

# wwPDB X-ray Structure Validation Summary Report (i)

#### Aug 16, 2023 - 03:51 PM EDT

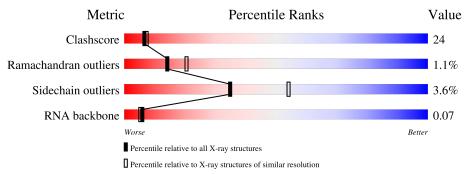
| PDB ID       | : | 2A8V                                                             |
|--------------|---|------------------------------------------------------------------|
| Title        | : | RHO TRANSCRIPTION TERMINATION FACTOR/RNA COMPLEX                 |
| Authors      | : | Bogden, C.E.; Fass, D.; Bergman, N.; Nichols, M.D.; Berger, J.M. |
| Deposited on | : | 1998-11-08                                                       |
| Resolution   | : | 2.40 Å(reported)                                                 |
|              |   |                                                                  |

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Xtriage (Phenix)               | : | NOT EXECUTED                                                       |
| $\mathrm{EDS}$                 | : | NOT EXECUTED                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Clashscore            | 141614                                                               | 4398 (2.40-2.40)                                                          |
| Ramachandran outliers | 138981                                                               | 4318 (2.40-2.40)                                                          |
| Sidechain outliers    | 138945                                                               | 4319 (2.40-2.40)                                                          |
| RNA backbone          | 3102                                                                 | 1174 (2.80-2.00)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Note EDS | was | $\operatorname{not}$ | executed. |
|----------|-----|----------------------|-----------|
|----------|-----|----------------------|-----------|

| Mol | Chain | Length |     | Quality of chain | 1   |   |
|-----|-------|--------|-----|------------------|-----|---|
| 1   | D     | 3      | 33% | 33%              | 33% | - |
| 2   | Е     | 6      | 17% | 50%              | 33% | _ |
| 3   | А     | 118    |     | 65%              | 33% | • |
| 3   | В     | 118    |     | 61%              | 36% | • |
| 3   | С     | 118    |     | 64%              | 32% | • |



# 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 3050 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 5'-R(P\*CP\*CP\*C)-3'.

| Mol | Chain | Residues | Atoms       |         |        | ZeroOcc | AltConf | Trace |   |   |
|-----|-------|----------|-------------|---------|--------|---------|---------|-------|---|---|
| 1   | D     | 3        | Total<br>61 | С<br>27 | N<br>9 | O<br>22 | Р<br>3  | 0     | 0 | 0 |

• Molecule 2 is a RNA chain called 5'-R(P\*CP\*CP\*CP\*CP\*CP\*C)-3'.

| Mol | Chain | Residues | Atoms        |         |         | ZeroOcc | AltConf | Trace |   |   |
|-----|-------|----------|--------------|---------|---------|---------|---------|-------|---|---|
| 2   | Е     | 6        | Total<br>121 | С<br>54 | N<br>18 | 0<br>43 | Р<br>6  | 0     | 0 | 0 |

• Molecule 3 is a protein called RNA BINDING DOMAIN OF RHO TRANSCRIPTION TER-MINATION FACTOR.

| Mol | Chain | Residues | Atoms |     |     |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|---------|-------|
| 3   | Δ     | 118      | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 0   | A     | 110      | 929   | 586 | 161 | 179 | 3            | 0       | 0       | 0     |
| 3   | В     | 118      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 0   | D     | 110      | 929   | 586 | 161 | 179 | 3            | 0       | 0       | 0     |
| 2   | С     | 110      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | C     | 118      | 929   | 586 | 161 | 179 | 3            | 0       | 0       | 0     |

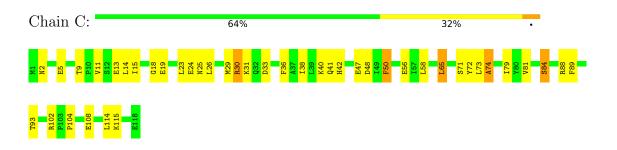
• Molecule 4 is water.

| Mol | Chain | Residues | Atoms                                   | ZeroOcc | AltConf |
|-----|-------|----------|-----------------------------------------|---------|---------|
| 4   | D     | 1        | Total O<br>1 1                          | 0       | 0       |
| 4   | Е     | 1        | Total O<br>1 1                          | 0       | 0       |
| 4   | А     | 39       | Total         O           39         39 | 0       | 0       |
| 4   | В     | 23       | TotalO2323                              | 0       | 0       |
| 4   | С     | 17       | Total O<br>17 17                        | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.


Note EDS was not executed.

• Molecule 1: 5'-R(P\*CP\*CP\*C)-3'

| Chain D:                                             | 33%                                                                                                          | 33%                                                                                                                              | 33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <mark>3 2</mark>                                     |                                                                                                              |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |
| • Molecule 2                                         | 2: 5'-R(P*CP*CP*                                                                                             | *CP*CP*CP*C)-3'                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |
| Chain E:                                             | 17%                                                                                                          | 50%                                                                                                                              | 33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                  |
| C1<br>C2<br>C5<br>C5<br>C5<br>C5<br>C5               |                                                                                                              |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |
| • Molecule 3<br>TOR                                  | 3: RNA BINDING                                                                                               | G DOMAIN OF R                                                                                                                    | HO TRANSCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TERMINATION FAC-                                                                                   |
| Chain A:                                             | 6                                                                                                            | 5%                                                                                                                               | 33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |
| M1<br>N2<br>L3<br>L3<br>E5<br>E5<br>115<br>115       | L17<br>L17<br>G18<br>B19<br>B20<br>M20<br>M20<br>M20<br>M20<br>M20<br>M29<br>M29<br>M29<br>M29<br>M29<br>M29 | K30<br>K31<br>Q32<br>133<br>133<br>F36<br>F36<br>C40<br>C41<br>C58<br>L65<br>L65                                                 | 866<br>867<br>867<br>869<br>869<br>871<br>173<br>173<br>871<br>179<br>872<br>885<br>885<br>885<br>885<br>885<br>885<br>885<br>885<br>885<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P104                                                                                               |
| E108<br>R109<br>Y110<br>L114<br>K115<br>K114<br>N117 | E118                                                                                                         |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |
| • Molecule 3<br>TOR                                  | 3: RNA BINDINC                                                                                               | G DOMAIN OF R                                                                                                                    | HO TRANSCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TERMINATION FAC-                                                                                   |
| Chain B:                                             | 619                                                                                                          | 6                                                                                                                                | 36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                  |
| M1<br>N2<br>L3<br>K7<br>N8<br>10<br>P10<br>V11       | 812<br>813<br>115<br>115<br>819<br>820<br>820<br>830<br>831<br>831                                           | 138<br>139<br>155<br>155<br>155<br>155<br>155<br>155<br>158<br>166<br>166<br>166<br>166<br>166<br>166<br>166<br>166<br>166<br>16 | A74<br>A74<br>D78<br>D78<br>081<br>882<br>883<br>884<br>883<br>884<br>886<br>884<br>886<br>886<br>888<br>888<br>186<br>187<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>187<br>888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>18888<br>1888<br>1888<br>18888<br>1888<br>1888<br>18888<br>1888<br>1888<br>18888<br>18 | 00<br>11<br>13<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| R102<br>K105<br>E108<br>E114<br>K115                 | V116<br>N117<br>E118                                                                                         |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |

• Molecule 3: RNA BINDING DOMAIN OF RHO TRANSCRIPTION TERMINATION FACTOR







# 4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

| Property                               | Value                                            | Source    |
|----------------------------------------|--------------------------------------------------|-----------|
| Space group                            | C 1 2 1                                          | Depositor |
| Cell constants                         | 132.78Å 31.31Å 105.75Å                           | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$ | $90.00^{\circ}$ $122.98^{\circ}$ $90.00^{\circ}$ | Depositor |
| Resolution (Å)                         | 14.00 - 2.40                                     | Depositor |
| % Data completeness                    | 98.2 (14.00-2.40)                                | Depositor |
| (in resolution range)                  | 30.2 (14.00 2.40)                                | Depositor |
| $R_{merge}$                            | (Not available)                                  | Depositor |
| R <sub>sym</sub>                       | 0.07                                             | Depositor |
| Refinement program                     | CNS                                              | Depositor |
| $R, R_{free}$                          | 0.245 , $0.297$                                  | Depositor |
| Estimated twinning fraction            | No twinning to report.                           | Xtriage   |
| Total number of atoms                  | 3050                                             | wwPDB-VP  |
| Average B, all atoms $(Å^2)$           | 49.0                                             | wwPDB-VP  |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Mol Chain |      | nd lengths    | Bond angles |               |  |
|-----|-----------|------|---------------|-------------|---------------|--|
|     | Ullalli   | RMSZ | # Z  > 5      | RMSZ        | # Z  > 5      |  |
| 1   | D         | 1.13 | 1/66~(1.5%)   | 1.13        | 1/98~(1.0%)   |  |
| 2   | Ε         | 0.87 | 1/132~(0.8%)  | 1.14        | 1/200~(0.5%)  |  |
| 3   | А         | 0.41 | 0/943         | 0.60        | 0/1266        |  |
| 3   | В         | 0.34 | 0/943         | 0.59        | 0/1266        |  |
| 3   | С         | 0.36 | 0/943         | 0.59        | 0/1266        |  |
| All | All       | 0.44 | 2/3027~(0.1%) | 0.65        | 2/4096~(0.0%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | D     | 0                   | 1                   |
| 2   | Е     | 0                   | 2                   |
| All | All   | 0                   | 3                   |

All (2) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 1   | D     | 1   | С    | OP3-P | -7.05 | 1.52        | 1.61     |
| 2   | Е     | 1   | С    | OP3-P | -6.76 | 1.53        | 1.61     |

All (2) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms      | $\mathbf{Z}$ | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|--------------|------------------|---------------|
| 1   | D     | 1   | С    | N1-C1'-C2' | 5.80         | 121.54           | 114.00        |
| 2   | Е     | 1   | С    | OP1-P-OP2  | -5.03        | 112.05           | 119.60        |

There are no chirality outliers.

All (3) planarity outliers are listed below:



| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | D     | 1   | С    | Sidechain |
| 2   | Е     | 1   | С    | Sidechain |
| 2   | Е     | 4   | С    | Sidechain |

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | D     | 61    | 0        | 34       | 4       | 0            |
| 2   | Ε     | 121   | 0        | 67       | 7       | 0            |
| 3   | А     | 929   | 0        | 939      | 31      | 0            |
| 3   | В     | 929   | 0        | 939      | 53      | 0            |
| 3   | С     | 929   | 0        | 939      | 46      | 0            |
| 4   | А     | 39    | 0        | 0        | 2       | 0            |
| 4   | В     | 23    | 0        | 0        | 4       | 0            |
| 4   | С     | 17    | 0        | 0        | 1       | 0            |
| 4   | D     | 1     | 0        | 0        | 0       | 0            |
| 4   | Е     | 1     | 0        | 0        | 0       | 0            |
| All | All   | 3050  | 0        | 2918     | 139     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 24.

The worst 5 of 139 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1          | Atom-2          | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-----------------|-----------------|-----------------------------|----------------------|
| 3:B:86:ILE:HD12 | 3:B:86:ILE:H    | 1.36                        | 0.90                 |
| 3:B:11:VAL:HG22 | 3:B:31:LYS:HD2  | 1.56                        | 0.87                 |
| 3:C:42:HIS:NE2  | 3:C:47:GLU:HG2  | 1.93                        | 0.82                 |
| 3:C:9:THR:HB    | 3:C:14:LEU:HD21 | 1.62                        | 0.80                 |
| 3:B:91:LEU:O    | 3:B:92:ARG:HD3  | 1.83                        | 0.79                 |

There are no symmetry-related clashes.



### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Percentiles |
|-----|-------|---------------|-----------|---------|----------|-------------|
| 3   | А     | 116/118~(98%) | 112 (97%) | 4(3%)   | 0        | 100 100     |
| 3   | В     | 116/118~(98%) | 107~(92%) | 6~(5%)  | 3~(3%)   | 5 5         |
| 3   | С     | 116/118~(98%) | 106 (91%) | 9~(8%)  | 1 (1%)   | 17 25       |
| All | All   | 348/354~(98%) | 325~(93%) | 19 (6%) | 4 (1%)   | 14 20       |

All (4) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | В     | 117 | ASN  |
| 3   | В     | 25  | ASN  |
| 3   | С     | 74  | ALA  |
| 3   | В     | 83  | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Perce | ntiles |
|-----|-------|----------------|-----------|----------|-------|--------|
| 3   | А     | 101/101~(100%) | 97~(96%)  | 4 (4%)   | 31    | 49     |
| 3   | В     | 101/101 (100%) | 98~(97%)  | 3~(3%)   | 41    | 61     |
| 3   | С     | 101/101 (100%) | 97~(96%)  | 4 (4%)   | 31    | 49     |
| All | All   | 303/303~(100%) | 292~(96%) | 11 (4%)  | 35    | 54     |

5 of 11 residues with a non-rotameric side chain are listed below:



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | С     | 30  | ARG  |
| 3   | С     | 50  | PHE  |
| 3   | С     | 84  | SER  |
| 3   | С     | 65  | LEU  |
| 3   | В     | 65  | LEU  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | А     | 2   | ASN  |
| 3   | С     | 2   | ASN  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed   | Backbone Outliers | Pucker Outliers |
|-----|-------|------------|-------------------|-----------------|
| 1   | D     | 3/3~(100%) | 1 (33%)           | 1 (33%)         |
| 2   | Е     | 6/6 (100%) | 4 (66%)           | 3~(50%)         |
| All | All   | 9/9~(100%) | 5~(55%)           | 4 (44%)         |

All (5) RNA backbone outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 2   | С    |
| 2   | Е     | 2   | С    |
| 2   | Е     | 3   | С    |
| 2   | Е     | 5   | С    |
| 2   | Е     | 6   | С    |

All (4) RNA pucker outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 1   | С    |
| 2   | Е     | 1   | С    |
| 2   | Е     | 2   | С    |
| 2   | Е     | 4   | С    |

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

## 6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

# 6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

### 6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

