MTBLS355: Nontargeted and targeted metabolomics measurements of abiotic stress responses in three-week-old Arabidopsis thaliana plants' rosette leaf tissue

Abstract

Nontargeted and targeted metabolomics measurements of abiotic stress responses in three-week-old Arabidopsis thaliana plants' rosette leaf tissue for Col-0 wild type plants and double/triple knockout mutants of aquaporins (pip2;1 pip2;2 and pip2;1 pip2;2 pip2;4) treated with drought, heat at different air humidities, or combined drought-heat stress at different air humidities. This experiment contains FT-ICR-MS measurements for 103 Arabidopsis thaliana rosette leaf samples covering three genotypes under six different environmental conditions. The three genotypes comprise the Col-0 wildtype and two loss-of-function mutants of aquaporins, a pip2;1 pip2;2 double mutant and a pip2;1 pip2;2 pip2;4 triple mutant (respective AGI locus identifiers: AT3G53420, AT2G37170, AT5G60660). The six conditions include control condition (well-watered, 22 °C, 70% relative air humidity), drought stress (one week without watering), heat stress without changing the absolute humidity of the ambient air (6 hours at 33 °C, 37% relative air humidity), heat stress with supplemented air humidity to maintain a constant vapor pressure deficit before and during the heat episode (6 hours at 33 °C, 84% relative air humidity), and the combinations of drought pretreatment with each of the two heat stress variants (one week of drought followed by 6 hours of heat stress). Samples from all conditions were harvested at the same time (within 15 min starting at 5 pm). For validation, GC-TOF-MS measurements were done for two genotypes (wildtype, double mutant) and two conditions (drought, control) on partially overlapping samples.

Click to read more

 Authors: Elisabeth Georgii, Anton Schäffner

  Release date: 17-Jul-2017

 Status: Public

Organism(s)

Arabidopsis thaliana

  Study Design

EFO:genotype design

EFO:stimulus or stress design

gas chromatography-mass spectrometry

targeted metabolites

untargeted metabolites

  Experimental Factors

genotype

stimulus

Protocol Description
Sample collection The plants were grown on soil in climate simulation chambers with 11/13 h light/dark cycle (light 08:30 am to 07:30 pm), 200 μmol/m^2/s photosynthetic photon flux density, 22 °C air temperature and 0.79 kPa VPD, corresponding to 70% relative air humidity. 3-week-old plants were flooded with water up to 60% of the pot height for 15 min by an automatic flooding system. After flooding, the plants used for drought stress (D) and combined drought and heat stresses (DH) stopped being watered and the soil moisture was regularly monitored. When the soil water content dropped to approximately 20% of the initial water content after 1 week, heat stress (H) was applied to both well-watered plants and drought-treated plants, raising the temperature to 33 °C for 6 h from 11:00 am to 5:00 pm. For 1 set of plants, the absolute air humidity was kept unchanged during the temperature increase, resulting in 37% relative air humidity and 3.17 kPa VPD; this condition is labeled 'LrH' (low relative air humidity). For another set of plants, the heat treatments were done with supplemented air humidity at 84% relative air humidity, to maintain the VPD at 0.79 kPa; the condition is labeled 'HrH' (high relative air humidity). 5 replicates of each genotype were generated for each environmental scenario; they were randomly distributed in the chambers to exclude position effects. Each replicate consisted of 7 or 8 rosettes that were harvested after treatment, collected into plastic bags (4 oz. 118 ml, Whirl-Pak), immediately frozen in liquid nitrogen and stored at -80 °C until use. Samples from all conditions were harvested at the same time (within 15 min starting at 5:00 pm).
Extraction FT-ICR-MS extraction:
Samples were ground at 2500 rpm for 2.5 min using the mixer mill MM 400 (Retsch, Germany), and 100 mg powder used for metabolite extraction. Metabolite extraction was performed as described previously [1] with slight modifications. 44 μg/ml loganin and 3 μg/ml nitrophenol were added to extraction buffer 1 (methanol/chloroform/H2O 2.5:1:1 v/v/v) as internal standards. 2 ml pre-cooled extraction buffer 1 (-20 °C) was added to 100 mg plant material and mixed at 4 °C for 30 min. After centrifugation (10 min, 14000 rpm, 4 °C), 1 ml of the supernatant (supernatant A) was transferred into a fresh 2 ml Eppendorf tube and the remaining pellet was extracted in a second step with 1 ml pre-cooled (4 °C) extraction buffer 2 (methanol/chloroform 1:1 v/v). After a second centrifugation, 500 μl of the supernatant (supernatant B) were mixed with supernatant A. The chloroform phase was then separated from the water/methanol phase by addition of 250 μl of HPLC grade water (4 °C, Merck). The aqueous phase was divided into several 200 μl aliquots and dried completely using a Speed-Vac.

GC–TOF–MS extraction and derivatization:
For the extraction ~100 mg plant material (fresh weight) was ground in 900 µl cold (-20 °C) 80% methanol containing 20 μl ribitol (0.2 mg/ml in water) and 10 μl 13C-sorbitol (0.2 mg /m in water), which were added as internal standards for the quantification of metabolite abundances. After incubation at 70 °C for 15 min, the extract was centrifuged for 15 min at 25000 x g. For further analysis, 50 μl of the supernatant was dried in vacuo. The pellet was resuspended in 10 μl of methoxyaminhydrochloride (20 mg/ml in pyridine) and derivatized for 90 min at 37 °C. After the addition of 20 µl of BSTFA (N,O-Bis[trimethylsilyl]trifluoroacetamide) containing 5 μl retention time standard mixture of linear alkanes (n-decane, n-dodecane, n-pentadecane, n-nonadecane, n-docosane, n-octacosane, n-dotriacontane), the mix was incubated at 37 °C for further 45 min [2][3][4].

Ref:
[1] Weckwerth, W., Wenzel, K., Fiehn, O. (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4(1), 78–83. doi:10.1016/j.biosystems.2005.05.017
[2] Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR. (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 13, 11-29. doi: http:/​/​dx.​doi.​org/​10.​1105/​tpc.​13.​1.​11
[3] Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387-396. DOI:10.1038/nprot.2006.59
[4] Erban A, Schauer N, Fernie AR, Kopka J. (2007) Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. Methods in Molecular Biology, 358,19-38. DOI:10.1007/978-1-59745-244-1_2
Chromatography FT-ICR-MS:
No chromatography was performed in this assay.

GC–TOF–MS
A volume of 1 μl of each sample was injected into a GC–TOF–MS system (Pegasus HT, Leco, St Joseph, USA). Samples were derivatized and injected by an autosampler system (Combi PAL, CTC Analytics AG, Zwingen, Switzerland). Helium acted as carrier gas at a constant flow rate of 1 ml/min. Gas chromatography was performed on an Agilent GC (7890A, Agilent, Santa Clara, USA) using a 30 m VF-5ms column with 10 m EZ-Guard column. The injection temperature of the split/splitless injector (Agilent, Santa Clara, USA) was set to 250 °C. Transfer line and ion source were set to 250 °C. The initial oven temperature (70 °C) was permanently increased to a final temperature of 320 °C by 9 °C/min. To avoid solvent contaminations the solvent delay was set to 340 s. Metabolites that passed the column were released into the TOF-MS.
Mass spectrometry FT-ICR-MS:
A Solarix FT-ICR mass spectrometer (Bruker Daltonics, Bremen, Germany) coupled to a 12 Tesla magnet (Magnex, UK) was used for the experimental study. The electrospray ionization source (Apollo II, Bruker Daltonics, Bremen, Germany) was used in the negative ionization mode to ionize the studied analytes in 50% methanolic solution (Lichrosolv, Sigma-Aldrich, Schnelldorf, Germany). The sample solutions were injected directly to the ionization source by the use of a microliter pump at a flow rate of 2 µl/min. A source heater temperature of 200 °C was maintained and no nozzle – skimmer fragmentation was performed in the ionization source. The instrument was previously calibrated by the use of Arginine negative cluster ions starting from a methanolic arginine solution of 5 mg/l. Ions were accumulated in the collision cell for 300 ms for thermalization and enrichment prior to ICR ion detection. The base pressure in the ICR vacuum chamber was 7 x 10^-10 mbar and in the quadrupole and hexapole regions 3 x 10^-6 mbar. High pressure in the quadrupole and hexapole regions is necessary to co-linearize the ions in the radial plane and decelerate the radial components of the ion kinetic energy. 300 scans were accumulated for each mass spectrum. The instrumental mass range m/z (147-1000) amu was scanned.

GC–TOF–MS:
The transfer line, connecting the GC and the TOF-MS, was set to 250 °C as well as the ion source where the instreaming metabolites got ionized and fractionated by an ion pulse of 70 eV. Mass spectra were recorded at 20 scans/s with an m/z 35–800 scanning range using a LECO Pegasus HT TOFMS. Chromatograms and mass spectra were evaluated using ChromaTOF 4.5 and TagFinder 4.1 software [1]. There are 2 files for each sample, splitless (suffix '_SL') and split 10 (suffix '_Split'). Highly abundant metabolites (sugars, organic acids) were measured in split mode, and other metabolites in splitless mode. The sample naming is consistent with the processed files.

Ref:
[1] Luedemann A, Strassburg K, Erban A, Kopka J. (2008) TagFinder for the quantitative analysis of gas chromatography - mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics, 24, 732-737. DOI: 10.1093/bioinformatics/btn023.
Data transformation FT-ICR-MS:
The spectra were merged across samples with an error tolerance of 1 ppm. The intensities in each sample were normalized by total ion current (TIC). To focus on reliably detected masses, we selected the 663 masses detected in at least two thirds of the samples in at least 1 condition. The data were log2 transformed and corrected for experiment and measurement batch effects using the nlme package in R [1]. Missing values are marked as NA; they did not exceed the detection threshold of 5e^+05.

GC–TOF–MS:
The data were log2 transformed and corrected for experimental batch effect with the nlme package [1].

Ref:
[1] Pinheiro JC, Bates DM. (2000) Mixed-Effects Models in S and S-PLUS, Springer.
Metabolite identification FT-ICR-MS:
Mapping of masses to putative metabolites was performed with MassTRIX [1] and ChemSpider [2] using the metabolism data sources ChEMBL, BioCyc, AraCyc, MassBank, KEGG and Golm Metabolome Database.

GC–TOF–MS:
Chromatograms and mass spectra were evaluated using ChromaTOF 4.5 and TagFinder 4.1 software [3].

Ref:
[1] Suhre K, Schmitt-Kopplin P. (2008) MassTRIX: mass translator into pathways. Nucleic Acids Research, 36, W481–W484. https://doi.org/10.1093/nar/gkn194
[2] Pence HE, William A. (2010) ChemSpider: An Online Chemical Information Resource. J Chem Educ 87: 1123–1124. DOI: 10.1021/ed100697w [3] Luedemann A, Strassburg K, Erban A, Kopka J. (2008) TagFinder for the quantitative analysis of gas chromatography - mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics, 24, 732-737. DOI: 10.1093/bioinformatics/
Source Name Organism Variant Organism part Protocol REF Sample Name genotype stimulus
2.TM.D.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.D.3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress (D)
2.TM.D.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.D.1 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress (D)
2.TM.D.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.D.n4 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress (D)
2.TM.D.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.D.n5 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress (D)
2.TM.Control.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.Control.3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
3.TM.Control.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.Control.2 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
2.TM.Control.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.Control.1 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
2.TM.Control.n3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.Control.n3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
2.TM.Control.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.Control.2 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
2.TM.Control.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.Control.n5 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
3.TM.Control.n8 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.Control.n8 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
3.TM.Control.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.Control.3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Control
2.TM.DH_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.DH_HrH.1 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.TM.DH_HrH.n10 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.DH_HrH.n10 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.TM.DH_HrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.DH_HrH.3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.TM.DH_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.DH_HrH.2 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.TM.DH_HrH.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.DH_HrH.n4 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.TM.DH_HrH.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.DH_HrH.n5 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.TM.DH_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.DH_HrH.2 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.TM.DH_HrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.DH_HrH.n9 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.TM.H_HrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.H_HrH.3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
3.TM.H_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.H_HrH.1 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
2.TM.H_HrH.n2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.H_HrH.n2 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
2.TM.H_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.H_HrH.1 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
2.TM.H_HrH.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.H_HrH.n4 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
2.TM.H_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.TM.H_HrH.2 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
3.TM.H_HrH.n8 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.H_HrH.n8 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
3.TM.H_HrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.H_HrH.n9 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with high relative air humidity (H_HrH)
3.TM.DH_LrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.DH_LrH.3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.TM.DH_LrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.DH_LrH.1 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.TM.DH_LrH.n10 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.DH_LrH.n10 pip2;1 pip2;2 pip2;4 triple mutant (TM) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.TM.H_LrH.n8 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.H_LrH.n8 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with low relative air humidity (H_LrH)
3.TM.H_LrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.H_LrH.n9 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with low relative air humidity (H_LrH)
3.TM.H_LrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.TM.H_LrH.3 pip2;1 pip2;2 pip2;4 triple mutant (TM) Heat stress with low relative air humidity (H_LrH)
2.DM.D.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.D.2 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
2.DM.D.n2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.D.n2 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
2.DM.D.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.D.3 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
2.DM.D.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.D.1 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
2.DM.D.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.D.n5 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
2.DM.Control.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.Control.1 pip2;1 pip2;2 double mutant (DM) Control
3.DM.Control.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.Control.2 pip2;1 pip2;2 double mutant (DM) Control
2.DM.Control.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.Control.3 pip2;1 pip2;2 double mutant (DM) Control
2.DM.Control.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.Control.2 pip2;1 pip2;2 double mutant (DM) Control
2.DM.Control.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.Control.n4 pip2;1 pip2;2 double mutant (DM) Control
2.DM.Control.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.Control.n5 pip2;1 pip2;2 double mutant (DM) Control
3.DM.Control.n8 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.Control.n8 pip2;1 pip2;2 double mutant (DM) Control
3.DM.Control.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.Control.n9 pip2;1 pip2;2 double mutant (DM) Control
2.DM.DH_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.DH_HrH.1 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.DM.DH_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.DH_HrH.2 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.DM.DH_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.DH_HrH.2 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.DM.DH_HrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.DH_HrH.3 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.DM.DH_HrH.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.DH_HrH.n4 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.DM.DH_HrH.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.DH_HrH.n5 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.DM.DH_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.DH_HrH.1 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.DM.DH_HrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.DH_HrH.n9 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.DM.H_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.H_HrH.1 pip2;1 pip2;2 double mutant (DM) Heat stress with high relative air humidity (H_HrH)
3.DM.H_HrH.n10 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.H_HrH.n10 pip2;1 pip2;2 double mutant (DM) Heat stress with high relative air humidity (H_HrH)
2.DM.H_HrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.H_HrH.3 pip2;1 pip2;2 double mutant (DM) Heat stress with high relative air humidity (H_HrH)
2.DM.H_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.H_HrH.2 pip2;1 pip2;2 double mutant (DM) Heat stress with high relative air humidity (H_HrH)
2.DM.H_HrH.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.H_HrH.n4 pip2;1 pip2;2 double mutant (DM) Heat stress with high relative air humidity (H_HrH)
2.DM.H_HrH.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.DM.H_HrH.n5 pip2;1 pip2;2 double mutant (DM) Heat stress with high relative air humidity (H_HrH)
3.DM.H_HrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.H_HrH.3 pip2;1 pip2;2 double mutant (DM) Heat stress with high relative air humidity (H_HrH)
3.DM.DH_LrH.n8 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.DH_LrH.n8 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.DM.DH_LrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.DH_LrH.3 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.DM.DH_LrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.DH_LrH.2 pip2;1 pip2;2 double mutant (DM) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.DM.H_LrH.n8 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.H_LrH.n8 pip2;1 pip2;2 double mutant (DM) Heat stress with low relative air humidity (H_LrH)
3.DM.H_LrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.H_LrH.n9 pip2;1 pip2;2 double mutant (DM) Heat stress with low relative air humidity (H_LrH)
3.DM.H_LrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.DM.H_LrH.1 pip2;1 pip2;2 double mutant (DM) Heat stress with low relative air humidity (H_LrH)
2.WT.D.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.D.3 Col-0 wild type (WT) Drought stress (D)
2.WT.D.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.D.2 Col-0 wild type (WT) Drought stress (D)
2.WT.D.n3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.D.n3 Col-0 wild type (WT) Drought stress (D)
2.WT.D.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.D.1 Col-0 wild type (WT) Drought stress (D)
2.WT.D.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.D.n5 Col-0 wild type (WT) Drought stress (D)
2.WT.Control.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.Control.1 Col-0 wild type (WT) Control
3.WT.Control.n10 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.Control.n10 Col-0 wild type (WT) Control
2.WT.Control.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.Control.3 Col-0 wild type (WT) Control
2.WT.Control.n3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.Control.n3 Col-0 wild type (WT) Control
2.WT.Control.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.Control.2 Col-0 wild type (WT) Control
2.WT.Control.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.Control.n5 Col-0 wild type (WT) Control
3.WT.Control.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.Control.3 Col-0 wild type (WT) Control
3.WT.Control.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.Control.1 Col-0 wild type (WT) Control
2.WT.DH_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.DH_HrH.2 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.WT.DH_HrH.n10 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.DH_HrH.n10 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.WT.DH_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.DH_HrH.1 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.WT.DH_HrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.DH_HrH.3 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.WT.DH_HrH.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.DH_HrH.n4 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.WT.DH_HrH.n5 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.DH_HrH.n5 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.WT.DH_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.DH_HrH.2 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
3.WT.DH_HrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.DH_HrH.n9 Col-0 wild type (WT) Drought stress plus heat stress with high relative air humidity (DH_HrH)
2.WT.H_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.H_HrH.2 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
3.WT.H_HrH.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.H_HrH.2 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
2.WT.H_HrH.n2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.H_HrH.n2 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
2.WT.H_HrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.H_HrH.3 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
2.WT.H_HrH.n4 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.H_HrH.n4 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
2.WT.H_HrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 2.WT.H_HrH.1 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
3.WT.H_HrH.n8 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.H_HrH.n8 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
3.WT.H_HrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.H_HrH.n9 Col-0 wild type (WT) Heat stress with high relative air humidity (H_HrH)
3.WT.DH_LrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.DH_LrH.1 Col-0 wild type (WT) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.WT.DH_LrH.n9 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.DH_LrH.n9 Col-0 wild type (WT) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.WT.DH_LrH.n10 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.DH_LrH.n10 Col-0 wild type (WT) Drought stress plus heat stress with low relative air humidity (DH_LrH)
3.WT.H_LrH.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.H_LrH.3 Col-0 wild type (WT) Heat stress with low relative air humidity (H_LrH)
3.WT.H_LrH.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.H_LrH.1 Col-0 wild type (WT) Heat stress with low relative air humidity (H_LrH)
3.WT.H_LrH.n10 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 3.WT.H_LrH.n10 Col-0 wild type (WT) Heat stress with low relative air humidity (H_LrH)
4.DM.Control.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.Control.1 pip2;1 pip2;2 double mutant (DM) Control
4.DM.Control.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.Control.2 pip2;1 pip2;2 double mutant (DM) Control
4.DM.Control.s88 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.Control.s88 pip2;1 pip2;2 double mutant (DM) Control
4.DM.Control.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.Control.3 pip2;1 pip2;2 double mutant (DM) Control
4.DM.Control.s90 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.Control.s90 pip2;1 pip2;2 double mutant (DM) Control
4.WT.Control.s156 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.Control.s156 Col-0 wild type (WT) Control
4.WT.Control.s157 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.Control.s157 Col-0 wild type (WT) Control
4.WT.Control.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.Control.1 Col-0 wild type (WT) Control
4.WT.Control.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.Control.2 Col-0 wild type (WT) Control
4.WT.Control.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.Control.3 Col-0 wild type (WT) Control
4.DM.D.s71 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.D.s71 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
4.DM.D.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.D.1 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
4.DM.D.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.D.2 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
4.DM.D.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.D.3 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
4.DM.D.s75 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.DM.D.s75 pip2;1 pip2;2 double mutant (DM) Drought stress (D)
4.WT.D.1 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.D.1 Col-0 wild type (WT) Drought stress (D)
4.WT.D.2 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.D.2 Col-0 wild type (WT) Drought stress (D)
4.WT.D.3 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.D.3 Col-0 wild type (WT) Drought stress (D)
4.WT.D.s144 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.D.s144 Col-0 wild type (WT) Drought stress (D)
4.WT.D.s145 Arabidopsis thaliana Arabidopsis thaliana str. Col-0 rosette leaf Sample collection 4.WT.D.s145 Col-0 wild type (WT) Drought stress (D)

Assay  1

Assay file name: a_mtbls355_GC_MS-SPLIT.txt
Technology: mass spectrometry
Platform: Pegasus HT GC-TOFMS (Leco)

Instrumentation

Sample Name Protocol REF Post Extraction Derivatization Extract Name Protocol REF Chromatography Instrument Column model Column type Guard column Labeled Extract Name Label Protocol REF Scan polarity Scan m/z range Instrument Ion source Mass analyzer MS Assay Name Raw Spectral Data File Protocol REF Normalization Name Derived Spectral Data File Protocol REF Data Transformation Name Metabolite Assignment File
2.DM.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.1 2.DM.Control.1_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.3 2.DM.Control.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.2 2.DM.Control.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.n4 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.n4 2.DM.Control.n4_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.n5 2.DM.Control.n5_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.1 2.WT.Control.1_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.3 2.WT.Control.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.n3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.n3 2.WT.Control.n3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.2 2.WT.Control.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.n5 2.WT.Control.n5_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.D.2 2.DM.D.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.D.3 2.DM.D.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.D.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.D.n5 2.DM.D.n5_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.3 2.WT.D.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.2 2.WT.D.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.n3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.n3 2.WT.D.n3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.1 2.WT.D.1_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.n5 2.WT.D.n5_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.1 4.DM.Control.1_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.2 4.DM.Control.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.s88 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.s88 4.DM.Control.s88_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.3 4.DM.Control.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.s90 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.s90 4.DM.Control.s90_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.s156 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.s156 4.WT.Control.s156_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.s157 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.s157 4.WT.Control.s157_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.1 4.WT.Control.1_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.2 4.WT.Control.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.3 4.WT.Control.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.s71 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.s71 4.DM.D.s71_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.1 4.DM.D.1_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.2 4.DM.D.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.3 4.DM.D.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.s75 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.s75 4.DM.D.s75_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.1 4.WT.D.1_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.2 4.WT.D.2_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.3 4.WT.D.3_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.s144 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.s144 4.WT.D.s144_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.s145 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.s145 4.WT.D.s145_Split.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv

Assay  2

Assay file name: a_mtbls355_GC_MS-SL.txt
Technology: mass spectrometry
Platform: Pegasus HT GC-TOFMS (Leco)

Instrumentation

Sample Name Protocol REF Post Extraction Derivatization Extract Name Protocol REF Chromatography Instrument Column model Column type Guard column Labeled Extract Name Label Protocol REF Scan polarity Scan m/z range Instrument Ion source Mass analyzer MS Assay Name Raw Spectral Data File Protocol REF Normalization Name Derived Spectral Data File Protocol REF Data Transformation Name Metabolite Assignment File
2.DM.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.1 2.DM.Control.1_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.3 2.DM.Control.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.2 2.DM.Control.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.n4 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.n4 2.DM.Control.n4_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.Control.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.Control.n5 2.DM.Control.n5_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.1 2.WT.Control.1_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.3 2.WT.Control.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.n3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.n3 2.WT.Control.n3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.2 2.WT.Control.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.Control.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.Control.n5 2.WT.Control.n5_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.D.2 2.DM.D.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.D.3 2.DM.D.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.DM.D.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.DM.D.n5 2.DM.D.n5_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.3 2.WT.D.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.2 2.WT.D.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.n3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.n3 2.WT.D.n3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.1 2.WT.D.1_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
2.WT.D.n5 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 2.WT.D.n5 2.WT.D.n5_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.1 4.DM.Control.1_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.2 4.DM.Control.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.s88 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.s88 4.DM.Control.s88_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.3 4.DM.Control.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.Control.s90 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.Control.s90 4.DM.Control.s90_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.s156 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.s156 4.WT.Control.s156_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.s157 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.s157 4.WT.Control.s157_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.1 4.WT.Control.1_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.2 4.WT.Control.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.Control.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.Control.3 4.WT.Control.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.s71 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.s71 4.DM.D.s71_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.1 4.DM.D.1_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.2 4.DM.D.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.3 4.DM.D.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.DM.D.s75 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.DM.D.s75 4.DM.D.s75_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.1 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.1 4.WT.D.1_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.2 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.2 4.WT.D.2_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.3 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.3 4.WT.D.3_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.s144 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.s144 4.WT.D.s144_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv
4.WT.D.s145 Extraction Chromatography Agilent 7890A GC VF-5ms GC (0.25 µm, 0.25 mm x 30 m; Agilent Technologies) high polarity 10 m EZGuard (Agilent Technologies) Mass spectrometry positive 35-800 LECO Pegasus HT TOFMS MS:electron ionization time-of-flight 4.WT.D.s145 4.WT.D.s145_SL.peg Data transformation processedGCMSData.txt Metabolite identification m_mtbls355_GC_MS_v2_maf.tsv

Assay  3

Assay file name: a_mtbls355_FT_ICR_MS.txt
Technology: mass spectrometry
Platform: Solarix FT-ICRMS (Bruker Daltonics)

Instrumentation

Sample Name Protocol REF Post Extraction Derivatization Extract Name Protocol REF Chromatography Instrument Column model Column type Labeled Extract Name Label Protocol REF Scan polarity Scan m/z range Instrument Ion source Mass analyzer MS Assay Name Raw Spectral Data File Protocol REF Normalization Name Derived Spectral Data File Protocol REF Data Transformation Name Metabolite Assignment File
2.TM.D.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.D.3 2.TM.D.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.D.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.D.1 2.TM.D.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.D.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.D.n4 2.TM.D.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.D.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.D.n5 2.TM.D.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.Control.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.Control.3 2.TM.Control.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.Control.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.Control.2 3.TM.Control.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.Control.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.Control.1 2.TM.Control.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.Control.n3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.Control.n3 2.TM.Control.n3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.Control.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.Control.2 2.TM.Control.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.Control.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.Control.n5 2.TM.Control.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.Control.n8 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.Control.n8 3.TM.Control.n8.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.Control.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.Control.3 3.TM.Control.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.DH_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.DH_HrH.1 2.TM.DH_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.DH_HrH.n10 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.DH_HrH.n10 3.TM.DH_HrH.n10.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.DH_HrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.DH_HrH.3 2.TM.DH_HrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.DH_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.DH_HrH.2 2.TM.DH_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.DH_HrH.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.DH_HrH.n4 2.TM.DH_HrH.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.DH_HrH.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.DH_HrH.n5 2.TM.DH_HrH.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.DH_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.DH_HrH.2 3.TM.DH_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.DH_HrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.DH_HrH.n9 3.TM.DH_HrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.H_HrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.H_HrH.3 2.TM.H_HrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.H_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.H_HrH.1 3.TM.H_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.H_HrH.n2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.H_HrH.n2 2.TM.H_HrH.n2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.H_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.H_HrH.1 2.TM.H_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.H_HrH.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.H_HrH.n4 2.TM.H_HrH.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.TM.H_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.TM.H_HrH.2 2.TM.H_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.H_HrH.n8 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.H_HrH.n8 3.TM.H_HrH.n8.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.H_HrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.H_HrH.n9 3.TM.H_HrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.DH_LrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.DH_LrH.3 3.TM.DH_LrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.DH_LrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.DH_LrH.1 3.TM.DH_LrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.DH_LrH.n10 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.DH_LrH.n10 3.TM.DH_LrH.n10.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.H_LrH.n8 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.H_LrH.n8 3.TM.H_LrH.n8.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.H_LrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.H_LrH.n9 3.TM.H_LrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.TM.H_LrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.TM.H_LrH.3 3.TM.H_LrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.D.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.D.2 2.DM.D.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.D.n2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.D.n2 2.DM.D.n2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.D.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.D.3 2.DM.D.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.D.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.D.1 2.DM.D.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.D.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.D.n5 2.DM.D.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.Control.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.Control.1 2.DM.Control.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.Control.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.Control.2 3.DM.Control.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.Control.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.Control.3 2.DM.Control.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.Control.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.Control.2 2.DM.Control.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.Control.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.Control.n4 2.DM.Control.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.Control.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.Control.n5 2.DM.Control.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.Control.n8 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.Control.n8 3.DM.Control.n8.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.Control.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.Control.n9 3.DM.Control.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.DH_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.DH_HrH.1 2.DM.DH_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.DH_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.DH_HrH.2 3.DM.DH_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.DH_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.DH_HrH.2 2.DM.DH_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.DH_HrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.DH_HrH.3 2.DM.DH_HrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.DH_HrH.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.DH_HrH.n4 2.DM.DH_HrH.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.DH_HrH.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.DH_HrH.n5 2.DM.DH_HrH.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.DH_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.DH_HrH.1 3.DM.DH_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.DH_HrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.DH_HrH.n9 3.DM.DH_HrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.H_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.H_HrH.1 2.DM.H_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.H_HrH.n10 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.H_HrH.n10 3.DM.H_HrH.n10.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.H_HrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.H_HrH.3 2.DM.H_HrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.H_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.H_HrH.2 2.DM.H_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.H_HrH.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.H_HrH.n4 2.DM.H_HrH.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.DM.H_HrH.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.DM.H_HrH.n5 2.DM.H_HrH.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.H_HrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.H_HrH.3 3.DM.H_HrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.DH_LrH.n8 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.DH_LrH.n8 3.DM.DH_LrH.n8.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.DH_LrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.DH_LrH.3 3.DM.DH_LrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.DH_LrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.DH_LrH.2 3.DM.DH_LrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.H_LrH.n8 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.H_LrH.n8 3.DM.H_LrH.n8.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.H_LrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.H_LrH.n9 3.DM.H_LrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.DM.H_LrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.DM.H_LrH.1 3.DM.H_LrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.D.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.D.3 2.WT.D.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.D.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.D.2 2.WT.D.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.D.n3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.D.n3 2.WT.D.n3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.D.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.D.1 2.WT.D.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.D.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.D.n5 2.WT.D.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.Control.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.Control.1 2.WT.Control.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.Control.n10 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.Control.n10 3.WT.Control.n10.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.Control.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.Control.3 2.WT.Control.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.Control.n3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.Control.n3 2.WT.Control.n3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.Control.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.Control.2 2.WT.Control.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.Control.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.Control.n5 2.WT.Control.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.Control.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.Control.3 3.WT.Control.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.Control.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.Control.1 3.WT.Control.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.DH_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.DH_HrH.2 2.WT.DH_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.DH_HrH.n10 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.DH_HrH.n10 3.WT.DH_HrH.n10.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.DH_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.DH_HrH.1 2.WT.DH_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.DH_HrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.DH_HrH.3 2.WT.DH_HrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.DH_HrH.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.DH_HrH.n4 2.WT.DH_HrH.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.DH_HrH.n5 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.DH_HrH.n5 2.WT.DH_HrH.n5.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.DH_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.DH_HrH.2 3.WT.DH_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.DH_HrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.DH_HrH.n9 3.WT.DH_HrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.H_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.H_HrH.2 2.WT.H_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.H_HrH.2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.H_HrH.2 3.WT.H_HrH.2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.H_HrH.n2 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.H_HrH.n2 2.WT.H_HrH.n2.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.H_HrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.H_HrH.3 2.WT.H_HrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.H_HrH.n4 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.H_HrH.n4 2.WT.H_HrH.n4.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
2.WT.H_HrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 2.WT.H_HrH.1 2.WT.H_HrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.H_HrH.n8 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.H_HrH.n8 3.WT.H_HrH.n8.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.H_HrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.H_HrH.n9 3.WT.H_HrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.DH_LrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.DH_LrH.1 3.WT.DH_LrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.DH_LrH.n9 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.DH_LrH.n9 3.WT.DH_LrH.n9.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.DH_LrH.n10 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.DH_LrH.n10 3.WT.DH_LrH.n10.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.H_LrH.3 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.H_LrH.3 3.WT.H_LrH.3.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.H_LrH.1 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.H_LrH.1 3.WT.H_LrH.1.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
3.WT.H_LrH.n10 Extraction Chromatography N/A Mass spectrometry negative 147-1000 Bruker solariX FTMS electrospray ionization ion cyclotron resonance cell 3.WT.H_LrH.n10 3.WT.H_LrH.n10.baf Data transformation processedData.txt Metabolite identification m_mtbls355_FT_ICR_MS_v2_maf.tsv
   Download study (FTP)  |     Download metadata    

Aspera Download Details:

List of study files   Subset

File
2.DM.Control.3.baf
2.DM.D.n2.baf
2.DM.H_HrH.n5.baf
2.DM.H_HrH.3.baf
2.TM.Control.2.baf
2.TM.D.1.baf
2.DM.Control.n5.baf
2.TM.DH_HrH.3.baf
2.DM.DH_HrH.3.baf
2.DM.D.2.baf
2.DM.H_HrH.n4.baf
2.DM.D.n5.baf
2.TM.D.3.baf
2.TM.Control.3.baf
2.DM.DH_HrH.1.baf
2.DM.H_HrH.2.baf
2.TM.Control.n5.baf
2.TM.Control.1.baf
2.DM.Control.n4.baf
2.DM.D.3.baf
2.DM.Control.2.baf
2.DM.Control.1.baf
2.DM.H_HrH.1.baf
2.TM.Control.n3.baf
2.DM.D.1.baf
2.TM.DH_HrH.1.baf
2.DM.DH_HrH.n5.baf
2.TM.DH_HrH.2.baf
2.DM.DH_HrH.n4.baf
2.DM.DH_HrH.2.baf
2.TM.D.n4.baf
2.TM.D.n5.baf
2.TM.H_HrH.1.baf
2.TM.H_HrH.n2.baf
2.WT.Control.2.baf
2.WT.D.2.baf
2.WT.DH_HrH.1.baf
2.WT.H_HrH.2.baf
2.WT.DH_HrH.n5.baf
2.WT.D.n5.baf
2.WT.H_HrH.n4.baf
3.DM.Control.n9.baf
3.DM.DH_HrH.n9.baf
3.DM.DH_HrH.1.baf
3.DM.DH_LrH.n8.baf
3.DM.DH_LrH.2.baf
3.DM.H_LrH.1.baf
2.WT.DH_HrH.3.baf
2.WT.D.1.baf
2.WT.Control.n3.baf
2.WT.Control.3.baf
3.DM.DH_LrH.3.baf
3.DM.H_HrH.3.baf
3.TM.Control.2.baf
3.DM.H_LrH.n9.baf
3.TM.Control.3.baf
3.TM.DH_LrH.1.baf
3.TM.DH_HrH.n10.baf
2.WT.Control.1.baf
3.TM.DH_LrH.n10.baf
3.TM.H_HrH.n8.baf
3.TM.H_LrH.n8.baf
3.WT.DH_HrH.2.baf
3.TM.H_LrH.n9.baf
3.WT.Control.3.baf
3.WT.Control.n10.baf
3.WT.DH_HrH.n10.baf
3.TM.DH_LrH.3.baf
3.TM.DH_HrH.n9.baf
2.TM.H_HrH.3.baf
2.TM.H_HrH.n4.baf
2.TM.H_HrH.2.baf
2.WT.D.n3.baf
2.WT.DH_HrH.n4.baf
2.WT.H_HrH.3.baf
2.WT.DH_HrH.2.baf
2.WT.H_HrH.n2.baf
3.DM.Control.2.baf
2.WT.Control.n5.baf
3.DM.Control.n8.baf
3.TM.DH_HrH.2.baf
3.TM.H_HrH.1.baf
2.TM.DH_HrH.n5.baf
2.WT.H_HrH.1.baf
3.DM.H_LrH.n8.baf
2.TM.DH_HrH.n4.baf
2.WT.D.3.baf
3.DM.H_HrH.n10.baf
3.DM.DH_HrH.2.baf
3.TM.H_LrH.3.baf
3.TM.H_HrH.n9.baf
3.WT.Control.1.baf
3.TM.Control.n8.baf
processedGCMSData.txt
3.WT.H_HrH.n8.baf
rawGCMSData.txt
processedData.txt
2.DM.Control.1_SL.peg
3.WT.H_LrH.1.baf
2.DM.Control.3_Split.peg
3.WT.H_LrH.n10.baf
m_metabolomic_analysis_of_abiotic_stress_responses_in_a._thaliana_metabolite_profiling_mass_spectrometry_v2_maf.tsv
a_metabolomic_analysis_of_abiotic_stress_responses_in_a._thaliana_metabolite_profiling_mass_spectrometry.txt
a_metabolomic_analysis_of_abiotic_stress_responses_in_a._thaliana_metabolite_profiling_mass_spectrometry-1.txt
2.DM.Control.n5_SL.peg
metexplore_mapping.json
2.DM.D.2_Split.peg
2.DM.Control.3_SL.peg
3.WT.DH_HrH.n9.baf
3.WT.H_HrH.n9.baf
3.WT.H_HrH.2.baf
3.WT.DH_LrH.n9.baf
3.WT.DH_LrH.n10.baf
m_metabolomic_analysis_of_abiotic_stress_responses_in_a._thaliana_metabolite_profiling_mass_spectrometry-1_v2_maf.tsv
2.WT.D.n3_SL.peg
3.WT.H_LrH.3.baf
2.DM.D.3_Split.peg
2.DM.D.n5_SL.peg
2.DM.Control.2_Split.peg
2.DM.Control.n4_Split.peg
2.DM.Control.n5_Split.peg
2.DM.D.3_SL.peg
3.WT.DH_LrH.1.baf
2.DM.Control.2_SL.peg
2.DM.D.2_SL.peg
2.DM.Control.1_Split.peg
2.WT.Control.1_Split.peg
2.WT.Control.2_Split.peg
2.WT.Control.3_Split.peg
2.WT.Control.n5_SL.peg
2.WT.D.n5_SL.peg
2.WT.Control.1_SL.peg
a_mtbls355_FT_ICR_MS.txt
2.WT.Control.2_SL.peg
2.WT.D.1_Split.peg
2.WT.Control.3_SL.peg
2.WT.D.2_Split.peg
2.WT.Control.n3_Split.peg
2.WT.D.3_Split.peg
2.WT.Control.n5_Split.peg
2.WT.D.1_SL.peg
2.WT.D.2_SL.peg
2.WT.D.3_SL.peg
2.WT.D.n3_Split.peg
2.DM.D.n5_Split.peg
2.WT.Control.n3_SL.peg
4.DM.Control.1_Split.peg
4.DM.Control.2_SL.peg
4.DM.Control.2_Split.peg
4.DM.Control.s88_SL.peg
4.DM.Control.3_Split.peg
4.DM.Control.s88_Split.peg
4.DM.D.1_SL.peg
4.DM.Control.1_SL.peg
4.DM.Control.s90_Split.peg
4.DM.D.1_Split.peg
4.DM.D.3_SL.peg
4.DM.D.2_Split.peg
4.DM.D.3_Split.peg
4.DM.Control.3_SL.peg
4.DM.Control.s90_SL.peg
4.DM.D.2_SL.peg
2.WT.D.n5_Split.peg
4.WT.Control.2_SL.peg
4.WT.Control.1_SL.peg
4.WT.Control.3_SL.peg
4.WT.Control.1_Split.peg
4.WT.Control.s157_SL.peg
4.WT.Control.s156_SL.peg
4.WT.Control.3_Split.peg
4.WT.D.2_SL.peg
4.WT.Control.2_Split.peg
4.WT.D.1_SL.peg
4.WT.Control.s157_Split.peg
4.WT.Control.s156_Split.peg
4.WT.D.2_Split.peg
4.WT.D.1_Split.peg
4.DM.D.s75_Split.peg
4.WT.D.3_SL.peg
4.WT.D.3_Split.peg
4.WT.D.s144_SL.peg
4.WT.D.s144_Split.peg
4.WT.D.s145_SL.peg
s_mtbls355.txt
4.WT.D.s145_Split.peg
a_mtbls355_GC_MS-SL.txt
2.DM.Control.n4_SL.peg
a_metabolomic_analysis_of_abiotic_stress_responses_in_a._thaliana_metabolite_profiling_mass_spectrometry-SPLIT.txt
m_mtbls355_FT_ICR_MS_v2_maf.tsv
m_mtbls355_GC_MS_v2_maf.tsv
a_mtbls355_GC_MS-SPLIT.txt
a_metabolomic_analysis_of_abiotic_stress_responses_in_a._thaliana_metabolite_profiling_mass_spectrometry-SL.txt
4.DM.D.s71_SL.peg
4.DM.D.s71_Split.peg
4.DM.D.s75_SL.peg
audit
i_Investigation.txt

Info:To download a single file, just click on the file name. To download multiple files, use the check boxes and then click "Download selected files" button. Files will be zipped and downloaded to your browser.



Validations marked with (*) have been allowed by the MetaboLights Curators.
Click here for the detailed description of Validations.
Condition Status Description Requirement Group Message
PASSES Study Title MANDATORY STUDY OK
PASSES Study Description MANDATORY STUDY OK
PASSES Study text successfully parsed OPTIONAL STUDY OK
PASSES Study Contact(s) have listed email MANDATORY CONTACT OK
PASSES Sample(s) MANDATORY SAMPLES OK
PASSES Sample Name consistency check MANDATORY ASSAYS OK
PASSES Publication(s) associated with this Study MANDATORY PUBLICATION OK
PASSES Minimal Experimental protocol MANDATORY PROTOCOLS OK
PASSES Comprehensive Experimental protocol OPTIONAL PROTOCOLS OK
PASSES Extraction protocol description MANDATORY PROTOCOLS OK
PASSES Data transformation protocol description MANDATORY PROTOCOLS OK
PASSES Metabolite Identification protocol description MANDATORY PROTOCOLS OK
PASSES Mass spectrometry protocol description MANDATORY PROTOCOLS OK
PASSES Chromatography protocol description MANDATORY PROTOCOLS OK
PASSES Sample Collection protocol description MANDATORY PROTOCOLS OK
PASSES Protocols text successfully parsed OPTIONAL PROTOCOLS OK
PASSES Organism name MANDATORY ORGANISM OK
PASSES Organism part MANDATORY ORGANISM OK
PASSES Study Factors MANDATORY FACTORS OK
PASSES Assay platform information OPTIONAL ASSAYS OK
PASSES Assay has raw files referenced MANDATORY FILES OK
PASSES Assay referenced raw files detection in filesystem MANDATORY FILES OK
PASSES Raw files in the Assay(s) have the correct format MANDATORY FILES OK
PASSES Assay(s) MANDATORY ASSAYS OK
PASSES All Assays have Metabolite Assignment File (MAF) referenced OPTIONAL FILES OK
PASSES Metabolite Assignment File (MAF) is present in Study folder MANDATORY FILES OK
PASSES Metabolite Assignment File (MAF) has correct format MANDATORY FILES OK
PASSES Metabolite Identification File (MAF) content MANDATORY FILES OK
PASSES ISA-Tab investigation file check MANDATORY ISATAB OK

Pathways - Assay  1



MetExplore Pathways Mapping

Name DB Identifier Mapped Metabolite(s)

Pathways - Assay  2



MetExplore Pathways Mapping

Name DB Identifier Mapped Metabolite(s)

Pathways - Assay  3



MetExplore Pathways Mapping

Name DB Identifier Mapped Metabolite(s)