wwPDB NMR Structure Validation Summary Report (i) Jun 6, 2023 – 08:58 pm BST PDB ID : 6YQ5 EMDB ID : EMD-10792 BMRB ID : 27468 Title : Hybrid structure of the SPP1 tail tube by solid-state NMR and cryo EM - NMR Ensemble Authors: Zinke, M.; Sachowsky, K.A.A.; Zinn-Justin, S.; Ravelli, R.; Schroder, G.F.; Habeck, M.; Lange, A. Deposited on : 2020-04-16 This is a wwPDB NMR Structure Validation Summary Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol. The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types. The following versions of software and data (see references (i)) were used in the production of this report: EMDB validation analysis : NOT EXECUTED MolProbity : 4.02b-467 Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) MapQ : NOT EXECUTED Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.33 # 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: *ELECTRON MICROSCOPY, SOLID-STATE NMR* The reported resolution of this entry is 4.00 Å. The overall completeness of chemical shifts assignment was not calculated. There are no overall percentile quality scores available for this entry. The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% | Mol | Chain | Length | Quality of chain | |-----|-------|--------|------------------| | 1 | A | 172 | 100% | | 1 | В | 172 | 100% | | 1 | С | 172 | 100% | | 1 | D | 172 | 100% | | 1 | Е | 172 | 100% | | 1 | F | 172 | 100% | | 1 | G | 172 | 100% | | 1 | Н | 172 | 100% | | 1 | I | 172 | 100% | | 1 | J | 172 | 100% | | 1 | K | 172 | 100% | | 1 | L | 172 | 100% | # 2 Ensemble composition and analysis (i) This entry contains 10 models. The atoms present in the NMR models are not consistent. Some calculations may have failed as a result. All residues are included in the validation scores. Cyrange was unable to find well-defined residues. Error message: Cyrange did not run NmrClust was unable to cluster the ensemble. Error message: NmrClust did not run # 3 Entry composition (i) There is only 1 type of molecule in this entry. The entry contains 30672 atoms, of which 14916 are hydrogens and 0 are deuteriums. In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. • Molecule 1 is a protein called Tail tube protein gp17.1*. | Mol | Chain | Residues | | | Atom | .S | | | AltConf | Trace | |-----|-------|----------|-------|-----|------|-----|-----|---|---------|-------| | 1 | A | 172 | Total | С | Н | N | О | S | 0 | | | 1 | A | 172 | 2556 | 821 | 1243 | 216 | 275 | 1 | U | | | 1 | D | 170 | Total | С | Н | N | О | S | 0 | | | 1 | В | 172 | 2556 | 821 | 1243 | 216 | 275 | 1 | 0 | | | 1 | С | 172 | Total | С | Н | N | О | S | 0 | | | 1 | | 172 | 2556 | 821 | 1243 | 216 | 275 | 1 | U | | | 1 | D | 172 | Total | С | Н | N | О | S | 0 | | | 1 | D | 172 | 2556 | 821 | 1243 | 216 | 275 | 1 | U | | | 1 | Е | 172 | Total | С | Н | N | О | S | 0 | | | 1 | 12 | 172 | 2556 | 821 | 1243 | 216 | 275 | 1 | U | | | 1 | F | 172 | Total | С | Н | N | О | S | 0 | | | 1 | I. | 112 | 2556 | 821 | 1243 | 216 | 275 | 1 | 0 | | | 1 | G | 172 | Total | С | Н | N | О | S | 0 | | | 1 | G | 112 | 2556 | 821 | 1243 | 216 | 275 | 1 | 0 | | | 1 | Н | 172 | Total | С | Н | N | О | S | 0 | | | 1 | 11 | 112 | 2556 | 821 | 1243 | 216 | 275 | 1 | 0 | | | 1 | I | 172 | Total | С | Н | N | О | S | 0 | | | 1 | 1 | 112 | 2556 | 821 | 1243 | 216 | 275 | 1 | 0 | | | 1 | J | 172 | Total | С | Н | N | О | S | 0 | | | 1 | | 112 | 2556 | 821 | 1243 | 216 | 275 | 1 | U | | | 1 | K | 172 | Total | С | Н | N | О | S | 0 | | | 1 | IX | 114 | 2556 | 821 | 1243 | 216 | 275 | 1 | U | | | 1 | L | 172 | Total | С | Н | N | О | S | 0 | | | 1 | ъ | 112 | 2556 | 821 | 1243 | 216 | 275 | 1 | U | | # 4 Residue-property plots (i) #### 4.1 Average score per residue in the NMR ensemble These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey. • Molecule 1: Tail tube protein gp17.1* Chain A: • Molecule 1: Tail tube protein gp17.1* Chain B: 100% • Molecule 1: Tail tube protein gp17.1* Chain C: 100% | A126
W126
E128
S130
S131
C132
C133
C134
C134
C134
C144
C144
C144
C144
C144
C144
C144
C146
C141
C146
C166
C166
C166
C166
C166
C166
C167
C167
C167
C167
C167
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168
C168 | |
---|--------------| | • Molecule 1: Tail tube protein gp17.1* | | | Chain D: 100% | | | P6 | G63
E64 | | V66
166
166
168
177
173
174
175
175
176
177
177
177
178
189
189
189
189
189
189
189
18 | E123 | | A 126
E 127
E 128
E 129
E 139
E 139
E 139
E 138
E 138
E 145
E 145 | | | • Molecule 1: Tail tube protein gp17.1* | | | Chain E: | | | 16 16 17 18 18 19 19 19 19 19 19 | G63
E64 | | V65 V68 V68 V68 V68 V68 V68 V77 V77 V77 V77 V77 V77 V77 V77 V77 V7 | E123 | | A126
1128
1130
1130
1131
1138
1138
1138
1138
1138
1138
1138
1138
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1146
1166
1166
1166
1167
1166
1167
1167
1167
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177 | | | • Molecule 1: Tail tube protein gp17.1* | | | Chain F: 100% | | | 10 10 10 10 10 10 10 10 | G63
E64 | | V65 V67 V68 K77 K77 K77 K77 K77 K77 K77 K | E123
G124 | | 1128
1130
1130
1133
1133
1133
1133
1133
113 | | | • Molecule 1: Tail tube protein gp17.1* | | | Chain G: | | | P 5 | G63
E64 | | V65 Y66 Y67 Y68 Y68 Y68 Y68 Y68 Y68 Y68 Y71 Y73 Y74 Y74 Y77 Y78 Y77 Y78 Y77 Y78 Y77 Y78 Y83 Y10 Y10 Y10 Y112 Y112 Y112 Y113 Y118 Y118 Y118 Y119 Y118 Y119 Y118 Y119 Y119 | E123
G124 | | A126
E127
E127
E128
S129
E130
S131
L132
Q133
V134 | E137
L138
K139
N140
G141
E142
I143
D144
T145
F146 | E148
E148
I150
V151
N152
V153 | K155
K155
G156
G157
Y158
D159 | F160
Q161
Q162
Q162
P163
G164 | U165
T166
T167
G168 | A170
P171
G172 | T173
V174
P175
A176 | | | | |--|---|---|--|--|---------------------------------|----------------------|-------------------------------|----------------------|----------------------|----------------------| | • Molecule 1: T | Cail tube protein | n gp17.1* | | | | | | | | | | Chain H: | | | 100% | | | | | | | | | P5
16
16
68
69
010
V111
X112
Y13
Y13 | 410
817
118
119
420
722
623
824
824
826 | F28
P29
A30
A31
Q32
T33 | 635
836
V37
838
639 | E40
R41
E42
L43
F44 | D45
E46
Q47
T48 | N50
G51
R52 | 153
L54
G55
P56 | G57
S58
V59 | A60
D61 | G63
E64 | | V65
T66
Y67
Y68
Q69
K70
R71
G72
D73
A74
A74 | A 777
A 778
A 778
D 81
D 81
A 82
A 83
A 83
A 83
A 84
A 84
A 84
A 84
A 84
A 84
A 84
A 84 | 488
(488
(490
(492
(493
(494) | 196
196
197
1898
1899 | E100
N101
D102
K103
Y104 | A106
Q107
F108 | F110
A111
Y112 | 1113
E114
S115
R116 | E117
Y118 | D120
G121 | V122
E123
G124 | | 4126
1128
1128
1130
1130
1132
(1132
(1132
1135 | 0130
E137
M140
0141
1143
1145
1146 | E148
E149
I150
V151
N152
V153
S154 | K155
G156
G157
Y158
D159 | F160
Q161
Q162
P163
G164 | 4165
T166
T167
G168 | A170
P171
G172 | T173
V174
P175
A176 | | | | | • Molecule 1: T | ail tube proteir | n gp17.1* | | | | | | | | | | Chain I: | | 1 | .00% | | | | | | | | | P5
16
16
17
19
10
10
11
114
114 | 410
817
118
118
720
623
623
623
824
A25
P26 | F28
F29
F29
F29
F29
F29
F29
F29
F29 | 635
836
V37
838
639 | E40
R41
E42
L43
F44 | D45
E46
Q47
T48 | N50
G51
R52 | 153
L54
G55
P56 | G57
S58
V59 | A60
D61 | G63
E64 | | V65
T66
Y67
Y68
G69
G72
G72
A74
A74 | 477
478
179
179
1880
1881
1883
1885
1886
1886 | (189
(189
(189
(199
(199
(199
(199
(199 | 196
196
197
199 | E100
N101
D102
K103
Y104 | A106
Q107
F108 | F110
A111
Y112 | E1113
E114
S115
R116 | E117
Y118
S119 |
0120
G121
W133 | V122
E123
G124 | | A125
V126
E127
I128
S129
S131
L132
Q133
V134 | 1138
1138
1140
1143
1143
1145
1145
1146 | E148
E148
I150
V151
V153
V153 | K155
G156
G157
Y158
D159 | F160
Q161
Q162
P163
G164 | 4165
T166
T167
G168 | A170
P171
G172 | T173
V174
P175
A176 | | | | | • Molecule 1: T | `ail tube proteir | n gp17.1* | | | | | | - | | | | Chain J: | | | 100% | | | | | | ı | | | P5
16
16
16
10
10
10
11
11
11
11
11 | 21 | F28
F29
A30
Q32
T33 | 635
836
838
838 | E40
E41
E42
L43
F44 | D45
E46
Q47
T48
K40 | N50
G51
R52 | 153
L54
G55 | S58
V59 | A60
D61 | G63
E64 | | V65
T66
Y67
Y68
G69
K70
R71
G72
D73
A74 | 477
478
179
179
188
188
188
186
688
887 | 189
(988
(900
(900
(900
(900
(900) | 196
196
197
198
199 | E100
N101
D102
K103 | A106
Q107
F108 | F110
A111
Y112 | E1113
E114
S115
R116 | E117
Y118 | 0120
G121 | V122
E123
G124 | | A125
V126
E127
S129
S129
S131
L132
Q133
V134 | 6130
E137
K138
N140
G141
E142
D144
L145
L146 | E148
E149
I150
V151
N152
V153 | K155
G156
G157
Y158
D159 | F160
Q161
Q162
P163
G164 | U165
T166
T167
G168 | A170
P171
G172 | T173
V174
P175
A176 | | | | | • Molecule 1: T | `ail tube proteir | n gp17.1* | | | | | | - | | | | Chain K: | | | 100% | | | | | | | | | P5
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
17 | 817
118
118
118
122
122
122
122
122
122
127
127
127
127 | F28
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29 | 635
836
838
838 | E40
E42
L43
F44 | D45
E46
Q47
T48 | N50
G51
R52 | 153
L54
G55 | S58
V59 | A60
D61 | G63
E64 | | V65
166
166
176
170
172
173
174
174 | 476
478
478
179
179
180
181
482
484
885
886 | (188
(189
(189
(190
(190
(190
(190
(190
(190
(190
(19 | D95
T96
V97
K98
N99 | E100
N101
D102
K103 | A106
Q107
F108 | F110
A111
Y112 | 1113
E114
S115
R116 | E117
Y118
S119 | D120
G121
W123 | V122
E123
G124 | | A126
E127
1128
S129
S130
S131
L132
V133
V134
L138
E137
E137
E137
E138
E142
E142
E143 | 1146
1146
1146
1150
1150
1150
1150
1150
1150
1150
115 | | |---|--|--------| | • Molecule 1: Tail tube pro | otein gp17.1* | | | Chain L: | 100% | | | P6 | A 25 | | | V65 Y67 Y68 Y68 G69 K70 K71 R71 R71 R77 R77 R77 R77 R77 R77 R77 R | 086
086
088
088
088
088
088
088 | | | A 126
F127
F128
S129
F130
F133
Q133
Q133
G136
F135
F139
M139
M139
M139
M139
M140
M140
M140
M141 | 1146
1146
1146
1146
1150
1150
1151
1152
1153
1154
1156
1166
1167
1167
1167
1167
1167
1171
1171
1171
1172
1173
1174
1174
1177
1177
1177
1177
1177 | | | 4.2 Residue scores
the NMR ense | for the representative (author defined) models mble | l from | | | s number 1. Colouring as in section 4.1 above. | | | • Molecule 1: Tail tube pro | otein gp17.1* | | | Chain A: | 100% | | | P6 | A26 P26 P26 P27 P28 | | | V65 T66 Y67 Y68 C69 K70 K71 G72 D73 A74 A74 A78 A78 A82 A82 A83 A83 | N85
C86
C86
C87
C87
C87
C89
C99
C99
C99
C99
C99
C99
C99 | | | A126
E127
1128
1128
1130
1131
1132
1135
1135
1135
1135
1135
1136
1138
1143
1143 | 1146
1146
1146
1150
1150
1150
1150
1150
1150
1150
1161
1167
1167
1167
1167
1167
1167
116 | | | • Molecule 1: Tail tube pro | otein gp17.1* | | | Chain B: | 100% | | | P6
M7
M7
M7
M9
Q9
Q10
V11
V11
F16
P16
S17
D19
A21
T22
A21
T22
A21
S24
S24
S25
S25
S26
S26
S27
S27
S27
S27
S27
S28
S28
S28
S28
S28
S28
S28
S28
S28
S28 | A25
P26
P27
P28
P28
P28
P28
P28
P28
P28
P28 | | | V65
Y67
Y68
Y68
G69
G72
G72
G75
G75
G76
G76
G76
G76
G76
G76
G77
G77 | N86
086
086
086
086
088
092
092
093
093
094
095
095
096
096
097
097
099
099
099
099
099
099 | | | A 125
F1 128
F1 128
F1 128
F1 130
F1 132
F1 135
F1 | 146
146
146
147
148
149
1451
1451
1451
1453
1455
1455
1466
1466
1466
1467
1467
1468
1468
1468
1468
1468
1470
1471
1471
1472
1473
1474
1475
1477
1477
1477
1477
1477
1477 | | | • Molecule 1: Tail tube pro | otein gp17.1* | | | Chain C: | 100% | | | P5
16
08
049
010
V11
X12
Y13 | F15
Q16
S17
I18
D19
A20 | T22
G23
S24
A25
P26
L27 | A30
Y31
Q32
T33 | D34
G35
S36
V37
S38 | E40
E42
E42
L43 | D45
D45
Q47
T48 | K49
N50
G51 | 153
L54
G55
P56 | G57
S58
V59 | A60
D61
S62 | E64 | |--|--|--|--------------------------------------|---|------------------------------|--------------------------------------|------------------------------|------------------------------|----------------------|----------------------|------| | 166
166
167
168
169
1770
1771
1771
1771
1771
1771
1771
177 | 476
476
478
179
E80
D81 | A82
Y83
N85
G86
K87 | 189
K90
F91
W92
R93 | V94
D95
T96
V97
K98 | E100
N101
D102
K103 | 1104
D105
A106
Q107
F108 | G109
F110
A111 | 1113
E114
S115
R116 | E117
Y118
S119 | D120
G121
V122 | G124 | | A125
V126
E127
E127
E128
S129
I130
E133
Q133
V134 | 1135
6136
6137
1138
K139
N140
6141 | E142
1143
D144
T145
L146
P147 | E149
1150
V151
N152
V153 | \$154
K155
G156
G157
Y158
D159 | F160
Q161
Q162
P163 | 1166
1167
1167
1167 | E169
A170
P171
G172 |
T173
V174
P175
A176 | | | | | • Molecule 1: | Tail tube | protein | gp17.1* | | | | | | | | | | Chain D: | | | | 100% | | | | | | | | | P5 M7 M7 G8 Q9 D10 V11 K12 K13 | F15
Q16
S17
I18
D19
A20
A21 | 122
G23
S24
A25
P26
L27 | A30
Y31
Q32
T33 | D34
G35
S36
V37
S38 | E40
E42
L43
L43 | D45
D45
E46
Q47
T48 | K49
N50
G51
R52 | 153
L54
G55
P56 | G57
S58
V59 | A60
D61
S62 | E64 | | V65
T66
Y67
Y68
G69
K70
K71
G72
D73 | 475
476
777
777
179
E80
D81 | A82
Y83
Q84
M85
G86
K87 | K90
K90
F91
W92
R93 | V94
D95
T96
V97
K98
N99 | E100
N101
D102
K103 | 1104
D105
A106
Q107
F108 | G109
F110
A111
Y112 | 1113
E114
S115
R116 | E117
Y118
S119 | G121
V122 | G124 | | A125
V126
E127
I128
S129
I130
S131
[132]
U132
V134 | 1135
G136
E137
L138
K139
N140
G141 | E142
1143
D144
T145
L146
F147 | E149
1150
V151
N152
V153 | \$154
K155
G156
G157
Y158
D159 | F160
Q161
Q162
P163 | 1166
T167
T167
G168 | E169
A170
P171
G172 | T173
V174
P175
A176 | | | | | • Molecule 1: | Tail tube | protein | gp17.1* | | | | | | | | | | Chain E: | | | | 100% | | | | | | | | | P5
16
08
09
010
V11
K12
Y13 | F15
Q16
S17
I18
D19
A20
A21 | T22
G23
S24
A25
P26
L27 | A30
Y31
Q32
T33 | 034
035
836
V37
838 | E40
R41
E42
L43 | D45
D45
Q47
T48 | K49
N50
G51
R52 | 153
L54
G55
P56 | G57
S58
V59 | A60
D61
S62 | E64 | | V65
T66
Y67
Y68
G69
K70
R71
G72
D73 | G75
Q76
Q76
K77
A78
I79
E80 | 482
483
084
085
G86
K87 | K90
K90
F91
W92
R93 | V94
D95
T96
V97
K98 | E100
N101
D102
K103 | 1104
D105
A106
Q107
F108 | G109
F110
A111
Y112 | 1113
E114
S115
R116 | E117
Y118
S119 | D120
G121
V122 | G124 | | A125
V126
E127
I128
S129
I130
E132
Q133
Q133 | 1135
6136
E137
L138
K139
M140
G141 | E142
1143
D144
T145
L146
F147 | E149
1150
V151
N152
V153 | \$154
K155
G156
G157
Y158
D159 | F160
Q161
Q162
P163 | Q165
Q165
T166
T167
G168 | E169
A170
P171
G172 | T173
V174
P175
A176 | | | | | • Molecule 1: | Tail tube | protein | gp17.1* | | | | | | | | | | Chain F: | | | | 100% | | | | | | | | | P5
16
M7
G8
Q9
D10
V11
K12
Y13 | F15
Q16
S17
118
D19
A20
A21 | T22
G23
S24
A25
P26
L27 | A30
Y31
Q32
T33 | 034
035
036
037
037 | E40
E42
E42
L43 | D45
D45
E46
Q47
T48 | K49
N50
G51
R52 | 153
L54
G55
P56 | G57
S58
V59 | A60
D61
S62 | E64 | | V65
T66
Y67
Y68
G69
K70
R71
G72
D73 | 475
476
877
877
179
E80
D81 | A82
Y83
N85
G86
K87 | 189
K90
F91
W92
R93 | V94
D95
T96
V97
K98 | E100
N101
D102
K103 | 1104
D105
A106
Q107
F108 | G109
F110
A111
V112 | 1113
E114
S115
R116 | E117
Y118
S119 | D120
G121
V122 | G124 | | A125
V126
E127
E127
S129
S139
I130
L132
Q133 | 1135
G136
E137
L138
K139
M140
G141 | E142
1143
D144
T145
L146
P147 | E149
1150
V151
N152
V153 | \$154
K155
G156
G157
Y158
D159 | F160
Q161
Q162
P163 | 4164
4165
1166
1167
6168 | E169
A170
P171
G172 | T173
V174
P175
A176 | | | | | • Molecule 1: | Tail tube | protein | gp17.1* | | | | | | | | | | Chain G: | | | | 100% | | | | | | | | | P5
16
M7
M7
Q8
Q9
D10
V11
K12
Y13
F15 | 9116
1118
1118
1118
1118
1118
1118
1118 | S62
G63
E64 | |--|--|----------------------| | 766
166
166
167
168
168
169
167
167
167
168
168
168
168
168
168
168
168
168
168 | 476
477
478
477
482
482
482
483
484
485
686
686
686
686
686
686
686
6 | V122
E123
G124 | | A125
V126
E127
E127
E130
E130
E133
Q133
V134 | 0138 0140 0141 0141 0143 0144 0144 0144 0145 0148 0148 0150 0156 0156 0156 0157 0168 0168 0168 0168 0168 0168 0168 0168 | | | • Molecule 1: 7 | Γail tube protein gp17.1* | | | Chain H: | 100% | | | P5
16
M7
G8
G9
D10
V11
K12
Y13
F15 | 016 018 019 | S62
G63
E64 | | V65
T66
Y67
Y68
G69
K70
R71
G72
D73
A74
G75 | 476
477
477
482
482
482
483
484
485
686
686
686
686
686
686
686
6 | V122
E123
G124 | | A126
E127
E127
E128
E130
E130
E132
Q133
V134
I135 | 0136 0137 0138 0140 0141 0143 0144 0144 0144 0146 0146 0156 0156 0156 0161 0161 0161 0161 016 | | | • Molecule 1: 7 | Tail tube protein gp17.1* | | | Chain I: | 100% | | | P5 M7 M7 G8 Q9 D10 V11 K12 Y13 F15 F15 | 0118
118
118
118
118
118
118
122
123
123
123
123
123
123
123 | S62
G63
E64 | | V65
T66
Y67
Y67
Y68
G69
K70
B71
B71
A74
A74 | 476 477 478 478 482 482 488 488 488 | V122
E123
G124 | | A125
1128
1128
1130
1130
1132
0133
V134
1135 | 0136 0137 0138 0140 0141 0145 0145 0146 0161 0165 0165 0167 0165 0167 0167 0168 0168 0168 0168 0168 0168 0168 0168 | | | • Molecule 1: 7 | Γail tube protein gp17.1* | | | Chain J: | 100% | | | P5
16
M7
M7
G8
G8
Q9
D10
V11
K12
Y13
F15 | 016 018 019
019 | S62
G63
E64 | | V65
T66
Y67
Y67
Y68
G69
K70
R71
G72
A74 | A 778 A 778 A 778 A 778 A 778 A 778 A 82 83 A 92 A 93 A 93 A 94 | V122
E123
G124 | | 1130
1132
1132
1133
1133
1133
1133
1133 | 0138 0140 01410 01410 01410 01410 01410 01410 01410 01410 0148 0148 | | | • Molecule 1: 7 | Γail tube protein gp17.1* | | | Chain K: | 100% | | | P5 | I6
M7 | සු සු | D10 | K12 | L14 | F15
Q16 | S17 | D19 | A20 | T22 | G23 | S24
A25 | P26 | L27
F28 | P29 | A30 | Y31 | T33 | D34 | 836 | V37 | 623 | E40 | R41
E42 | L43 | F44 | E46 | Q47
TA8 | K49 | NSO | G51
R52 | 153 | 1.54 | G55
D56 | G57 | 828 | V59 | D61 | S62
G63 | 1 E E E | |------|--------------|----------------|------------|------|------|-----------------|------------|------|---------|------|------|--------------|---------|--------------|------|------|--------------|------|------|----------|--------------|------|------|-------------------|------|--------------|------|--------------|------|------|--------------|------|------------|----------------------|-------|------|--------------|------|----------------------|---------| | V65 | T66
Y67 | Y68
G69 | K70 | G72 | A74 | G75
Q76 | K77 | 6/1 | E80 | A82 | Y83 | U84
N85 | 985 | K87 | 189 | K90 | F91
W92 | R93 | V94 | 196
T | 76X | 66N | E100 | N101
D102 | K103 | Y104 | A106 | Q107
F108 | G109 | F110 | A111
Y112 | 1113 | E114 | 8115 | E117 | Y118 | S119
D120 | G121 | V122 | 70,00 | | A125 | V126
E127 | I128
S129 | I130 | L132 | V134 | I135
G136 | E137 | K139 | N140 | E142 | 1143 | D144
T145 | L146 | P147
E148 | E149 | 1150 | V151
N152 | V153 | S154 | G156 | G157
V158 | D159 | F160 | Q161
Q162 | P163 | G164
0165 | T166 | T167 | E169 | A170 | F171
G172 | T173 | V174 | P175 | WILLO | | | | | | | • | Μ | ole | ecu | le | 1: | Ta | ail | tı | ıb | e j | pr | ot | ei | n , | gp | o1 | 7. | 1* | : | | | | | | | | | | | | | | | | • | | | | | | | С | ha | | т | | | | | | | | | | | | | | | | 10 | 00% |) | | | | | | | | | | | | | | | | _ | | | | | | ma | ın | L: | | | | | | | | | | | | | | | | 10 | ,0 ,0 | P5 | | es es | D10 | . 01 | L14 | F15
Q16 | S17
118 | D19 | A20 | T22 | G23 | S24
A25 | P26 | L27
F28 | P29 | A30 | Y31 | T33 | D34 | | V37 | 623 | E40 | R41 | L43 | F44 | E46 | Q47 | K49 | NSO | R52 | 153 | L54 | G55
D56 | G57 | S 58 | V59 | D61 | \$62
G63 | 100 H | | PS | | 88
00
00 | D10
V11 | K12 | | G75 F15 Q76 Q16 | | | E80 A20 | | | | G86 P26 | | | | | | | 836 | V37
S38 | | | N101 R41 D102 E42 | | Y104 F44 | | Q107 Q47 | | 10 | 12 | 3 | ₽ 1 | S115 G55
R116 D56 | | 18 | | | V122 S62
E123 G63 | 0127 | #### 5 Refinement protocol and experimental data overview (i) The models were refined using the following method: na. Of the 500 calculated structures, 10 were deposited, based on the following criterion: target function. The following table shows the software used for structure solution, optimisation and refinement. | Software name | Classification | Version | |---|-----------------------|---------| | Inferential Structure Determination (ISD) | structure calculation | | No chemical shift data was provided. Note: This is a solid-state NMR structure, where hydrogen atoms are typically not assigned a chemical shift value, which may lead to lower completeness of assignment measure. # 6 Model quality (i) ### 6.1 Standard geometry (i) There are no covalent bond-length or bond-angle outliers. There are no bond-length outliers. There are no bond-angle outliers. There are no chirality outliers. There are no planarity outliers. ### 6.2 Too-close contacts (i) In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble. | Mol | Chain | Non-H | H(model) | H(added) | Clashes | |-----|-------|-------|----------|----------|---------| | 1 | A | 0 | 0 | 0 | 0±0 | | 1 | В | 0 | 0 | 0 | 0±0 | | 1 | С | 0 | 0 | 0 | 0±0 | | 1 | D | 0 | 0 | 0 | 0±0 | | 1 | Е | 0 | 0 | 0 | 0±0 | | 1 | F | 0 | 0 | 0 | 0±0 | | 1 | G | 0 | 0 | 0 | 0±0 | | 1 | Н | 0 | 0 | 0 | 0±0 | | 1 | I | 0 | 0 | 0 | 0±0 | | 1 | J | 0 | 0 | 0 | 0±0 | | 1 | K | 0 | 0 | 0 | 0±0 | | 1 | L | 0 | 0 | 0 | 0±0 | | All | All | 0 | 0 | 0 | - | The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is -. There are no clashes. ## 6.3 Torsion angles (i) #### 6.3.1 Protein backbone (i) In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues. | Mol | Chain | Analysed | Favoured | Allowed | Outliers | Percentiles | |-----|-------|----------|----------|---------|----------|-------------| | 1 | A | 0 | - | - | - | - | | 1 | В | 0 | - | - | - | - | | 1 | С | 0 | - | - | - | - | | 1 | D | 0 | - | - | - | - | | 1 | Е | 0 | - | - | - | - | | 1 | F | 0 | - | - | - | - | | 1 | G | 0 | - | - | - | - | | 1 | Н | 0 | - | - | - | - | | 1 | I | 0 | - | - | - | - | | 1 | J | 0 | - | - | - | - | | 1 | K | 0 | - | - | - | - | | 1 | L | 0 | - | - | - | - | | All | All | 0 | - | - | - | - | There are no Ramachandran outliers. #### 6.3.2 Protein sidechains (i) In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues. | Mol | Chain | Analysed | Rotameric | Outliers | Percentiles | |-----|-------|----------|-----------|----------|-------------| | 1 | A | 0 | - | - | - | | 1 | В | 0 | - | - | - | | 1 | С | 0 | - | - | - | | 1 | D | 0 | - | - | - | | 1 | Е | 0 | - | - | - | | 1 | F | 0 | - | - | - | | 1 | G | 0 | - | - | - | | 1 | Н | 0 | - | - | - | | 1 | I | 0 | - | - | - | | 1 | J | 0 | - | - | - | Continued on next page... Continued from previous page... | Mol | Chain | Analysed | Rotameric | Outliers | Percentiles | |-----|-------|----------|-----------|----------|-------------| | 1 | K | 0 | - | - | - | | 1 | L | 0 | - | - | - | | All | All | 0 | - | - | - | There are no protein residues with a non-rotameric sidechain to report. #### 6.3.3 RNA (i) There are no RNA molecules in this entry. ### 6.4 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ## 6.5 Carbohydrates (i) There are no monosaccharides in this entry. ## 6.6 Ligand geometry (i) There are no ligands in this entry. ### 6.7 Other polymers (i) There are no such molecules in this entry. ### 6.8 Polymer linkage issues (i) There are no chain breaks in this entry. CHEMICAL-SHIFTS INFOmissingINFO # 7 NMR restraints analysis (i) # 7.1 Conformationally restricting restraints (i) The following table provides the summary of experimentally observed NMR restraints in different categories. Restraints are classified into different categories based on the sequence separation of the atoms involved. | Description | Value | |--|-------| | Total distance restraints | 1384 | | Intra-residue ($ i-j =0$) | 24 | | Sequential ($ i-j =1$) | 188 | | Medium range ($ i-j >1$ and $ i-j <5$) | 144 | | Long range (i-j ≥5) | 920 | | Inter-chain | 0 | | Hydrogen bond restraints | 108 | | Disulfide bond restraints | 0 | | Total dihedral-angle restraints | 2880 | | Number of unmapped restraints | 0 | | Number of restraints per residue | 2.1 | | Number of long range restraints per residue ¹ | 0.5 | ¹Long range hydrogen bonds and disulfide bonds are counted as long range restraints while calculating the number of long range restraints per residue ### 7.2 Residual restraint violations (i) This section provides the overview of the restraint violations analysis. The violations are binned as small, medium and large violations based on its absolute value. Average number of violations per model is calculated by dividing the total number of violations in each bin by the size of the ensemble. ## 7.2.1 Average number of distance violations per model (i) Distance violations less than 0.1 Å are not included in the calculation. | Bins (Å) | Average number of violations per model | Max (Å) | |------------------|--|---------| | 0.1-0.2 (Small) | 27.8 | 0.2 | | 0.2-0.5 (Medium) | 39.4 | 0.5 | | >0.5 (Large) | 675.1 | 70.55 | # 7.2.2 Average number of dihedral-angle violations per model (i) Dihedral-angle violations less than 1° are not included in the calculation. | $\mathbf{Bins}\;(^{\circ})$ | Average
number of violations per model | \mathbf{Max} (°) | |-----------------------------|--|--------------------| | 1.0-10.0 (Small) | 633.0 | 10.0 | | 10.0-20.0 (Medium) | 392.9 | 20.0 | | >20.0 (Large) | 753.6 | 174.9 | # 8 Distance violation analysis (i) ## 8.1 Summary of distance violations (i) The following table shows the summary of distance violations in different restraint categories based on the sequence separation of the atoms involved. Each category is further sub-divided into three sub-categories based on the atoms involved. Violations less than 0.1 Å are not included in the statistics. | Doctroints type | Count | % 1 | Vi | ${f Violated^3}$ | | | tently | $\mathbf{Violated}^4$ | |---------------------------------------|-------|------------|-------|------------------|----------|-------|----------|-----------------------| | Restraints type | Count | 70- | Count | $\%^2$ | $\%^{1}$ | Count | $\%^{2}$ | $\%^1$ | | Intra-residue (i-j =0) | 24 | 1.7 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Backbone-Backbone | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Backbone-Sidechain | 24 | 1.7 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Sidechain-Sidechain | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Sequential (i-j =1) | 188 | 13.6 | 1 | 0.5 | 0.1 | 0 | 0.0 | 0.0 | | Backbone-Backbone | 140 | 10.1 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Backbone-Sidechain | 48 | 3.5 | 1 | 2.1 | 0.1 | 0 | 0.0 | 0.0 | | Sidechain-Sidechain | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Medium range ($ i-j >1 \& i-j <5$) | 144 | 10.4 | 39 | 27.1 | 2.8 | 15 | 10.4 | 1.1 | | Backbone-Backbone | 75 | 5.4 | 15 | 20.0 | 1.1 | 6 | 8.0 | 0.4 | | Backbone-Sidechain | 69 | 5.0 | 24 | 34.8 | 1.7 | 9 | 13.0 | 0.7 | | Sidechain-Sidechain | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Long range ($ i-j \ge 5$) | 920 | 66.5 | 714 | 77.6 | 51.6 | 630 | 68.5 | 45.5 | | Backbone-Backbone | 296 | 21.4 | 207 | 69.9 | 15.0 | 184 | 62.2 | 13.3 | | Backbone-Sidechain | 556 | 40.2 | 471 | 84.7 | 34.0 | 422 | 75.9 | 30.5 | | Sidechain-Sidechain | 68 | 4.9 | 36 | 52.9 | 2.6 | 24 | 35.3 | 1.7 | | Inter-chain | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Backbone-Backbone | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Backbone-Sidechain | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Sidechain-Sidechain | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Hydrogen bond | 108 | 7.8 | 71 | 65.7 | 5.1 | 15 | 13.9 | 1.1 | | Disulfide bond | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | | Total | 1384 | 100.0 | 825 | 59.6 | 59.6 | 660 | 47.7 | 47.7 | | Backbone-Backbone | 619 | 44.7 | 293 | 47.3 | 21.2 | 205 | 33.1 | 14.8 | | Backbone-Sidechain | 697 | 50.4 | 496 | 71.2 | 35.8 | 431 | 61.8 | 31.1 | | Sidechain-Sidechain | 68 | 4.9 | 36 | 52.9 | 2.6 | 24 | 35.3 | 1.7 | $^{^1}$ percentage calculated with respect to the total number of distance restraints, 2 percentage calculated with respect to the number of restraints in a particular restraint category, 3 violated in at least one model, 4 violated in all the models #### 8.1.1 Bar chart: Distribution of distance restraints and violations (i) Violated and consistently violated restraints are shown using different hatch patterns in their respective categories. The hydrogen bonds and disulfied bonds are counted in their appropriate category on the x-axis ### 8.2 Distance violation statistics for each model (i) The following table provides the distance violation statistics for each model in the ensemble. Violations less than 0.1 Å are not included in the statistics. | Model ID | Number of violations | | | | | | Mean (Å) | Max (Å) | \mathbf{SD}^6 (Å) | Median (Å) | |-----------|----------------------|--------|--------|--------|--------|-------|----------|---------|---------------------|------------| | Wiodel 1D | IR^1 | SQ^2 | MR^3 | LR^4 | IC^5 | Total | Mean (A) | Wax (A) | SD (A) | Median (A) | | 1 | 0 | 1 | 30 | 704 | 0 | 735 | 10.86 | 66.1 | 10.61 | 7.23 | | 2 | 0 | 1 | 31 | 702 | 0 | 734 | 10.87 | 66.32 | 10.6 | 7.28 | | 3 | 0 | 1 | 32 | 710 | 0 | 743 | 10.85 | 69.31 | 10.82 | 7.07 | | 4 | 0 | 1 | 34 | 712 | 0 | 747 | 10.81 | 69.18 | 10.8 | 7.1 | | 5 | 0 | 1 | 32 | 697 | 0 | 730 | 10.9 | 66.09 | 10.57 | 7.37 | | 6 | 0 | 1 | 33 | 726 | 0 | 760 | 10.56 | 70.48 | 10.72 | 6.88 | | 7 | 0 | 1 | 32 | 710 | 0 | 743 | 10.87 | 69.09 | 10.78 | 7.26 | | 8 | 0 | 1 | 35 | 715 | 0 | 751 | 10.69 | 70.55 | 10.74 | 6.97 | | 9 | 0 | 0 | 29 | 703 | 0 | 732 | 10.88 | 66.23 | 10.61 | 7.3 | | 10 | 0 | 1 | 35 | 712 | 0 | 748 | 10.7 | 70.33 | 10.68 | 6.88 | ¹Intra-residue restraints, ²Sequential restraints, ³Medium range restraints, ⁴Long range restraints, ⁵Inter-chain restraints, ⁶Standard deviation #### 8.2.1 Bar graph: Distance Violation statistics for each model (i) The mean(dot),median(x) and the standard deviation are shown in blue with respect to the y axis on the right ### 8.3 Distance violation statistics for the ensemble (i) Violation analysis may find that some restraints are violated in few models and some are violated in most of models. The following table provides this information as number of violated restraints for a given fraction of the ensemble. In total, 522(IR:24, SQ:187, MR:105, LR:206, IC:0) restraints are not violated in the ensemble. | | Number of violated restraints | | | | | | Fractio | n of the ensemble | |---|-------------------------------|--------|-----------|--------|--------|-------|--------------------|-------------------| | I | \mathbb{R}^1 | SQ^2 | $ m MR^3$ | LR^4 | IC^5 | Total | Count ⁶ | % | | | 0 | 0 | 1 | 7 | 0 | 8 | 1 | 10.0 | | | 0 | 0 | 3 | 4 | 0 | 7 | 2 | 20.0 | | | 0 | 0 | 4 | 15 | 0 | 19 | 3 | 30.0 | | | 0 | 0 | 1 | 13 | 0 | 14 | 4 | 40.0 | Continued on next page... | n previous | paae | |------------|------------| | | n previous | | Nu | Number of violated restraints | | | | | | Fraction of the ensemble | | | |--------|-------------------------------|--------|--------|--------|-------|--------------------|--------------------------|--|--| | IR^1 | SQ^2 | MR^3 | LR^4 | IC^5 | Total | Count ⁶ | % | | | | 0 | 0 | 0 | 6 | 0 | 6 | 5 | 50.0 | | | | 0 | 0 | 5 | 15 | 0 | 20 | 6 | 60.0 | | | | 0 | 0 | 6 | 9 | 0 | 15 | 7 | 70.0 | | | | 0 | 0 | 2 | 6 | 0 | 8 | 8 | 80.0 | | | | 0 | 1 | 2 | 9 | 0 | 12 | 9 | 90.0 | | | | 0 | 0 | 15 | 630 | 0 | 645 | 10 | 100.0 | | | $^{^1{\}rm Intra-residue}$ restraints, $^2{\rm Sequential}$ restraints, $^3{\rm Medium}$ range restraints, $^4{\rm Long}$ range restraints, $^5{\rm Inter-chain}$ restraints, 6 Number of models with violations #### 8.3.1 Bar graph: Distance violation statistics for the ensemble (i) ## 8.4 Most violated distance restraints in the ensemble (i) #### 8.4.1 Histogram: Distribution of mean distance violations (i) The following histogram shows the distribution of the average value of the violation. The average is calculated for each restraint that is violated in more than one model over all the violated models in the ensemble #### 8.4.2 Table: Most violated distance restraints (i) The following table provides the mean and the standard deviation of the violations for the 10 worst performing restraints, sorted by number of violated models and the mean violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint. | Key | Atom-1 | Atom-2 | \mathbf{Models}^1 | Mean (Å) | \mathbf{SD}^1 (Å) | Median (Å) | |----------|---------------|------------------|---------------------|----------|---------------------|------------| | (2,114) | 1:A:161:GLN:H | 1:A:48:THR:H | 10 | 68.37 | 1.85 | 69.14 | | (2,116) | 1:A:161:GLN:H | 1:A:47:GLN:H | 10 | 66.48 | 1.26 | 66.8 | | (2,429) | 1:A:160:PHE:H | 1:A:52:ARG:H | 10 | 61.13 | 0.5 | 60.88 | | (2,112) | 1:A:161:GLN:H | 1:A:53:ILE:H | 10 | 60.0 | 0.13 | 60.02 | | (2,1179) | 1:A:165:GLN:H | 1:A:53:ILE:HG21 | 10 | 50.7 | 0.87 | 50.26 | | (2,1179) | 1:A:165:GLN:H | 1:A:53:ILE:HG22 | 10 | 50.7 | 0.87 | 50.26 | | (2,1179) | 1:A:165:GLN:H | 1:A:53:ILE:HG23 | 10 | 50.7 | 0.87 | 50.26 | | (2,1126) | 1:A:46:GLU:H | 1:A:173:THR:HG21 | 10 | 49.28 | 0.95 | 49.18 | | (2,1126) | 1:A:46:GLU:H | 1:A:173:THR:HG22 | 10 | 49.28 | 0.95 | 49.18 | | (2,1126) | 1:A:46:GLU:H | 1:A:173:THR:HG23 | 10 | 49.28 | 0.95 | 49.18 | | (2,612) | 1:A:161:GLN:H | 1:A:53:ILE:HD11 | 10 | 47.96 | 1.1 | 48.52 | | (2,612) | 1:A:161:GLN:H | 1:A:53:ILE:HD12 | 10 | 47.96 | 1.1 | 48.52 | | (2,612) | 1:A:161:GLN:H | 1:A:53:ILE:HD13 | 10 | 47.96 | 1.1 | 48.52 | | (2,766) | 1:A:169:GLU:H | 1:A:53:ILE:HD11 | 10 | 43.71 | 0.79 | 44.02 | | (2,766) | 1:A:169:GLU:H | 1:A:53:ILE:HD12 | 10 | 43.71 | 0.79 | 44.02 | | (2,766) | 1:A:169:GLU:H | 1:A:53:ILE:HD13 | 10 | 43.71 | 0.79 | 44.02 | Continued on next page... | Continued | trom | mmoninonic | maaa | |----------------|------|------------|-------| | COHABABACA | | DIEUIUU | DUIUE | | 0 0 1000100000 | | | | | Key | Atom-1 | Atom-2 | \mathbf{Models}^1 | Mean (Å) | \mathbf{SD}^1 (Å) | Median (Å) | |----------|---------------|-----------------|---------------------|----------|---------------------|------------| | (2,774) | 1:A:172:GLY:H | 1:A:53:ILE:HD11 | 10 | 42.73 | 0.47 | 42.54 | | (2,774) | 1:A:172:GLY:H | 1:A:53:ILE:HD12 | 10 | 42.73 | 0.47 | 42.54 | | (2,774) | 1:A:172:GLY:H | 1:A:53:ILE:HD13 | 10 | 42.73 | 0.47 | 42.54 | | (2,1146) | 1:A:170:ALA:H | 1:A:53:ILE:HG21 | 10 | 42.27 | 0.53 | 42.3 | ¹Number of violated models, ²Standard deviation #### 8.5 All violated distance restraints (i) #### 8.5.1 Histogram: Distribution of distance violations (i) The following histogram shows the distribution of the absolute value of the violation for all violated restraints in the ensemble. #### 8.5.2 Table: All distance violations (i) The following table provides the 10 worst performing restraints, sorted by the violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key
represent combinatorial or ambiguous restraints and are counted as a single restraint. | Key | Atom-1 | Atom-2 | Model ID | Violation (Å) | | |---------|---------------|--------------|----------|---------------|--| | (2,114) | 1:A:161:GLN:H | 1:A:48:THR:H | 8 | 70.55 | | Continued on next page... #### Continued from previous page... | Key | Atom-1 | Atom-2 | Model ID | Violation (Å) | |---------|---------------|--------------|----------|---------------| | (2,114) | 1:A:161:GLN:H | 1:A:48:THR:H | 6 | 70.48 | | (2,114) | 1:A:161:GLN:H | 1:A:48:THR:H | 10 | 70.33 | | (2,114) | 1:A:161:GLN:H | 1:A:48:THR:H | 3 | 69.31 | | (2,114) | 1:A:161:GLN:H | 1:A:48:THR:H | 4 | 69.18 | | (2,114) | 1:A:161:GLN:H | 1:A:48:THR:H | 7 | 69.09 | | (2,116) | 1:A:161:GLN:H | 1:A:47:GLN:H | 8 | 68.13 | | (2,116) | 1:A:161:GLN:H | 1:A:47:GLN:H | 6 | 68.12 | | (2,116) | 1:A:161:GLN:H | 1:A:47:GLN:H | 10 | 67.86 | | (2,116) | 1:A:161:GLN:H | 1:A:47:GLN:H | 3 | 66.88 | # 9 Dihedral-angle violation analysis (i) ### 9.1 Summary of dihedral-angle violations (i) The following table provides the summary of dihedral-angle violations in different dihedral-angle types. Violations less than 1° are not included in the calculation. | Angle tree | Count % ¹ | | ${f Violated^3}$ | | | Consistently Violated ⁴ | | | |------------|----------------------|-------|------------------|--------|--------|------------------------------------|--------|--------| | Angle type | Count | 70 | Count | $\%^2$ | $\%^1$ | Count | $\%^2$ | $\%^1$ | | PHI | 1440 | 50.0 | 1230 | 85.4 | 42.7 | 401 | 27.8 | 13.9 | | PSI | 1440 | 50.0 | 1368 | 95.0 | 47.5 | 504 | 35.0 | 17.5 | | Total | 2880 | 100.0 | 2598 | 90.2 | 90.2 | 905 | 31.4 | 31.4 | $^{^1}$ percentage calculated with respect to total number of dihedral-angle restraints, 2 percentage calculated with respect to number of restraints in a particular dihedral-angle type, 3 violated in at least one model, 4 violated in all the models #### 9.1.1 Bar chart: Distribution of dihedral-angles and violations (i) Violated and consistently violated restraints are shown using different hatch patterns in their respective categories ### 9.2 Dihedral-angle violation statistics for each model (i) The following table provides the dihedral-angle violation statistics for each model in the ensemble. Violations less than 1° are not included in the statistics. | Model ID | Number of violations | | | Mean (°) | Mov (°) | SD (°) | Median (°) | | |----------|----------------------|------|-------|----------|-----------------------------|--------|------------|--| | Model 1D | PHI | PSI | Total | Mean () | $\mathbf{Max} \ (^{\circ})$ | SD () | Mediali () | | | 1 | 792 | 1008 | 1800 | 37.33 | 170.8 | 47.53 | 15.75 | | | 2 | 804 | 999 | 1803 | 36.84 | 172.7 | 47.63 | 15.0 | | | 3 | 817 | 888 | 1705 | 34.98 | 169.4 | 45.86 | 15.2 | | | 4 | 768 | 912 | 1680 | 35.07 | 168.5 | 45.96 | 15.85 | | | 5 | 810 | 972 | 1782 | 37.66 | 174.9 | 47.71 | 14.8 | | | 6 | 821 | 1056 | 1877 | 36.84 | 174.6 | 46.73 | 17.2 | | | 7 | 664 | 875 | 1539 | 37.98 | 169.0 | 47.09 | 17.2 | | | 8 | 840 | 1044 | 1884 | 36.53 | 173.8 | 46.6 | 15.8 | | | 9 | 773 | 948 | 1721 | 38.65 | 174.9 | 47.87 | 17.4 | | | 10 | 876 | 1128 | 2004 | 34.91 | 167.7 | 45.43 | 15.8 | | #### 9.2.1 Bar graph: Dihedral violation statistics for each model (i) The mean(dot),median(x) and the standard deviation are shown in blue with respect to the y axis on the right #### Dihedral-angle violation statistics for the ensemble (i) 9.3 Violation analysis may find that some restraints are violated in very few models and some are violated in most of models. The following table provides this information as number of violated restraints for a given fraction of ensemble. | Num | iber o | f violated restraints | Fraction of the ensemble | | | | |-----|--------|-----------------------|--------------------------|-------|--|--| | PHI | PSI | Total | $Count^1$ | % | | | | 54 | 60 | 114 | 1 | 10.0 | | | | 95 | 12 | 107 | 2 | 20.0 | | | | 158 | 93 | 251 | 3 | 30.0 | | | | 119 | 99 | 218 | 4 | 40.0 | | | | 48 | 156 | 204 | 5 | 50.0 | | | | 98 | 97 | 195 | 6 | 60.0 | | | | 154 | 179 | 333 | 7 | 70.0 | | | | 72 | 96 | 168 | 8 | 80.0 | | | | 31 | 72 | 103 | 9 | 90.0 | | | | 401 | 504 | 905 | 10 | 100.0 | | | ¹ Number of models with violations #### 9.3.1Bar graph: Dihedral-angle Violation statistics for the ensemble (i) ### 9.4 Most violated dihedral-angle restraints in the ensemble (i) #### 9.4.1 Histogram: Distribution of mean dihedral-angle violations (i) The following histogram shows the distribution of the average value of the violation. The average is calculated for each restraint that is violated in more than one model over all the violated models in the ensemble #### 9.4.2 Table: Most violated dihedral-angle restraints (i) The following table provides the mean and the standard deviation of the violations for the 10 worst performing restraints, sorted by number of violated models and the mean violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. | Key | Atom-1 | Atom-2 | Atom-3 | Atom-4 | ${f Models}^1$ | Mean | ${f SD}^2$ | Median | |----------|---------------|---------------|----------------|---------------|----------------|--------|------------|--------| | (1,2548) | 1:L:151:VAL:C | 1:L:152:ASN:N | 1:L:152:ASN:CA | 1:L:152:ASN:C | 10 | 166.82 | 9.33 | 171.45 | | (1,2549) | 1:E:151:VAL:C | 1:E:152:ASN:N | 1:E:152:ASN:CA | 1:E:152:ASN:C | 10 | 166.82 | 9.33 | 171.45 | | (1,2550) | 1:J:151:VAL:C | 1:J:152:ASN:N | 1:J:152:ASN:CA | 1:J:152:ASN:C | 10 | 166.82 | 9.35 | 171.45 | | (1,2551) | 1:H:151:VAL:C | 1:H:152:ASN:N | 1:H:152:ASN:CA | 1:H:152:ASN:C | 10 | 166.82 | 9.35 | 171.45 | | (1,2545) | 1:D:151:VAL:C | 1:D:152:ASN:N | 1:D:152:ASN:CA | 1:D:152:ASN:C | 10 | 166.81 | 9.34 | 171.45 | | (1,2546) | 1:A:151:VAL:C | 1:A:152:ASN:N | 1:A:152:ASN:CA | 1:A:152:ASN:C | 10 | 166.81 | 9.36 | 171.5 | | (1,2547) | 1:K:151:VAL:C | 1:K:152:ASN:N | 1:K:152:ASN:CA | 1:K:152:ASN:C | 10 | 166.81 | 9.37 | 171.45 | | (1,2552) | 1:F:151:VAL:C | 1:F:152:ASN:N | 1:F:152:ASN:CA | 1:F:152:ASN:C | 10 | 166.81 | 9.35 | 171.45 | | (1,2553) | 1:G:151:VAL:C | 1:G:152:ASN:N | 1:G:152:ASN:CA | 1:G:152:ASN:C | 10 | 166.8 | 9.36 | 171.45 | | (1,2555) | 1:B:151:VAL:C | 1:B:152:ASN:N | 1:B:152:ASN:CA | 1:B:152:ASN:C | 10 | 166.8 | 9.34 | 171.4 | ¹ Number of violated models, ²Standard deviation, All angle values are in degree (°) ### 9.5 All violated dihedral-angle restraints (i) #### 9.5.1 Histogram: Distribution of violations (i) The following histogram shows the distribution of the absolute value of the violation for all violated restraints in the ensemble. ### 9.5.2 Table: All violated dihedral-angle restraints (i) The following table provides the list of violations for the 10 worst performing restraints, sorted by the violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. | Key | Atom-1 | Atom-2 | Atom-3 | Atom-4 | Model ID | Violation (°) | |----------|---------------|---------------|----------------|---------------|----------|---------------| | (1,2555) | 1:B:151:VAL:C | 1:B:152:ASN:N | 1:B:152:ASN:CA | 1:B:152:ASN:C | 5 | 174.9 | | (1,2553) | 1:G:151:VAL:C | 1:G:152:ASN:N | 1:G:152:ASN:CA | 1:G:152:ASN:C | 5 | 174.9 | | (1,2551) | 1:H:151:VAL:C | 1:H:152:ASN:N | 1:H:152:ASN:CA | 1:H:152:ASN:C | 5 | 174.9 | | (1,2550) | 1:J:151:VAL:C | 1:J:152:ASN:N | 1:J:152:ASN:CA | 1:J:152:ASN:C | 5 | 174.9 | | (1,2549) | 1:E:151:VAL:C | 1:E:152:ASN:N | 1:E:152:ASN:CA | 1:E:152:ASN:C | 5 | 174.9 | | (1,2547) | 1:K:151:VAL:C | 1:K:152:ASN:N | 1:K:152:ASN:CA | 1:K:152:ASN:C | 9 | 174.9 | | (1,2545) | 1:D:151:VAL:C | 1:D:152:ASN:N | 1:D:152:ASN:CA | 1:D:152:ASN:C | 5 | 174.9 | | (1,2556) | 1:I:151:VAL:C | 1:I:152:ASN:N | 1:I:152:ASN:CA | 1:I:152:ASN:C | 5 | 174.8 | | (1,2556) | 1:I:151:VAL:C | 1:I:152:ASN:N | 1:I:152:ASN:CA | 1:I:152:ASN:C | 9 | 174.8 | | (1,2555) | 1:B:151:VAL:C | 1:B:152:ASN:N | 1:B:152:ASN:CA | 1:B:152:ASN:C | 9 | 174.8 |