

wwPDB EM Validation Summary Report (i)

Dec 11, 2022 – 04:33 pm GMT

PDB ID	:	6TNN
EMDB ID	:	EMD-10535
Title	:	Mini-RNase III (Mini-III) bound to 50S ribosome with precursor 23S rRNA
Authors	:	Oerum, S.; Dendooven, T.; Gilet, L.; Catala, M.; Degut, C.; Trinquier, A.;
		Barraud, P.; Luisi, B.; Condon, C.; Tisne, C.
Deposited on	:	2019-12-09
Resolution	:	3.07 Å(reported)
Based on initial model	:	3J3V

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.3
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.07 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	b	166	38%	• 2	:6%
2	Н	143	77%	15%	% 8%
2	Ι	143	76%	179	6%
3	U	2930	• 61%	31%	8%
4	V	116	53% 34	%	14%
5	W	277	86%		13% •
6	Х	209	89%		10% •

Mol	Chain	Length	Quality of chain
7	Y	207	80% 19% ·
8	Z	179	11% 59% 39% ···
9	a	179	98% •
10	с	145	98% •
11	d	122	99%
12	е	146	99%
13	f	144	96% •
14	g	120	99%
15	h	120	99%
16	i	115	97%
17	j	119	98% •
18	k	102	99% •
19	1	113	96% •••
20	m	95	98% •
21	n	103	98%
22	0	94	86% • 13%
23	р	59	92% 8%
24	q	49	96% ••
25	r	44	100%
26	s	66	97%
27	t	37	97%
28	u	62	94% 6%
29	v	66	98% •
30	W	59	98% •

2 Entry composition (i)

There are 32 unique types of molecules in this entry. The entry contains 91840 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	b	123	Total 955	C 602	N 163	0 189	S 1	0	0

• Molecule 2 is a protein called Mini-ribonuclease 3.

Mol	Chain	Residues	Atoms	AltConf	Trace
2	Н	132	Total C N O 1063 680 182 201	0	0
2	Ι	134	Total C N O S 1079 691 184 203 1	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	23	ASN	ASP	conflict	UNP O31418
Ι	23	ASN	ASP	conflict	UNP O31418

• Molecule 3 is a RNA chain called pre-23S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	U	2930	Total 62920	C 28070	N 11619	O 20301	Р 2930	0	0

• Molecule 4 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
4	V	116	Total 2475	C 1105	N 447	O 808	Р 115	0	0

• Molecule 5 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	W	275	Total 2110	C 1312	N 416	O 376	S 6	0	0

• Molecule 6 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	Х	207	Total 1574	C 988	N 290	0 291	${ m S}{ m 5}$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	Y	205	Total 1560	C 980	N 289	0 289	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	Z	178	Total 1403	C 893	N 245	O 258	${ m S} 7$	0	0

• Molecule 9 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	a	175	Total 1341	C 835	N 248	0 256	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 10 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	С	142	Total 1122	C 710	N 206	O 201	${ m S}{ m 5}$	0	0

• Molecule 11 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	d	122	Total 919	C 571	N 173	0 171	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	е	146	Total 1080	C 671	N 207	O 200	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	f	138	Total	C 702	N	0	S	0	0
			1096	703	208	180	\mathbf{G}		

• Molecule 14 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	g	119	Total 952	C 583	N 186	0 179	S 4	0	0

• Molecule 15 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	h	120	Total 911	C 564	N 176	0 170	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
16	i	114	Total 935	C 595	N 184	O 156	0	0

• Molecule 17 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	j	117	Total 939	C 591	N 189	0 155	${S \atop 4}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
18	k	101	Total 785	C 501	N 139	0 145	0	0

• Molecule 19 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	1	109	Total 841	C 525	N 164	0 149	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	m	93	Total 751	C 472	N 137	0 138	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	n	101	Total 761	C 478	N 142	0 137	S 4	0	0

• Molecule 22 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
22	О	82	Total 629	C 390	N 123	O 116	0	0

• Molecule 23 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
23	р	54	Total 425	C 262	N 86	O 70	S 7	0	0

• Molecule 24 is a protein called 50S ribosomal protein L33 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
24	q	48	Total	С	N	0	S	0	0
	1		400	244	80	72	4		

• Molecule 25 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
25	r	44	Total 366	C 222	N 89	O 53	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	s	64	Total 511	C 321	N 107	0 81	${ m S} { m 2}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
27	t	36	Total 287	C 181	N 59	O 43	$\frac{S}{4}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
28	u	58	Total 443	C 275	N 92	0 74	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
29	v	65	Total 529	C 328	N 102	O 97	${ m S} { m 2}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
30	W	58	Total 454	C 281	N 89	O 83	S 1	0	0

• Molecule 31 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
31	Ι	1	Total Mg 1 1	0
31	U	214	TotalMg214214	0
31	V	1	Total Mg 1 1	0
31	W	2	Total Mg 2 2	0
31	е	2	Total Mg 2 2	0
31	u	1	Total Mg 1 1	0

• Molecule 32 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
32	р	1	Total Zn 1 1	0
32	q	1	Total Zn 1 1	0
32	t	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L10

U236	G243	G249	C250 G251	A256 A257	A258	C265 A266	G267	A273 C274	C275 4276	A277	A279 A279	G281	U283	0284 G285	C286 C287	U288 C289	U290 U291	G292 G293	0296	0297 G298	U299 A300	6301 6302	<mark>G310</mark>	U311 A312	C313 G314	G315 A316	U319	A322	
G325	C 329 G 330	A335 G336	G342	6344	C347 U348	A353	A364	G365 G366	1137.0	A371		U381	A 30 2	A386 A387	A388 A389	C390	U400 C401	C402 U403	6404	G408 G409	G415	A416 G417	G431	U432	G445 A446	A447 U448	G451	G452 C459	
A460 U461	C462 U463	C465	A468	0401	G485	C501 A502	G503	G512 G513	G514	G518	A522	G526		G534 G534	A535 A536	G537	0543 G544	A547	G548 A549	G550 A551	Ub52 C553	C554 U555	G556	U565 G566	A572	A573 G574	U575 A576	G577 U578 C579	
A582	A590	<mark>6593</mark>	U596 G597	C605	<mark>A614</mark> G615	<mark>A616</mark> A617	<mark>U618</mark> G619	<mark>A620</mark> A621	C622 C623	G624		6629	U631	A632	C639	C643 A644	<mark>A645</mark> G646	G647 U648	0649 A650	A651	0660 G661	<mark>C662</mark> G663	G664	A671 G672	C673 G674	A675 A676	<mark>A677 G678</mark>	C679 <mark>G680</mark> A681	
G682 U683	G686 1686	A00/ A688 U689	6692 6692	1698	(c)	U7 02 A7 03	G7 14	A715 C716	C717 C718		A730	0/ 31 C7 32		A/ 38	U7 41 C7 42	G7 45	U748	G7 49	A756 G757	G759 U759	A760 A761	C762 A763	G771	A772 G773	G774 C775	C787	A7 88 C7 89	G790 <mark>U791</mark> U792	
793	803	810	830 830	826	828	830	837 838	839	847	850	857 858	82.0	862	863 864	872	873	877	878 879	883	884 885 885	9 20 20	890 891	802 803	894 895	896 897	803	904	909 910 911	
3	• •	4 (5)	το τ	9 4 4	A U	0	U 4	A	A	5	U E	50	•	• C	D	Þ	0 0 1		U I	50	A	A	A D	4 0	50	U	3	5 U <	
0916	0917 6918 6918	0922 U922	A923 G924	G926 G926 G927	C928	C929 C930	C931	0932 A933	C934	6936 6936	6937 6938	U939 U940	A941 C942	C943	G944 A945	0946 0947	C949	6951	0902 C953	A954 A955	C957	0958 0959	C960 G961	A962 A963	0 <u>7</u> 60	G971 A972	C973	U977 A985	0665 0665
0660	G1005	01007 01007 01008	A1017		C1026 A1027	A1032	A1040	G1041 C1042	U1043 A1044	A1045	A1053			A1 059 C1 060	G1061 U1062	01063 A1064	A1065	G1069 A1070	A10/1 A1072	A1073	01077 G1078	01079	U1085 G1086	C1087 U1088	U1089 A1090	G1091 A1092	C1093 A1094	A1098 G1099 G1099	
G1100 A1101	U1102 G1103 H1104	01105 U1105 G1106	G1107 C1108 11100	U1110 U1110	61112 61112 61113	A1114 G1115	C1116 A1117	G1118 G1118 C1110	C1120	A1121 C1122	C1123 A1124	U1125 U1126	U1127 A1128	A1129 A1130	G1131 A1132	G1133 U1134	G1135 C1136	G1137 U1138	A1139 A1140	U1141 A1142	G1143	U1145	A1147	U1149	G1151	A1155	01157 01157 01158	A1171	21114
A1173 U1174	G1175 U1176 A1177	C1178 C1178 C1179	G1183	01104 01185 01186	A1192	C1197	G1211	<mark>U1212</mark> U1213	111 21 6	C1217 C1217	A1219 A1219	A1 220 A1 220	61223	G1226	U1227	<mark>U1 237</mark> U1 238	<mark>C1239</mark> U1240	A1241 A1242	G1243 G1244	61245 C1246	G1250	A1 258	<mark>G1261</mark>	A1267	G1276	A1285	<mark>61288</mark>	A1289 <mark>G1290</mark> A1291	
1294	1306 1306	1310	1311 1312 1313	1315 1315	1316 1317	1318 1319	1320 1320	1323 1323	1 <mark>329</mark> 1330	1000	1338 1338	1340 1341	1342 1342	1343 1344	1345	1350 1351	1356	1357	1362 1363	1368	1 <mark>375</mark>	1382	1383	1386	1389 1390	1391	1 <mark>394</mark> 1395	1396 1397	
01 02 G	03 04 04	12 A	16 A A	22 23 23	24 25 6 6	26 U	31 32 32	33 A	36 C 37 U			43 43 0 0 0	146 10 10	47 0 48 A	51 51	22 23 C	54 G	57 58		65 C	69 G	70 71 C	72 73	74 A 75	76 U 77 A	80 80	81 82 6	83 84 G	
G14 A14	A14 A14	G14	U14	A14 A14 C14	A14 G14	G14	U14 A14	U14	C14 1114	G14			014 013	C14 C14	A14	C14 C14	A14	014 G14	A14	014 G14	G14	G14 A14	C14 G14	C14 A14	G14 G14	G14	A14 U14	<mark>A14</mark> G14	
A1488	C1491 G1492 C1103	G1494 G1495 G1495	U1496 A1497 11468	01499	A1502 U1503	A1504 U1505	C1506	C1509 G1510	U1511 C1512	C1513	A1515 A1516	C1517 C1517	61519 01519	01520 01521	A1522 G1523	G1524 C1525	U1526 G1527	G1528 G1529	A1530 A1531	A1534	C1537	A1540	C1543	G1544 U1545	U1546 111547	U1552	A1553 A1554	G1555 G1556 C1557	
U1558 G1559	A1560 G1561	G1564 U1565	G1566 A1567 11562	01 300 G1569 G1570	C1571	G1574 C1575	G1576 A1577	<mark>A1578</mark> A1579	U1580	A1581 U1582	A1583 G1584	U1585	A1590 A1591	<mark>G1592</mark> U1593	U1594 C1595	C1596	C1605	A1612 A1613	G1614 A1615	C1623	U1624	G1628 A1629	G1630 G1631	U1632	A1636	C1643	<mark>G1649</mark> C1650	A1651 A1652 A1653	
21660	A1661	31672	A1675	01680	<mark>41689</mark> 11690	01691	31694 \1695	31696 \1697	A1698	01702	31710 1711	A1712	1717 1717	01/18 01719	A1720	A1725 31726	C1727	A1732 A1733	11736	01/3/	31/42	01752 21753	01754 31755	U1756 V1757	A1758 11759	31760 11761	U1762	A1765 A1766	
															W O PRO	R L TEIN	D W		E			-							

 \bullet Molecule 5: 50S ribosomal protein L2

Chain a:

98%

 \bullet Molecule 10: 50S ribosomal protein L13

Chain c: 98%	•
MET ARG 1445 G1455	
• Molecule 11: 50S ribosomal protein L14	
Chain d: 99%	•
• Molecule 12: 50S ribosomal protein L15	
Chain e: 99%	
• Molecule 13: 50S ribosomal protein L16	
Chain f: 96%	·
MI E136 0133 01.1 SER ASN SER SER	
• Molecule 14: 50S ribosomal protein L17	
Chain g: 99%	·
MET 20 1200 1200	
• Molecule 15: 50S ribosomal protein L18	
Chain h: 99%	— .
• Molecule 16: 50S ribosomal protein L19	
Chain i: 97%	•••
MET 413 R54 A110 A110 A111 A1118 A118 A118 A118 A118 A118 A118 A118 A118 A118 A118 A118 A118 A1	
• Molecule 17: 50S ribosomal protein L20	

Chain j: 98% ·
MET 1881 M118 LYS
• Molecule 18: 50S ribosomal protein L21
Chain k: 99% .
Mart 10 Aloc
\bullet Molecule 19: 50S ribosomal protein L22
Chain l: 96% · ·
ABT R92 LYS GLY GLY
• Molecule 20: 50S ribosomal protein L23
Chain m: 98% ·
HI HA
• Molecule 21: 50S ribosomal protein L24
Chain n: 98% .
M1 ASP LYS LYS
\bullet Molecule 22: 50S ribosomal protein L27
Chain o: 86% • 13%
MET LEEU ARS ALA ALA ALA K11 K11 K12 K13 K12 K13 C14 C14 C14 C14 C14 C14 C14 C14 C14 C14
• Molecule 23: 50S ribosomal protein L32
Chain p: 92% 8%
MET NAL LVAL SER ASN

• Molecule 24:	50S ribosomal protein L33 1	
Chain q:	96%	
M1 148 LYS		
• Molecule 25:	50S ribosomal protein L34	
Chain r:	100%	
There are no c	outlier residues recorded for this chain.	
• Molecule 26:	50S ribosomal protein L35	
Chain s:	97%	·
MET P2 I65 LYS		
• Molecule 27:	50S ribosomal protein L36	
Chain t:	97%	·
MET K2 G37		
• Molecule 28:	50S ribosomal protein L28	
Chain u:	94%	6%
MET ALA R3 E60 ARG VAL		
• Molecule 29:	50S ribosomal protein L29	
Chain v:	98%	•
M1 N65 LYS		
• Molecule 30:	50S ribosomal protein L30	
Chain w:	98%	·
MET A2 q59		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	57683	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	23.94	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	9.780	Depositor
Minimum map value	-5.441	Depositor
Average map value	0.014	Depositor
Map value standard deviation	0.220	Depositor
Recommended contour level	0.45	Depositor
Map size (Å)	406.8, 406.8, 406.8	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.13, 1.13, 1.13	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles			
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	b	0.25	0/963	0.52	0/1298		
2	Н	0.26	0/1082	0.39	0/1454		
2	Ι	0.26	0/1098	0.42	0/1475		
3	U	0.41	0/70479	0.83	27/109956~(0.0%)		
4	V	0.28	0/2767	0.82	1/4313~(0.0%)		
5	W	0.29	0/2147	0.50	0/2880		
6	Х	0.29	0/1596	0.49	0/2139		
7	Y	0.29	0/1579	0.46	0/2131		
8	Ζ	0.26	0/1422	0.50	0/1909		
9	а	0.26	0/1359	0.47	0/1831		
10	с	0.29	0/1145	0.47	0/1541		
11	d	0.28	0/926	0.47	0/1244		
12	е	0.29	0/1092	0.49	0/1456		
13	f	0.26	0/1119	0.44	0/1495		
14	g	0.27	0/959	0.47	0/1283		
15	h	0.25	0/920	0.45	0/1235		
16	i	0.28	0/948	0.47	0/1268		
17	j	0.32	0/951	0.45	0/1265		
18	k	0.29	0/796	0.52	0/1069		
19	1	0.28	0/850	0.47	0/1145		
20	m	0.28	0/758	0.48	0/1010		
21	n	0.28	0/771	0.50	0/1031		
22	0	0.30	0/637	0.49	0/846		
23	р	0.30	0/432	0.50	0/573		
24	q	0.26	0/405	0.48	0/539		
25	r	0.27	0/369	0.47	0/482		
26	\mathbf{S}	0.27	0/518	0.46	0/679		
27	t	0.27	0/290	0.43	0/382		
28	u	0.26	0/447	0.51	0/595		
29	V	0.27	0/530	0.43	0/706		
30	W	0.27	0/456	0.47	0/612		
All	All	0.38	0/99811	0.76	28/149842~(0.0%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	b	0	1
5	W	0	1
All	All	0	2

There are no bond length outliers.

The worst 5 of 28 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
3	U	1431	U	C2-N1-C1'	8.67	128.10	117.70
3	U	1357	G	N3-C4-N9	-7.64	121.41	126.00
3	U	1431	U	N1-C2-O2	6.99	127.70	122.80
3	U	1350	U	C2-N1-C1'	6.91	126.00	117.70
3	U	1557	С	N3-C2-O2	-6.89	117.08	121.90

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
5	W	154	LEU	Peptide
1	b	57	ASN	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	b	955	0	990	0	0
2	Н	1063	0	1065	16	0
2	Ι	1079	0	1088	17	0
3	U	62920	0	31659	563	0
4	V	2475	0	1255	33	0
5	W	2110	0	2200	30	0
6	Х	1574	0	1642	15	0
7	Y	1560	0	1647	25	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
8	Z	1403	0	1467	55	0
9	a	1341	0	1388	0	0
10	с	1122	0	1162	0	0
11	d	919	0	977	0	0
12	е	1080	0	1132	0	0
13	f	1096	0	1165	0	0
14	g	952	0	983	0	0
15	h	911	0	947	0	0
16	i	935	0	1008	0	0
17	j	939	0	1005	0	0
18	k	785	0	826	0	0
19	1	841	0	899	0	0
20	m	751	0	802	0	0
21	n	761	0	821	0	0
22	0	629	0	644	0	0
23	р	425	0	442	0	0
24	q	400	0	410	0	0
25	r	366	0	410	0	0
26	S	511	0	564	0	0
27	t	287	0	327	0	0
28	u	443	0	487	0	0
29	V	529	0	568	0	0
30	W	454	0	491	0	0
31	Ι	1	0	0	0	0
31	U	214	0	0	0	0
31	V	1	0	0	0	0
31	W	2	0	0	0	0
31	е	2	0	0	0	0
31	u	1	0	0	0	0
32	р	1	0	0	0	0
32	q	1	0	0	0	0
32	t	1	0	0	0	0
All	All	91840	0	60471	721	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 721 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:U:2131:C:N4	3:U:2132:A:N6	2.04	1.04

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:U:2131:C:C4	3:U:2132:A:N6	2.35	0.92
3:U:1104:U:H3	3:U:1123:C:H42	1.01	0.92
3:U:927:G:H1	3:U:939:U:H3	1.23	0.87
3:U:1104:U:H3	3:U:1123:C:N4	1.73	0.86

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	b	121/166~(73%)	101 (84%)	20 (16%)	0	100	100
2	Н	130/143~(91%)	127~(98%)	3(2%)	0	100	100
2	Ι	132/143~(92%)	128 (97%)	4 (3%)	0	100	100
5	W	273/277~(99%)	252 (92%)	21 (8%)	0	100	100
6	Х	205/209~(98%)	194 (95%)	11 (5%)	0	100	100
7	Y	203/207~(98%)	189 (93%)	14 (7%)	0	100	100
8	Ζ	176/179~(98%)	159 (90%)	17 (10%)	0	100	100
9	a	173/179~(97%)	160 (92%)	13 (8%)	0	100	100
10	с	140/145~(97%)	133 (95%)	7 (5%)	0	100	100
11	d	120/122~(98%)	111 (92%)	9 (8%)	0	100	100
12	е	144/146~(99%)	132 (92%)	12 (8%)	0	100	100
13	f	136/144 (94%)	130 (96%)	6 (4%)	0	100	100
14	g	117/120~(98%)	107 (92%)	10 (8%)	0	100	100
15	h	118/120 (98%)	109 (92%)	9 (8%)	0	100	100
16	i	112/115~(97%)	111 (99%)	1 (1%)	0	100	100
17	j	115/119~(97%)	107 (93%)	8 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
18	k	99/102~(97%)	85~(86%)	14 (14%)	0	100	100
19	1	107/113~(95%)	103 (96%)	4 (4%)	0	100	100
20	m	91/95~(96%)	88~(97%)	3(3%)	0	100	100
21	n	99/103~(96%)	88~(89%)	11 (11%)	0	100	100
22	0	80/94~(85%)	75~(94%)	5~(6%)	0	100	100
23	р	52/59~(88%)	47 (90%)	5 (10%)	0	100	100
24	q	46/49~(94%)	44 (96%)	2(4%)	0	100	100
25	r	42/44~(96%)	40 (95%)	2(5%)	0	100	100
26	S	62/66~(94%)	60~(97%)	2(3%)	0	100	100
27	t	34/37~(92%)	33~(97%)	1 (3%)	0	100	100
28	u	56/62~(90%)	51 (91%)	5~(9%)	0	100	100
29	v	63/66~(96%)	60~(95%)	3~(5%)	0	100	100
30	W	56/59~(95%)	56 (100%)	0	0	100	100
All	All	3302/3483~(95%)	3080 (93%)	222 (7%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	b	105/138~(76%)	100~(95%)	5(5%)	25	57
2	Н	114/123~(93%)	113~(99%)	1 (1%)	78	90
2	Ι	116/123~(94%)	116 (100%)	0	100	100
5	W	223/225~(99%)	223 (100%)	0	100	100
6	Х	168/170~(99%)	168 (100%)	0	100	100
7	Y	169/170~(99%)	168~(99%)	1 (1%)	86	93
8	Ζ	153/154~(99%)	149(97%)	4 (3%)	46	72
9	a	148/151~(98%)	148 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
10	с	120/123~(98%)	120 (100%)	0	100	100
11	d	101/101 (100%)	100 (99%)	1 (1%)	76	89
12	е	110/110 (100%)	109 (99%)	1 (1%)	78	90
13	f	111/116 (96%)	111 (100%)	0	100	100
14	g	99/100~(99%)	99 (100%)	0	100	100
15	h	93/93~(100%)	92 (99%)	1 (1%)	73	88
16	i	99/100~(99%)	97~(98%)	2 (2%)	55	78
17	j	96/98~(98%)	96 (100%)	0	100	100
18	k	83/84~(99%)	83 (100%)	0	100	100
19	1	90/93~(97%)	89 (99%)	1 (1%)	73	88
20	m	84/85~(99%)	84 (100%)	0	100	100
21	n	85/87~(98%)	85 (100%)	0	100	100
22	О	64/74~(86%)	63~(98%)	1 (2%)	62	83
23	р	48/53~(91%)	48 (100%)	0	100	100
24	q	46/47~(98%)	45 (98%)	1 (2%)	52	76
25	r	39/39~(100%)	39 (100%)	0	100	100
26	s	54/56~(96%)	54 (100%)	0	100	100
27	t	34/35~(97%)	34 (100%)	0	100	100
28	u	47/50~(94%)	47 (100%)	0	100	100
29	V	56/57~(98%)	56 (100%)	0	100	100
30	W	52/53~(98%)	52 (100%)	0	100	100
All	All	2807/2908~(96%)	2788 (99%)	19 (1%)	84	92

5 of 19 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
16	i	13	LYS
22	0	22	ARG
24	q	48	THR
19	l	92	ARG
8	Ζ	5	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 49 such side chains are listed below:

Mol	Chain	Res	Type
11	d	4	GLN
17	j	37	GLN
12	е	38	GLN
14	g	61	GLN
17	j	107	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
3	U	2929/2930~(99%)	618 (21%)	29~(0%)
4	V	115/116~(99%)	30 (26%)	3~(2%)
All	All	3044/3046~(99%)	648 (21%)	32~(1%)

5 of 648 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
3	U	11	А
3	U	13	G
3	U	26	А
3	U	31	U
3	U	32	U

5 of 32 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	U	2871	G
4	V	24	G
3	U	681	А
3	U	646	G
4	V	52	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 224 ligands modelled in this entry, 224 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10535. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 180

Y Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 180

Y Index: 185

Z Index: 168

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.45. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 899 nm^3 ; this corresponds to an approximate mass of 812 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.326 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-10535 and PDB model 6TNN. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.45 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.45).

9.4 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.45) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9415	0.5220
Н	0.8815	0.4300
Ι	0.9106	0.4700
U	0.9563	0.5300
V	0.9818	0.4600
W	0.9436	0.5680
Х	0.9573	0.5680
Y	0.9332	0.5380
Ζ	0.7671	0.2910
a	0.9123	0.4560
b	0.4062	0.1490
С	0.9344	0.5690
d	0.9420	0.5490
е	0.9426	0.5440
f	0.8964	0.5390
g	0.9356	0.5570
h	0.9086	0.4700
i	0.8963	0.5160
j	0.9526	0.5710
k	0.9510	0.5470
1	0.9499	0.5670
m	0.9041	0.5290
n	0.9218	0.5050
О	0.9145	0.5620
р	0.9564	0.5760
q	0.9406	0.5360
r	0.9797	0.6050
S	0.9659	0.5920
t	0.9220	0.5670
u	0.8889	0.5460
V	0.9220	0.4900
W	0.9347	0.5530

1.0

