

wwPDB X-ray Structure Validation Summary Report (i)

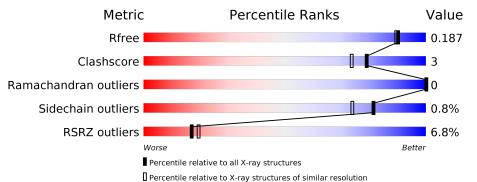
May 13, 2020 – 11:40 pm BST

PDB ID	:	4O4Z
Title	:	MURINE NEUROGLOBIN UNDER 30 BAR PRESSURE NITROUS Oxide
Authors	:	Colloc'h, N.; Prange, T.; Vallone, B.
Deposited on		
Resolution	:	1.70 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity		4.02b-467 1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)		1.13
EDS	:	2.11
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	$7.0.044 (\mathrm{Gargrove})$
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	4298 (1.70-1.70)
Clashscore	141614	4695(1.70-1.70)
Ramachandran outliers	138981	4610 (1.70-1.70)
Sidechain outliers	138945	4610 (1.70-1.70)
RSRZ outliers	127900	4222 (1.70-1.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			6%		
1	А	154	90%	6%	•

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	\mathbf{Res}	Chirality	Geometry	Clashes	Electron density
3	SO4	А	202	-	-	Х	-

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 1319 atoms, of which 0 are hydrogens and 0 are deuteriums.

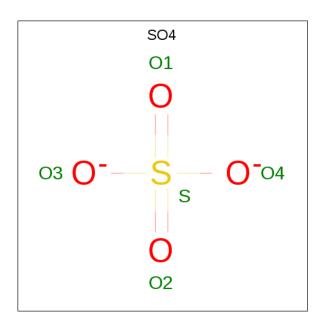
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called Neuroglobin.

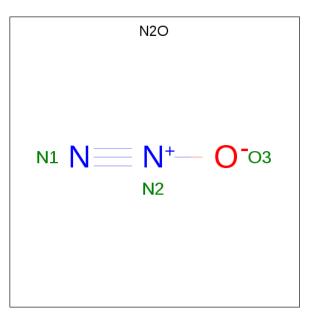
Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	148	Total 1194	C 756	N 208	O 226	S 4	0	7	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	55	SER	CYS	ENGINEERED MUTATION	UNP Q9ER97
А	120	SER	CYS	ENGINEERED MUTATION	UNP Q9ER97


• Molecule 2 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C₃₄H₃₂FeN₄O₄).

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf
2	А	1	Total 43	С 34	Fe 1	N 4	0 4	0	0


• Molecule 3 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
3	А	1	Total 5	0 4	S 1	0	0

• Molecule 4 is NITROUS OXIDE (three-letter code: N2O) (formula: N_2O).

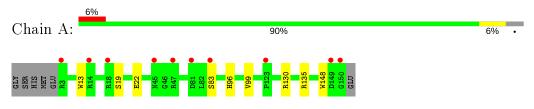
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total N O 3 2 1	0	0
4	А	1	Total N O 3 2 1	0	0
4	А	1	TotalNO321	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total N O 3 2 1	0	0
4	А	1	Total N O 3 2 1	0	0

• Molecule 5 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	62	TotalO6262	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Neuroglobin

4 Data and refinement statistics (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Property	Value	Source
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Space group	H 3 2	Depositor
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cell constants	89.28Å 89.28Å 114.77Å	Deperitor
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	20.00 - 1.70	Depositor
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Resolution (A)		EDS
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	% Data completeness	99.8 (20.00-1.70)	Depositor
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(in resolution range)	99.9(19.74-1.70)	EDS
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R _{merge}	(Not available)	Depositor
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R_{sym}		Depositor
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$< I/\sigma(I) > 1$	$4.93 (at 1.70 \text{\AA})$	Xtriage
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Refinement program	REFMAC	Depositor
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D D	0.172 , 0.188	Depositor
$\begin{array}{ c c c c c c c } \hline \text{Wilson B-factor (Å}^2) & 21.4 & \text{Xtriage} \\ \hline \text{Anisotropy} & 0.019 & \text{Xtriage} \\ \hline \text{Bulk solvent } k_{sol}(\text{e/Å}^3), B_{sol}(\text{Å}^2) & 0.38 \text{, } 54.1 & \text{EDS} \\ \hline \text{L-test for twinning}^2 & < L > = 0.50, < L^2 > = 0.33 & \text{Xtriage} \\ \hline \text{L-test for twinning}^2 & 0.033 \text{ for } -2/3^*\text{h-}1/3^*\text{k+}2/3^*\text{l}, -1/3^*\text{h-}2/3^*\text{k-} \\ & 2/3^*\text{l}, 2/3^*\text{h-}2/3^*\text{k} + 1/3^*\text{l} \\ 0.022 \text{ for } -\text{h}, 1/3^*\text{h-}1/3^*\text{k+}2/3^*\text{l}, 2/3^*\text{h} + 4/3^* \\ & k+1/3^*\text{l} \\ 0.014 \text{ for } -1/3^*\text{h} + 1/3^*\text{k-}2/3^*\text{l}, -k, -4/3^*\text{h-}2/3 \\ & & *k+1/3^*\text{l} \\ \hline \text{F}_{o}, \text{F}_{c} \text{ correlation} & 0.97 & \text{EDS} \\ \hline \text{Total number of atoms} & 1319 & \text{wwPDB-VP} \\ \hline \end{array}$	$\mathbf{n}, \mathbf{n}_{free}$	0.169 , 0.187	DCC
$ \begin{array}{ c c c c c c } \hline Anisotropy & 0.019 & Xtriage \\ \hline Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$ & 0.38 , 54.1 & EDS \\ \hline L-test for twinning^2 & < L >=0.50$, $=0.33 & Xtriage \\ \hline 0.033 for $-2/3*h-1/3*k+2/3*l,-1/3*h-2/3*k-2/3*k-2/3*l,-2/3*k+1/3*l$ & 0.022 for $-h,1/3*h-2/3*k+2/3*l,2/3*h+4/3*$ & $xtriage \\ \hline 0.012 for $-h,1/3*h-1/3*k+2/3*l,2/3*h+4/3*$ & $xtriage \\ \hline 0.014 for $-1/3*h+1/3*k-2/3*l,-k,-4/3*h-2/3$ & $xtriage \\ \hline F_o,F_c correlation & 0.97 & EDS \\ \hline Total number of atoms & 1319 & wwPDB-VP \\ \hline \end{array} $	R_{free} test set	1001 reflections $(5.12%)$	wwPDB-VP
$ \begin{array}{ c c c c c c } \hline \text{Bulk solvent } k_{sol}(\text{e}/\text{Å}^3), \ B_{sol}(\text{Å}^2) & 0.38 \ , 54.1 & \text{EDS} \\ \hline \text{L-test for twinning}^2 & < L > = 0.50, < L^2 > = 0.33 & \text{Xtriage} \\ \hline \text{0.033 for } -2/3^*\text{h}-1/3^*\text{k}+2/3^*\text{l}, -1/3^*\text{h}-2/3^*\text{k}-2/3^*\text{k}-2/3^*\text{l}, -1/3^*\text{h}-2/3^*\text{k}-2/3^*\text{k}-2/3^*\text{h}-2/3^*\text{k}-2/3^*\text{h}-2/3^*\text{k}-2/3^*\text{h}-2/3^*\text{k}-2/3^*\text{h}-2/3^*\text{k}-2/3^*\text{h}-2/3^$	Wilson B-factor $(Å^2)$	21.4	Xtriage
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.019	· · · · · ·
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$		EDS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L-test for twinning ²		Xtriage
$ \begin{array}{ c c c c c c c c } \hline \text{Estimated twinning fraction} & 0.022 \text{ for } -\dot{h}, 1/3 \ \overset{+}{h} - 1/3 \ \overset{+}{h} - 2/3 \ \overset{+}{h}, 2/3 \ \overset{+}{h}, 2/3 \ \overset{+}{h} - 4/3 \ \overset{+}{h} \\ \hline 0.014 \ & \text{for } -1/3 \ \overset{+}{h} + 1/3 \ \overset{+}{h} - 2/3 \ \overset{+}{h} - 2/3 \ \overset{+}{h} - 2/3 \ \overset{+}{h} \\ \hline \hline F_{o}, F_{c} \ & \text{correlation} & 0.97 & \text{EDS} \\ \hline \hline \text{Total number of atoms} & 1319 & \text{wwPDB-VP} \end{array} $			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2/3*l, 2/3*h-2/3*k+1/3*l	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Estimated twinning fraction		Xtriage
$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			0
F_o, F_c correlation 0.97 EDSTotal number of atoms1319wwPDB-VP			
Total number of atoms1319wwPDB-VP	F ₂ F ₂ correlation		EDS
Average B, all atoms $(Å^2)$ 28.0 wwPDB-VP	Average B, all atoms ($Å^2$)		

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.58% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEM, N2O, SO4 $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Boi	nd lengths	Bond	angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.60	2/1254~(0.2%)	0.65	0/1699

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	А	148	TRP	CD2-CE2	5.48	1.48	1.41
1	А	13	TRP	CD2-CE2	5.10	1.47	1.41

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1194	0	1192	7	0
2	А	43	0	30	0	0
3	А	5	0	0	2	0
4	А	15	0	0	0	0
5	А	62	0	0	3	0
All	All	1319	0	1222	7	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:22[B]:GLU:OE1	3:A:202:SO4:O4	1.54	1.22
1:A:19:SER:HB2	1:A:22[B]:GLU:OE1	2.06	0.56
1:A:22[B]:GLU:CD	3:A:202:SO4:O4	2.41	0.51
1:A:96:HIS:HA	1:A:99:VAL:HG22	1.94	0.48
1:A:135:ARG:HD2	5:A:349:HOH:O	2.14	0.48

The worst 5 of 7 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	sed Favoured Allowed		Outliers	Percentiles
1	А	153/154~(99%)	150 (98%)	3(2%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	137/135~(102%)	136~(99%)	1 (1%)	84 77

All (1) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	83	SER

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	78	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

7 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type Chain Res Link			Bo	Bond lengths			Bond angles		
	Type	Cham	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	HEM	А	201	1	27,50,50	2.09	7 (25%)	$17,\!82,\!82$	2.56	7 (41%)
4	N2O	А	205	-	0,2,2	0.00	-	0,1,1	0.00	-
4	N2O	А	206	-	0,2,2	0.00	-	0,1,1	0.00	-
3	SO4	А	202	-	$4,\!4,\!4$	0.48	0	$6,\!6,\!6$	0.26	0
4	N2O	А	203	-	0,2,2	0.00	-	0,1,1	0.00	-
4	N2O	А	207	-	0,2,2	0.00	-	0,1,1	0.00	-
4	N2O	А	204	-	0,2,2	0.00	-	0,1,1	0.00	-

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	HEM	А	201	1	-	0/6/54/54	-

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	А	201	HEM	C4A-NA	4.91	1.46	1.36
2	А	201	HEM	C1A-NA	4.65	1.45	1.36
2	А	201	HEM	C3C-C2C	4.59	1.46	1.40
2	А	201	HEM	C3B-C2B	3.50	1.45	1.40
2	А	201	HEM	C2A-C3A	2.94	1.46	1.37

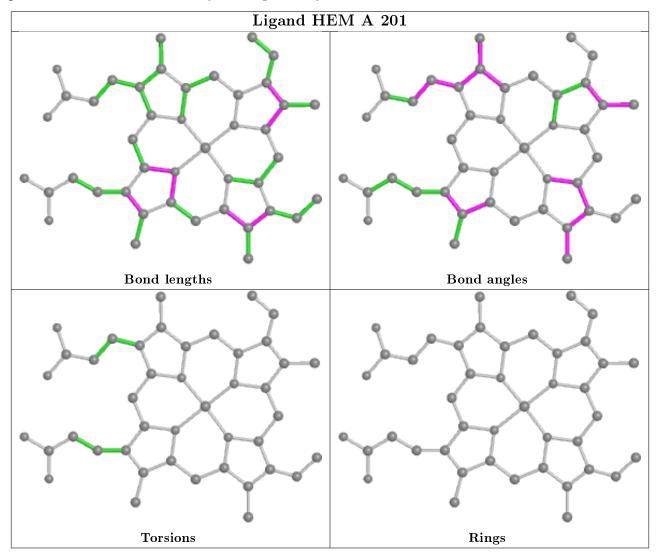
The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	А	201	HEM	C1D-C2D-C3D	-5.38	103.25	107.00
2	А	201	HEM	CBD-CAD-C3D	-5.06	103.15	112.48
2	А	201	HEM	CMB-C2B-C3B	3.36	130.97	124.68
2	А	201	HEM	C4A-C3A-C2A	-3.22	104.75	107.00
2	А	201	HEM	CMD-C2D-C3D	2.90	130.41	124.94

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.


1 monomer is involved in 2 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
3	A	202	SO4	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and

any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	$\begin{array}{ c c c c } \mbox{Analysed} & <\!\! RSRZ\!\!>\! & \#RSRZ\!\!>\!\!2 \end{array}$		$OWAB(Å^2)$	Q<0.9	
1	А	148/154~(96%)	0.12	10 (6%) 17 19	11, 24, 50, 84	0

The worst 5 of 10 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	150	GLY	8.5
1	А	149	ASP	4.3
1	А	45	ASN	4.0
1	А	18	ARG	3.1
1	А	83	SER	3.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

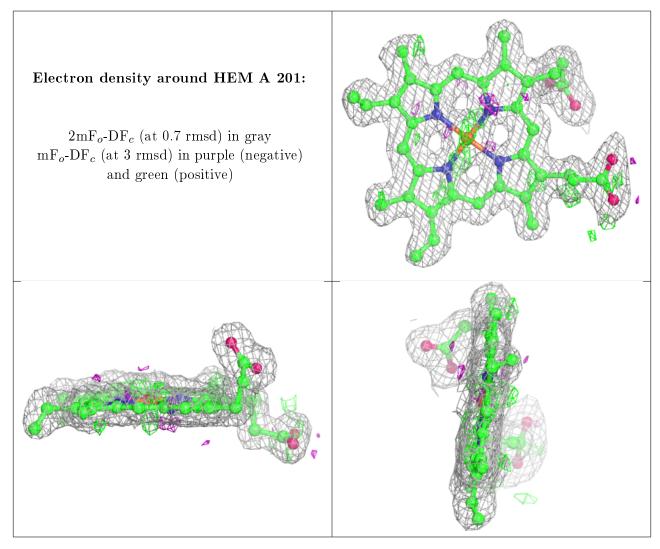
6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	\mathbf{RSR}	$\mathbf{B} ext{-factors}(\mathbf{\AA}^2)$	$Q{<}0.9$
4	N2O	А	203	3/3	0.86	0.30	$43,\!43,\!43,\!44$	3
4	N2O	А	206	3/3	0.91	0.49	27,27,27,28	3


Continued on next page...

Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	RSR	${f B} ext{-factors}({f A}^2)$	Q < 0.9	
4	N2O	А	205	3/3	0.91	0.34	$32,\!32,\!32,\!33$	3	
3	SO4	А	202	5/5	0.93	0.15	$27,\!28,\!30,\!31$	5	
4	N2O	А	207	3/3	0.93	0.13	45,45,47,47	3	
4	N2O	А	204	3/3	0.97	0.10	$23,\!23,\!23,\!26$	3	
2	HEM	А	201	43/43	0.98	0.09	$14,\!17,\!25,\!28$	0	

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

