

wwPDB EM Validation Summary Report (i)

Dec 13, 2022 – 12:01 AM EST

PDB ID	:	1IF0
Title	:	PSEUDO-ATOMIC MODEL OF BACTERIOPHAGE HK97 PROCAPSID
		(PROHEAD II)
Authors	:	Conway, J.F.; Wikoff, W.R.; Cheng, N.; Duda, R.L.; Hendrix, R.W.; Johnson,
		J.E.; Steven, A.C.
Deposited on	:	2001-04-11
Resolution	:	12.00 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB/EMDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

Clashscore

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 12.00 Å.

158937

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percent	tile Ranks	Value
Clashscore			11
Worse			Better
Perc	entile relative to all structures		
Perc	entile relative to all EM structures		
· · · · · · · · · · · · · · · · · · ·	XX 711		1
Metric			
Perc		EM structures (#Entries)	

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

4297

Mol	Chain	Length	Quality of chain
1	А	256	98% •
1	В	256	99% •
1	С	256	97% .
1	D	256	99%
1	Е	256	98% •
1	F	256	97% •
1	G	256	100%

2 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 1792 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called PROTEIN (MAJOR CAPSID PROTEIN GP5).

Mol	Chain	Residues	Atoms	AltConf	Trace
1	А	256	Total C 256 256	0	256
1	В	256	Total C 256 256	0	256
1	С	256	Total C 256 256	0	256
1	D	256	Total C 256 256	0	256
1	Е	256	Total C 256 256	0	256
1	F	256	Total C 256 256	0	256
1	G	256	Total C 256 256	0	256

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: PROTEIN (MAJOR CAPSID PROTEIN GP5)

Chain A: 98% .
C 28 N146 L144 C 283 C 2
• Molecule 1: PROTEIN (MAJOR CAPSID PROTEIN GP5)
Chain B: 99% .
C128 A147 C333 C333 C333 C333 C147 C333 C333 C178 C333 C178 C333 C178 C178 C178 C178 C178 C178 C178 C178
• Molecule 1: PROTEIN (MAJOR CAPSID PROTEIN GP5)
Chain C: 97% .
C128 A181 1296 1296 C299 C299 C299 C299 C299 C299 C299 C
• Molecule 1: PROTEIN (MAJOR CAPSID PROTEIN GP5)
Chain D: 99%
C1 28 8271 8383 8383
• Molecule 1: PROTEIN (MAJOR CAPSID PROTEIN GP5)
Chain E: 98% .
• Molecule 1: PROTEIN (MAJOR CAPSID PROTEIN GP5)
Chain F: 97% .

• Molecule 1: PROTEIN (MAJOR CAPSID PROTEIN GP5)

Chain G:

100%

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source	
Space group	P 1	Depositor	
Cell constants	1.00Å 1.00 Å 1.00 Å	Danasitan	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	(Not available) - 12.00	Depositor	
% Data completeness	(Not available) ((Not available)-12.00)	Depositor	
(in resolution range)		Depositor	
R_{merge}	(Not available)	Depositor	
R_{sym}	(Not available)	Depositor	
Refinement program	unknown	Depositor	
R, R_{free}	(Not available) , (Not available)	Depositor	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	1792	wwPDB-VP	
Average B, all atoms $(Å^2)$	20.0	wwPDB-VP	

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

There are no protein, RNA or DNA chains available to summarize Z scores of covalent bonds and angles.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	256	0	0	5	0
1	В	256	0	0	3	0
1	С	256	0	0	8	0
1	D	256	0	0	2	0
1	Е	256	0	0	7	0
1	F	256	0	0	8	0
1	G	256	0	0	1	0
All	All	1792	0	0	19	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

The worst 5 of 19 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:301:GLN:CA	1:F:296:ILE:CA	1.83	1.55
1:E:128:GLY:CA	1:F:328:GLY:CA	1.77	1.55

Continued on next page...

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:301:GLN:CA	1:C:296:ILE:CA	1.94	1.42
1:A:300:PRO:CA	1:C:305:SER:CA	2.09	1.31
1:C:128:GLY:CA	1:D:272:ALA:CA	2.11	1.27

Continued from previous page...

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

There are no protein backbone outliers to report in this entry.

5.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

