artifact | UNP P63788 | | Е | -19 | MET | - | cloning artifact | UNP P63788 | $Continued\ from\ previous\ page...$ | Е | | | Actual | Comment | Reference | |---|-----|-----|--------|---------------------|------------| | | -18 | GLY | - | cloning artifact | UNP P63788 | | E | -17 | SER | - | cloning artifact | UNP P63788 | | Е | -16 | SER | - | cloning artifact | UNP P63788 | | Е | -15 | HIS | - | cloning artifact | UNP P63788 | | Е | -14 | HIS | - | cloning artifact | UNP P63788 | | Е | -13 | HIS | - | cloning artifact | UNP P63788 | | Е | -12 | HIS | - | cloning artifact | UNP P63788 | | Е | -11 | HIS | - | cloning artifact | UNP P63788 | | Е | -10 | HIS | - | cloning artifact | UNP P63788 | | Е | -9 | SER | - | cloning artifact | UNP P63788 | | Е | -8 | SER | - | cloning artifact | UNP P63788 | | Е | -7 | GLY | - | cloning artifact | UNP P63788 | | Е | -6 | LEU | - | cloning artifact | UNP P63788 | | Е | -5 | VAL | - | cloning artifact | UNP P63788 | | Е | -4 | PRO | - | cloning artifact | UNP P63788 | | Е | -3 | ARG | - | cloning artifact | UNP P63788 | | Е | -2 | GLY | - | cloning artifact | UNP P63788 | | Е | -1 | SER | - | cloning artifact | UNP P63788 | | Е | 0 | HIS | - | cloning artifact | UNP P63788 | | Е | 29 | MSE | MET | modified residue | UNP P63788 | | Е | 38 | MSE | MET | modified residue | UNP P63788 | | Е | 79 | MSE | MET | modified residue | UNP P63788 | | Е | 91 | MSE | MET | modified residue | UNP P63788 | | Е | 93 | MSE | MET | modified residue | UNP P63788 | | Е | 97 | MSE | MET | modified residue | UNP P63788 | | Е | 112 | MSE | MET | modified residue | UNP P63788 | | Е | 119 | MSE | MET | modified residue | UNP P63788 | | Е | 124 | MSE | MET | modified residue | UNP P63788 | | Е | 140 | PRO | ALA | engineered mutation | UNP P63788 | | Е | 162 | MSE | MET | modified residue | UNP P63788 | | Е | 175 | MSE | MET | modified residue | UNP P63788 | | Е | 190 | MSE | MET | modified residue | UNP P63788 | | Е | 197 | GLY | - | cloning artifact | UNP P63788 | | Е | 198 | SER | | cloning artifact | UNP P63788 | | F | -19 | MET | | cloning artifact | UNP P63788 | | F | -18 | GLY | = | cloning artifact | UNP P63788 | | F | -17 | SER | - | cloning artifact | UNP P63788 | | F | -16 | SER | - | cloning artifact | UNP P63788 | | F | -15 | HIS | = | cloning artifact | UNP P63788 | | F | -14 | HIS | - | cloning artifact | UNP P63788 | | F | -13 | HIS | - | cloning artifact | UNP P63788 | | F | -12 | HIS | - | cloning artifact | UNP P63788 | $Continued\ from\ previous\ page...$ | Chain | Residue | Modelled Modelled | Actual | Comment | Reference | |-------|---------|--------------------|--------|---------------------|------------| | F | -11 | HIS | - | cloning artifact | UNP P63788 | | F | -10 | HIS | _ | cloning artifact | UNP P63788 | | F | -9 | SER | - | cloning artifact | UNP P63788 | | F | -8 | SER | _ | cloning artifact | UNP P63788 | | F | -7 | GLY | _ | cloning artifact | UNP P63788 | | F | -6 | LEU | - | cloning artifact | UNP P63788 | | F | -5 | VAL | - | cloning artifact | UNP P63788 | | F | -4 | PRO | - | cloning artifact | UNP P63788 | | F | -3 | ARG | - | cloning artifact | UNP P63788 | | F | -2 | GLY | - | cloning artifact | UNP P63788 | | F | -1 | SER | - | cloning artifact | UNP P63788 | | F | 0 | HIS | - | cloning artifact | UNP P63788 | | F | 29 | MSE | MET | modified residue | UNP P63788 | | F | 38 | MSE | MET | modified residue | UNP P63788 | | F | 79 | MSE | MET | modified residue | UNP P63788 | | F | 91 | MSE | MET | modified residue | UNP P63788 | | F | 93 | MSE | MET | modified residue | UNP P63788 | | F | 97 | MSE | MET | modified residue | UNP P63788 | | F | 112 | MSE | MET | modified residue | UNP P63788 | | F | 119 | MSE | MET | modified residue | UNP P63788 | | F | 124 | MSE | MET | modified residue | UNP P63788 | | F | 140 | PRO | ALA | engineered mutation | UNP P63788 | | F | 162 | MSE | MET | modified residue | UNP P63788 | | F | 175 | MSE | MET | modified residue | UNP P63788 | | F | 190 | MSE | MET | modified residue | UNP P63788 | | F | 197 | GLY | - | cloning artifact | UNP P63788 | | F | 198 | SER | - | cloning artifact | UNP P63788 | | G | -19 | MET | - | cloning artifact | UNP P63788 | | G | -18 | GLY | - | cloning artifact | UNP P63788 | | G | -17 | SER | - | cloning artifact | UNP P63788 | | G | -16 | SER | - | cloning artifact | UNP P63788 | | G | -15 | HIS | - | cloning artifact | UNP P63788 | | G | -14 | HIS | - | cloning artifact | UNP P63788 | | G | -13 | HIS | | cloning artifact | UNP P63788 | | G | -12 | HIS | | cloning artifact | UNP P63788 | | G | -11 | HIS | | cloning artifact | UNP P63788 | | G | -10 | HIS | | cloning artifact | UNP P63788 | | G | -9 | SER | | cloning artifact | UNP P63788 | | G | -8 | SER | - | cloning artifact | UNP P63788 | | G | -7 | GLY | - | cloning artifact | UNP P63788 | | G | -6 | LEU | | cloning artifact | UNP P63788 | | G | -5 | VAL | - | cloning artifact | UNP P63788 | $Continued\ from\ previous\ page...$ | Chain | Residue | Modelled | Actual | Comment | Reference | |-------|---------|----------|--------|---------------------|------------| | G | -4 | PRO | - | cloning artifact | UNP P63788 | | G | -3 | ARG | - | cloning artifact | UNP P63788 | | G | -2 | GLY | - | cloning artifact | UNP P63788 | | G | -1 | SER | - | cloning artifact | UNP P63788 | | G | 0 | HIS | - | cloning artifact | UNP P63788 | | G | 29 | MSE | MET | modified residue | UNP P63788 | | G | 38 | MSE | MET | modified residue | UNP P63788 | | G | 79 | MSE | MET | modified residue | UNP P63788 | | G | 91 | MSE | MET | modified residue | UNP P63788 | | G | 93 | MSE | MET | modified residue | UNP P63788 | | G | 97 | MSE | MET | modified residue | UNP P63788 | | G | 112 | MSE | MET | modified residue | UNP P63788 | | G | 119 | MSE | MET | modified residue | UNP P63788 | | G | 124 | MSE | MET | modified residue | UNP P63788 | | G | 140 | PRO | ALA | engineered mutation | UNP P63788 | | G | 162 | MSE | MET | modified residue | UNP P63788 | | G | 175 | MSE | MET | modified residue | UNP P63788 | | G | 190 | MSE | MET | modified residue | UNP P63788 | | G | 197 | GLY | - | cloning artifact | UNP P63788 | | G | 198 | SER | - | cloning artifact | UNP P63788 | $\bullet$ Molecule 2 is CALCIUM ION (three-letter code: CA) (formula: Ca). | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | |-----|-------|----------|-----------------|---------|---------| | 2 | A | 1 | Total Ca<br>1 1 | 0 | 0 | | 2 | В | 1 | Total Ca<br>1 1 | 0 | 0 | | 2 | С | 2 | Total Ca<br>2 2 | 0 | 0 | | 2 | E | 1 | Total Ca<br>1 1 | 0 | 0 | | 2 | F | 2 | Total Ca<br>2 2 | 0 | 0 | | 2 | G | 1 | Total Ca<br>1 1 | 0 | 0 | • Molecule 3 is water. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | |-----|-------|----------|------------------|---------|---------| | 3 | A | 28 | Total O<br>28 28 | 0 | 0 | Continued from previous page... | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | |-----|-------|----------|------------------|---------|---------| | 3 | В | 30 | Total O<br>30 30 | 0 | 0 | | 3 | С | 28 | Total O<br>28 28 | 0 | 0 | | 3 | D | 17 | Total O<br>17 17 | 0 | 0 | | 3 | E | 13 | Total O<br>13 13 | 0 | 0 | | 3 | F | 11 | Total O<br>11 11 | 0 | 0 | | 3 | G | 17 | Total O<br>17 17 | 0 | 0 | ## 3 Residue-property plots (i) These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey. • Molecule 1: ATP-dependent Clp protease proteolytic subunit • Molecule 1: ATP-dependent Clp protease proteolytic subunit • Molecule 1: ATP-dependent Clp protease proteolytic subunit # 4 Data and refinement statistics (i) | Property | Value | Source | |------------------------------------------------|--------------------------------------------------|-----------| | Space group | P 32 2 1 | Depositor | | Cell constants | 105.65Å 105.65Å 236.19Å | Depositor | | a, b, c, $\alpha$ , $\beta$ , $\gamma$ | $90.00^{\circ}$ $90.00^{\circ}$ $120.00^{\circ}$ | Depositor | | Resolution (Å) | 29.50 - 2.51 | Depositor | | resolution (A) | 29.84 - 2.50 | EDS | | % Data completeness | 89.0 (29.50-2.51) | Depositor | | (in resolution range) | 90.6 (29.84-2.50) | EDS | | $R_{merge}$ | (Not available) | Depositor | | $R_{sym}$ | 0.06 | Depositor | | $< I/\sigma(I) > 1$ | 2.49 (at 2.51Å) | Xtriage | | Refinement program | REFMAC 5.1.19, CNX 2000.1 | Depositor | | $R, R_{free}$ | 0.186 , $0.248$ | Depositor | | it, it <sub>free</sub> | 0.194 , $0.251$ | DCC | | $R_{free}$ test set | 4780 reflections (9.81%) | wwPDB-VP | | Wilson B-factor (Å <sup>2</sup> ) | 34.5 | Xtriage | | Anisotropy | 0.180 | Xtriage | | Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$ | 0.36, 36.7 | EDS | | L-test for twinning <sup>2</sup> | $< L > = 0.46, < L^2> = 0.29$ | Xtriage | | Estimated twinning fraction | 0.043 for -h,-k,l | Xtriage | | $F_o, F_c$ correlation | 0.93 | EDS | | Total number of atoms | 9601 | wwPDB-VP | | Average B, all atoms (Å <sup>2</sup> ) | 32.0 | wwPDB-VP | Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.81% of the height of the origin peak. No significant pseudotranslation is detected. <sup>&</sup>lt;sup>2</sup>Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets. <sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes. ## 5 Model quality (i) ## 5.1 Standard geometry (i) Bond lengths and bond angles in the following residue types are not validated in this section: CA The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | Mol | Chain | Bond | lengths | В | ond angles | |-------|-------|------|----------|------|----------------------| | IVIOI | Chain | RMSZ | # Z > 5 | RMSZ | # Z > 5 | | 1 | A | 0.58 | 0/1321 | 0.80 | 4/1764 (0.2%) | | 1 | В | 0.59 | 0/1379 | 0.82 | 6/1841 (0.3%) | | 1 | С | 0.61 | 0/1363 | 0.82 | 6/1819 (0.3%) | | 1 | D | 0.55 | 0/1377 | 0.79 | 4/1838 (0.2%) | | 1 | Е | 0.53 | 0/1346 | 0.77 | 5/1796 (0.3%) | | 1 | F | 0.60 | 0/1334 | 0.80 | 3/1781 (0.2%) | | 1 | G | 0.52 | 0/1371 | 0.78 | 4/1831 (0.2%) | | All | All | 0.57 | 0/9491 | 0.80 | $32/12670 \ (0.3\%)$ | Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintain group or atoms of a sidechain that are expected to be planar. | Mol | Chain | #Chirality outliers | #Planarity outliers | |-----|-------|---------------------|---------------------| | 1 | С | 0 | 1 | There are no bond length outliers. The worst 5 of 32 bond angle outliers are listed below: | Mol | Chain | Res | Type | Atoms | Z | $Observed(^o)$ | $Ideal(^{o})$ | |-----|-------|-----|------|-----------|------|----------------|---------------| | 1 | F | 17 | ASP | CB-CG-OD2 | 7.88 | 125.39 | 118.30 | | 1 | A | 85 | ASP | CB-CG-OD2 | 7.54 | 125.08 | 118.30 | | 1 | В | 17 | ASP | CB-CG-OD2 | 6.95 | 124.55 | 118.30 | | 1 | G | 172 | ASP | CB-CG-OD2 | 6.64 | 124.28 | 118.30 | | 1 | D | 57 | ASP | CB-CG-OD2 | 6.53 | 124.18 | 118.30 | There are no chirality outliers. All (1) planarity outliers are listed below: | Mol | Chain | Res | Type | Group | |-----|-------|-----|------|---------| | 1 | С | 2 | ILE | Peptide | ### 5.2 Too-close contacts (i) In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes. | Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes | |-----|-------|-------|----------|----------|---------|--------------| | 1 | A | 1315 | 0 | 1311 | 19 | 0 | | 1 | В | 1373 | 0 | 1373 | 15 | 0 | | 1 | С | 1357 | 0 | 1360 | 12 | 0 | | 1 | D | 1371 | 0 | 1367 | 10 | 0 | | 1 | Ε | 1340 | 0 | 1341 | 20 | 0 | | 1 | F | 1328 | 0 | 1333 | 20 | 0 | | 1 | G | 1365 | 0 | 1361 | 24 | 0 | | 2 | A | 1 | 0 | 0 | 0 | 0 | | 2 | В | 1 | 0 | 0 | 0 | 0 | | 2 | С | 2 | 0 | 0 | 0 | 0 | | 2 | Ε | 1 | 0 | 0 | 0 | 0 | | 2 | F | 2 | 0 | 0 | 0 | 0 | | 2 | G | 1 | 0 | 0 | 0 | 0 | | 3 | A | 28 | 0 | 0 | 0 | 0 | | 3 | В | 30 | 0 | 0 | 3 | 0 | | 3 | С | 28 | 0 | 0 | 1 | 0 | | 3 | D | 17 | 0 | 0 | 0 | 0 | | 3 | Ε | 13 | 0 | 0 | 0 | 0 | | 3 | F | 11 | 0 | 0 | 0 | 0 | | 3 | G | 17 | 0 | 0 | 1 | 0 | | All | All | 9601 | 0 | 9446 | 104 | 0 | The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6. The worst 5 of 104 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude. | Atom-1 | Atom-2 | $\begin{array}{c} \text{Interatomic} \\ \text{distance (Å)} \end{array}$ | Clash<br>overlap (Å) | | |----------------|----------------|--------------------------------------------------------------------------|----------------------|--| | 1:F:76:VAL:HA | 1:F:79:MSE:HE3 | 1.47 | 0.94 | | | 1:B:26:ARG:HG2 | 3:B:1011:HOH:O | 1.72 | 0.88 | | | 1:B:26:ARG:NE | 3:B:1011:HOH:O | 2.02 | 0.86 | | Continued from previous page... | Atom-1 | Atom-2 | $\begin{array}{c} \text{Interatomic} \\ \text{distance (Å)} \end{array}$ | Clash<br>overlap (Å) | |----------------|------------------|--------------------------------------------------------------------------|----------------------| | 1:A:97:MSE:HE1 | 1:A:150:LEU:HD13 | 1.58 | 0.83 | | 1:G:30:LEU:CD1 | 1:G:38:MSE:HE1 | 2.14 | 0.77 | There are no symmetry-related clashes. ## 5.3 Torsion angles (i) #### 5.3.1 Protein backbone (i) In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution. The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | Favoured | Allowed | Outliers | Perce | entiles | |-----|-------|-----------------|------------|---------|----------|-------|---------| | 1 | A | 165/218 (76%) | 161 (98%) | 3 (2%) | 1 (1%) | 25 | 43 | | 1 | В | 172/218 (79%) | 164 (95%) | 7 (4%) | 1 (1%) | 25 | 43 | | 1 | С | 170/218 (78%) | 163 (96%) | 7 (4%) | 0 | 100 | 100 | | 1 | D | 172/218 (79%) | 164 (95%) | 7 (4%) | 1 (1%) | 25 | 43 | | 1 | E | 168/218 (77%) | 163 (97%) | 5 (3%) | 0 | 100 | 100 | | 1 | F | 167/218 (77%) | 157 (94%) | 9 (5%) | 1 (1%) | 25 | 43 | | 1 | G | 171/218 (78%) | 165 (96%) | 6 (4%) | 0 | 100 | 100 | | All | All | 1185/1526 (78%) | 1137 (96%) | 44 (4%) | 4 (0%) | 41 | 61 | All (4) Ramachandran outliers are listed below: | Mol | Chain | Res | Type | |-----|-------|-----|------| | 1 | F | 3 | PRO | | 1 | В | 2 | ILE | | 1 | A | 53 | ASP | | 1 | D | 140 | PRO | #### 5.3.2 Protein sidechains (i) In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution. The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | Rotameric | Outliers | Percentiles | |-----|-------|-----------------|-----------|----------|-------------| | 1 | A | 144/168 (86%) | 132 (92%) | 12 (8%) | 11 22 | | 1 | В | 151/168 (90%) | 138 (91%) | 13 (9%) | 10 20 | | 1 | C | 149/168 (89%) | 142 (95%) | 7 (5%) | 26 49 | | 1 | D | 151/168 (90%) | 132 (87%) | 19 (13%) | 4 8 | | 1 | E | 147/168 (88%) | 131 (89%) | 16 (11%) | 6 12 | | 1 | F | 146/168 (87%) | 129 (88%) | 17 (12%) | 5 10 | | 1 | G | 150/168 (89%) | 139 (93%) | 11 (7%) | 14 27 | | All | All | 1038/1176 (88%) | 943 (91%) | 95 (9%) | 9 18 | 5 of 95 residues with a non-rotameric side chain are listed below: | Mol | Chain | Res | Type | |-----|-------|-----|------| | 1 | Е | 73 | LEU | | 1 | F | 31 | THR | | 1 | Е | 103 | SER | | 1 | Е | 172 | ASP | | 1 | F | 107 | LYS | Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 18 such sidechains are listed below: | Mol | Chain | Res | Type | |-----|-------|-----|------| | 1 | F | 173 | ASN | | 1 | G | 173 | ASN | | 1 | G | 40 | ASN | | 1 | Е | 87 | GLN | | 1 | F | 148 | ASN | #### 5.3.3 RNA (i) There are no RNA molecules in this entry. ## 5.4 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ## 5.5 Carbohydrates (i) There are no monosaccharides in this entry. ## 5.6 Ligand geometry (i) Of 8 ligands modelled in this entry, 8 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts. ## 5.7 Other polymers (i) There are no such residues in this entry. ## 5.8 Polymer linkage issues (i) There are no chain breaks in this entry. # 6 Fit of model and data (i) ## 6.1 Protein, DNA and RNA chains (i) In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, $95^{th}$ percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9. | Mol | Chain | Analysed | <rsrz></rsrz> | $\# \mathrm{RSRZ} {>} 2$ | | $\mathbf{OWAB}(\mathbf{\mathring{A}}^2)$ | Q < 0.9 | |-----|-------|-----------------|---------------|--------------------------|----|------------------------------------------|---------| | 1 | A | 159/218 (72%) | -0.03 | 5 (3%) 49 5 | 52 | 15, 27, 51, 60 | 0 | | 1 | В | 166/218 (76%) | -0.11 | 5 (3%) 50 5 | 53 | 15, 25, 50, 59 | 0 | | 1 | С | 164/218 (75%) | -0.08 | 3 (1%) 68 7 | 71 | 13, 22, 41, 53 | 0 | | 1 | D | 166/218 (76%) | 0.07 | 5 (3%) 50 5 | 53 | 21, 30, 52, 59 | 0 | | 1 | E | 162/218 (74%) | 0.16 | 7 (4%) 35 3 | 38 | 27, 36, 56, 66 | 0 | | 1 | F | 161/218 (73%) | -0.06 | 5 (3%) 49 5 | 52 | 20, 31, 56, 69 | 0 | | 1 | G | 165/218 (75%) | 0.15 | 10 (6%) 21 | 22 | 19, 32, 58, 72 | 0 | | All | All | 1143/1526 (74%) | 0.01 | 40 (3%) 44 | 47 | 13, 29, 54, 72 | 0 | The worst 5 of 40 RSRZ outliers are listed below: | Mol | Chain | Res | Type | RSRZ | |-----|-------|-----|------|------| | 1 | G | 9 | THR | 5.9 | | 1 | D | 8 | GLN | 4.6 | | 1 | D | 10 | SER | 4.5 | | 1 | D | 9 | THR | 4.0 | | 1 | F | 1 | MET | 3.7 | ## 6.2 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ## 6.3 Carbohydrates (i) There are no monosaccharides in this entry. ## 6.4 Ligands (i) In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, $95^{th}$ percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9. | Mol | Type | Chain | Res | Atoms | RSCC | RSR | $\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$ | Q<0.9 | |-----|------|-------|------|-------|------|------|--------------------------------------------------------------|-------| | 2 | CA | F | 1003 | 1/1 | 0.71 | 0.09 | 61,61,61,61 | 0 | | 2 | CA | A | 1001 | 1/1 | 0.86 | 0.10 | 60,60,60,60 | 0 | | 2 | CA | Ε | 1007 | 1/1 | 0.88 | 0.13 | 60,60,60,60 | 0 | | 2 | CA | F | 1008 | 1/1 | 0.89 | 0.18 | 59,59,59,59 | 0 | | 2 | CA | В | 1004 | 1/1 | 0.96 | 0.06 | 52,52,52,52 | 0 | | 2 | CA | G | 1005 | 1/1 | 0.97 | 0.04 | 53,53,53,53 | 0 | | 2 | CA | С | 1002 | 1/1 | 0.98 | 0.18 | 56,56,56,56 | 0 | | 2 | CA | С | 1006 | 1/1 | 0.98 | 0.20 | 35,35,35,35 | 0 | ## 6.5 Other polymers (i) There are no such residues in this entry.