

Full wwPDB X-ray Structure Validation Report (i)

Dec 14, 2023 – 05:09 am GMT

PDB ID : 2YHN

Title : The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL

receptor

Authors: Fairall, L.; Goult, B.T.; Millard, C.J.; Tontonoz, P.; Schwabe, J.W.R.

Deposited on : 2011-05-04

Resolution : 3.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : FAILED Xtriage (Phenix) : 1.13 EDS : FAILED

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\ DIFFRACTION$

The reported resolution of this entry is 3.00 Å.

There are no overall percentile quality scores available for this entry.

ENTRY-COMPOSITION INFOmissingINFO

SEQUENCE-PLOTS INFOmissingINFO

2 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source
Space group	I 1 2 1	Depositor
Cell constants	79.26Å 22.77Å 87.84Å	Depositor
a, b, c, α , β , γ	90.00° 116.82° 90.00°	Depositor
Resolution (Å)	35.37 - 3.00	Depositor
% Data completeness	96.9 (35.37-3.00)	Depositor
(in resolution range)		
R_{merge}	0.14	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	7.16 (at 3.00Å)	Xtriage
Refinement program	PHENIX (PHENIX.REFINE: 1.6.1_357)	Depositor
R, R_{free}	0.228 , 0.297	Depositor
Wilson B-factor (\mathring{A}^2)	32.4	Xtriage
Anisotropy	0.374	Xtriage
L-test for twinning ²	$< L > = 0.48, < L^2> = 0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	880	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	21.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 13.15% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $< L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

3 Model quality (i)

3.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

3.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

3.3 Torsion angles (i)

3.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

3.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

3.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

3.4 Non-standard residues in protein, DNA, RNA chains (i)

validation-pack failed to run properly - this section is therefore empty.

3.5 Carbohydrates (i)

validation-pack failed to run properly - this section is therefore empty.

3.6 Ligand geometry (i)

validation-pack failed to run properly - this section is therefore empty.

3.7 Other polymers (i)

validation-pack failed to run properly - this section is therefore empty.

3.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

4 Fit of model and data (i)

4.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

4.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

4.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

