

wwPDB X-ray Structure Validation Summary Report (i)

Dec 3, 2023 - 07:31 am GMT

PDB ID : 2BFA

Title : Leishmania major pteridine reductase 1 in complex with NADP and CB3717

Authors: Schuettelkopf, A.W.; Hunter, W.N.

Deposited on : 2004-12-06

Resolution : 2.70 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467

Mogul: NOT EXECUTED

Xtriage (Phenix) : 1.13

EDS : FAILED

buster-report : NOT EXECUTED

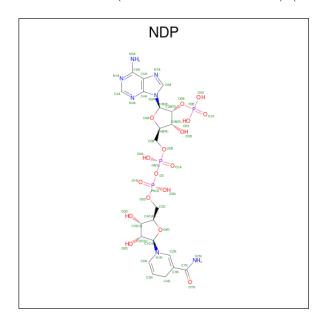
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.36

 ${\tt PERCENTILES\ INFOmissing INFO}$

1 Entry composition (i)


There are 5 unique types of molecules in this entry. The entry contains 8319 atoms, of which 0 are hydrogens and 0 are deuteriums.

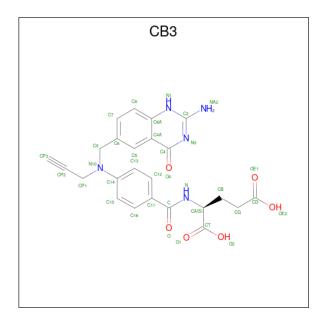
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called PTERIDINE REDUCTASE 1.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
1	1 A	A 265	Total	С	N	О	S	0	0	0
1			1980	1248	352	369	11	0	U	
1	В	266	Total	С	N	О	S	0	0	0
1	Б	200	1984	1250	353	370	11			
1	C	252	Total	С	N	О	S	0	0	0
1		253	1885	1189	337	349	10	U		
1	D	255	Total	С	N	О	S	0	0	0
1		255	1903	1199	341	353	10			0

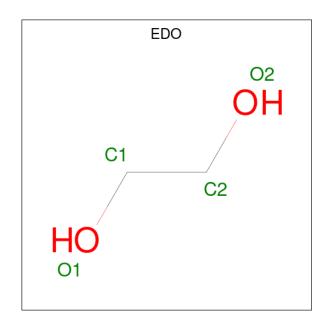
• Molecule 2 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: C₂₁H₃₀N₇O₁₇P₃).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
2	Λ	1	Total	С	N	О	Р	0	0
$\begin{array}{ c c c c } \hline Z & A \\ \hline \end{array}$	1	48	21	7	17	3	U		
2	D	1	Total	С	N	О	Р	0	0
2	Б	1	48	21	7	17	3	U	0


Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
9	C	1	Total	С	N	О	Р	0	0
	1	48	21	7	17	3	U		
9	D	1	Total	С	N	О	Р	0	0
Δ	D	1	48	21	7	17	3	U	


 \bullet Molecule 3 is 10-PROPARGYL-5,8-DIDEAZAFOLIC ACID (three-letter code: CB3) (formula: $\rm C_{24}H_{23}N_5O_6).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	1	Total C N O 35 24 5 6	0	0
3	В	1	Total C N O 35 24 5 6	0	0
3	С	1	Total C N O 35 24 5 6	0	0
3	D	1	Total C N O 35 24 5 6	0	0

 \bullet Molecule 4 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $\mathrm{C_2H_6O_2}).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	1	Total C O 4 2 2	0	0
4	A	1	Total C O 4 2 2	0	0
4	A	1	Total C O 4 2 2	0	0
4	В	1	Total C O 4 2 2	0	0
4	D	1	Total C O 4 2 2	0	0
4	D	1	Total C O 4 2 2	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	A	59	Total O 59 59	0	0
5	В	42	Total O 42 42	0	0
5	С	63	Total O 63 63	0	0
5	D	47	Total O 47 47	0	0

 ${\tt SEQUENCE-PLOTS\ INFOmissing INFO}$

2 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source	
Space group	P 21 21 21	Depositor	
Cell constants	94.54Å 103.83Å 137.04Å	Donositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	24.50 - 2.70	Depositor	
% Data completeness	100.0 (24.50-2.70)	Depositor	
(in resolution range)	` ´		
R_{merge}	0.14	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	2.09 (at 2.68Å)	Xtriage	
Refinement program	REFMAC 5.1.24	Depositor	
R, R_{free}	0.203 , 0.236	Depositor	
Wilson B-factor (\mathring{A}^2)	21.3	Xtriage	
Anisotropy	0.191	Xtriage	
L-test for twinning ²	$ < L > = 0.48, < L^2> = 0.31$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	8319	wwPDB-VP	
Average B, all atoms $(Å^2)$	28.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 29.00 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.6721e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

3 Model quality (i)

3.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: EDO, NDP, CB3

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles		
MIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.40	0/2019	0.65	5/2750~(0.2%)	
1	В	0.46	$2/2023 \ (0.1\%)$	0.64	6/2755~(0.2%)	
1	С	0.40	0/1918	0.62	6/2608~(0.2%)	
1	D	0.43	0/1937	0.63	5/2634~(0.2%)	
All	All	0.42	$2/7897 \ (0.0\%)$	0.64	22/10747~(0.2%)	

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\mathring{A})$	Ideal(Å)
1	В	97	TYR	CE1-CZ	-5.88	1.30	1.38
1	В	97	TYR	CE2-CZ	-5.64	1.31	1.38

The worst 5 of 22 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
1	С	104	ASP	CB-CG-OD2	6.27	123.94	118.30
1	A	104	ASP	CB-CG-OD2	5.97	123.67	118.30
1	В	104	ASP	CB-CG-OD2	5.95	123.66	118.30
1	D	104	ASP	CB-CG-OD2	5.80	123.52	118.30
1	В	132	ASP	CB-CG-OD2	5.55	123.29	118.30

There are no chirality outliers.

There are no planarity outliers.

3.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within

the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1980	0	1987	46	0
1	В	1984	0	1990	55	0
1	С	1885	0	1911	36	0
1	D	1903	0	1922	36	0
2	A	48	0	26	1	0
2	В	48	0	26	2	0
2	С	48	0	26	1	0
2	D	48	0	26	2	0
3	A	35	0	21	7	0
3	В	35	0	21	6	0
3	С	35	0	21	4	0
3	D	35	0	21	7	0
4	A	12	0	18	16	0
4	В	4	0	6	7	0
4	D	8	0	12	12	0
5	A	59	0	0	1	0
5	В	42	0	0	1	0
5	С	63	0	0	1	0
5	D	47	0	0	1	0
All	All	8319	0	8034	156	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

The worst 5 of 156 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
1:B:68:ASN:HD22	4:B:1291:EDO:H21	1.17	1.07
1:B:275:THR:HG21	1:D:278:LYS:HB2	1.43	0.99
1:A:278:LYS:HB2	1:C:275:THR:HG21	1.46	0.98
3:A:1290:CB3:H12	1:D:287:ARG:HH21	1.27	0.97
1:C:149:ILE:CD1	4:D:1292:EDO:H21	1.95	0.96

There are no symmetry-related clashes.

3.3 Torsion angles (i)

3.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	$259/288 \; (90\%)$	241 (93%)	17 (7%)	1 (0%)	34	60
1	В	$260/288 \; (90\%)$	244 (94%)	14 (5%)	2 (1%)	19	43
1	С	245/288~(85%)	229 (94%)	15 (6%)	1 (0%)	34	60
1	D	247/288 (86%)	233 (94%)	12 (5%)	2 (1%)	19	43
All	All	1011/1152 (88%)	947 (94%)	58 (6%)	6 (1%)	25	50

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A	180	VAL
1	В	180	VAL
1	С	180	VAL
1	D	180	VAL
1	В	228	VAL

3.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

3.3.3 RNA (i)

There are no RNA molecules in this entry.

3.4 Non-standard residues in protein, DNA, RNA chains (i)

Mogul was not executed - this section is therefore empty.

3.5 Carbohydrates (i)

Mogul was not executed - this section is therefore empty.

3.6 Ligand geometry (i)

Mogul was not executed - this section is therefore empty.

3.7 Other polymers (i)

Mogul was not executed - this section is therefore empty.

3.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

4 Fit of model and data (i)

4.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

4.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

4.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

